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Every cellular organism possesses a genome, and, because of this, the question of
genome size evolution is not limited to any one taxon, but rather is of universal
biological interest. Along with animals, plants are the best studied group with
regard to variation in DNA content, and have played a critical role since the ear-
liest days of genome size study. This chapter provides an overview of the current
state of knowledge concerning genome size evolution in plants. As with the pre-
vious chapter on animals, this includes a review of the available data, the patterns
of variation both within and among species and higher taxa, the major mecha-
nisms involved in generating disparities among groups, and the impacts of differ-
ences in genome size at the nuclear, cellular, tissue, and whole-organism levels.
It is evident from this discussion that there are both deep parallels and major
divergences between plants and animals in terms of genome size evolution.
However, on one point the two kingdoms clearly project the same message: that
genome size is a highly relevant biological characteristic whose evolution continues
to represent a key puzzle in genomics and evolutionary biology.



A BRIEF HISTORY OF GENOME SIZE
STUDY IN PLANTS

THE FIRST ESTIMATES OF DNA AMOUNTS

As noted in Chapter 1, estimates of nuclear DNA amounts have been made since
before the elucidation of the double helix structure in 1953. The earliest
approaches were based on analyses of isolated nuclei or cell suspensions, as was
first done for several animal species (Boivin et al.,1948; Vendrely and Vendrely,
1948). The constancy of nuclear DNA reported in the early animal studies was
examined in greater detail almost immediately for both animals (e.g., Mirsky and
Ris, 1949; Swift, 1950a) and plants (e.g., Swift, 1950b). Importantly, such work
on Zea mays and Tradescantia paludosa led Swift (1950b) to develop the still widely
used term C-value1 to define the DNA content of an unreplicated haploid nuclear
genome. However, these studies dealt only with relative DNA contents in differ-
ent tissues of a few test species, and did not provide estimates of absolute DNA
mass (i.e., in picograms, pg; 1 pg = 10−12 g). Probably the first estimate of the
absolute amount of DNA in the nuclear genome of a plant was done for Lilium
longiflorum cv. Croft by Ogur et al. (1951).

Just 10 years later, published measurements of DNA amount per cell in
angiosperms (flowering plants) already ranged more than 50-fold, from 5.5 pg in
Lupinus albus to 313 pg in Lilium longiflorum (McLeish and Sunderland, 1961).
Soon after, studies reporting 40-fold interspecific variation between 22 diploid
species in the family Ranunculaceae (Rothfels et al.,1966), and 5-fold within the
genus Vicia (Martin and Shanks, 1966) confirmed that extensive variation
occurred within families and even individual genera, independently of ploidy level
(e.g., Fig. 2.1).

Possession of nucleated erythrocytes and the absence of a cell wall were impor-
tant factors in the selection of animal materials for pioneering research on genome
size, whereas easy availability as laboratory models with well-studied genetics,
amenable cytology, and large nuclei influenced the first plant materials chosen.
Over the following decades, plants became increasingly important in studies of
genome size, often proceeding several steps ahead of equivalent work on animals
(Gregory, 2005).
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1There has been considerable confusion regarding the origin of the term “C-value.” Many authors
have assumed incorrectly that it refers to “content,” “complement,” or “characteristic.” In coining the
term, Swift (1950b) did not provide a clear definition, and made reference only to the 1C (haploid)
“class” of DNA, leading to the reasonable conclusion that “C” stood for “class” (e.g., Gregory 2001,
2002). However, in a letter to M.D. Bennett dated June 24, 1975, Hewson Swift stated that: “I am
afraid the letter C stood for nothing more glamorous than ‘constant,’ i.e., the amount of DNA that was
characteristic of a particular genotype.”



Genome Size Evolution in Plants 91

A

B

C

10 µmE

D

FIGURE 2.1 An example of the extensive variation in DNA amounts and chromosome sizes encoun-
tered in plants. (A) Brachyscome dichromosomatica 2n = 2x = 4, 1C = 1.1 pg; (B) Myriophyllum spicatum
2n = 2x = 14, 1C = 0.3 pg; (C) Fritillaria sp. 2n = 2x = 24, 1C ≈ 65 pg; (D) Selaginella kraussiana 2n
= 4x = 40, 1C = 0.36 pg; (E) Equisetum variegatum 2n ≈ 216, 1C = 30.4 pg. (A) From Kenton
et al. (1993), reproduced by permission (© Elsevier Inc.).



THE MAIN AREAS OF FOCUS OF EARLY
GENOME SIZE STUDIES

Once its central role in genetics was clear, research on many aspects of DNA
became greatly intensified. Naturally, this included an interest in total genome
size, which was soon fuelled by the realization that although this was remarkably
constant within individual organisms and species, it varied extensively among dif-
ferent species, often in puzzling ways that were quite independent of an organism’s
complexity.

Most of the early effort in studying plant genome sizes concentrated on angio-
sperms, especially crop or model laboratory species. Again, plant studies often
led work on animals, which was especially true with regard to early cytological
research on chromosomes (from the 1930s to the 1950s). For example, the chro-
mosome number for humans (2n = 46) was still uncertain until 1956 (Ford and
Hamerton, 1956; Tjio and Levan, 1956), fully 35 years after the chromosome
number and ploidal level of allohexaploid2 wheat, Triticum aestivum (2n = 6x = 42),
was firmly established (Sakamura, 1918).

As in animals, much of the initial research was concerned with testing the
notion of DNA constancy within species, but it soon diversified to include three
main lines of inquiry (which are all still ongoing today):

1. The technical issue of developing methods for estimating genome size,
and testing and improving their accuracy.

2. An exploration of the ranges in genome size in different groups and at
various taxonomic levels.

3. An investigation of the meaning of genome size variation in terms of the
mechanisms responsible, rates of change, and evolutionary significance.
In particular, resolving the seeming contradiction between constancy
within species (because DNA is the hereditary material) and diversity
among species (with the associated lack of correlation with the number
of genes), once termed the “C-value paradox” (Thomas, 1971), became
a major theme in the study of genome size for several decades.

Although the very broad third issue was well framed in the 1950s and 1960s,
progress toward an answer was blocked by a lack of knowledge about the nature
of the DNA sequences responsible for variation in genome size, and of suitable
techniques to investigate this. It remained so until the molecular revolution,
which allowed the copy numbers and karyotypic distributions of specific DNA
sequences to be investigated for the first time. In the absence of such information,
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2See Chapter 7 for a discussion of polyploidy in plants, including definitions of allopolyploidy,
hexaploidy, and other related terms.



much attention was focused instead on the issue of the phenotypic and other
consequences of genome size variation, with particular reference to its practical
significance (e.g., in agriculture). Studies of the broader ecological relevance of
genome size followed, as discussed in more detail in a later section.

IMPACT OF THE MOLECULAR REVOLUTION
ON GENOME SIZE RESEARCH

Although it provided much-needed insights into the structure and content of indi-
vidual genomes, the molecular revolution also had an inhibitory effect on genome
size research. As molecular work on DNA sequences filled the limelight, interest
in plant DNA C-values per se began to fade. By the 1980s, the strong emphasis
on sequence-based studies made it almost impossible to obtain grant funding to
estimate genome sizes in their own right. Consequently, such information was
obtained either as a by-product of studies focused primarily on other topics, or by a
few laboratories or individuals with basic core funding and equipment. Nevertheless,
the process of gathering more data on genome size for plant taxa continued at
a low level in an uncoordinated way, although occasionally data for larger samples
were gathered in order to test particular hypotheses about the patterns and
consequences of DNA content variation.

The careful attention to technical detail characteristic of most early work was
also abandoned in many cases, leading to reports of substantial intraspecific vari-
ation (i.e., violations of the rule of DNA constancy), including some seemingly
related to developmental, environmental, or geographical factors. This was per-
haps influenced by molecular studies showing that much of the genome consisted
of repetitive DNA sequences that had the potential to change in copy number. In
this context, some workers suggested that certain “fluid domains” within the
genome were capable of undergoing rapid changes in copy number and hence to
alter genome size in response to certain developmental events (e.g., Cavallini and
Natali, 1991; Frediani et al.,1994). Around this time the concept of the “plastic
genome” became popular, in direct contrast to the very notion of the “C-value.”

The unquestioning assumption by many researchers that all such variation was
real necessitated a second and protracted phase of methodological ground-truthing,
the development of best practice techniques, and an emphasis on a more critical
approach to claims of substantial variation within species (see, for example, the
recommendations arising from the first and second Plant Genome Size
Workshops held at the Royal Botanic Gardens, Kew in 1997 and 2003 at
www.rbgkew.org.uk/cval/workshopreport.html). This second wave of very care-
ful measurements revealed that much supposed intraspecific variation (though
not all) was due to technical artifacts (e.g., Greilhuber 1998, 2005) (see later
section).
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GENOME SIZE STUDIES IN THE POST-GENOMIC ERA

The advent of large-scale genome sequencing programs in the 1990s focused new
interest on the study of genome size, and facilitated detailed studies of the molec-
ular basis of genome evolution in plants. The availability of DNA sequence infor-
mation for entire genomes (or at least substantial segments thereof) of different
taxa has allowed detailed comparisons at several taxonomic levels, including
within species (e.g., between the subspecies indica and japonica of rice, Oryza
sativa) (Goff et al., 2002), between species within a family (such as the grasses
Oryza, Sorghum, and Zea) (Ilic et al., 2003) and between families (such as Poaceae
and Brassicaceae) (Bennetzen and Ma, 2003). These provided the first insights
into the sorts of intra- and interspecific variation at the DNA sequence level that
together result in changes in genome size.

Such work is still in its infancy, and it remains unclear how typical findings
based on the study of a small segment of one linkage group really are.
Nevertheless, it has already been confirmed that, as expected, changes in genome
size mostly involve the gain or loss of families of repeated DNA sequences (espe-
cially transposable elements, see Chapter 3) located primarily in intergenic
regions. Contrary to what was once thought, it now seems that speciation may
have as much to do with changes in such regions as with alterations in the
sequences or arrangements of coding regions (Kubis et al., 1998).

Such comparisons will form a main element of future work on plant genome size,
and promise to reveal the key molecular mechanisms involved in the gain and/or
loss of DNA, and the rate at which such changes can occur either in genomes at
large or in different components thereof. This, in turn, will allow a more detailed
investigation of the types of sequences involved in generating patterns of variation
involving phenotypic and ecological correlates of DNA content. The development
and increasingly broad application of new techniques for sequencing, assembling,
and comparing genomes make the early 21st century a truly exciting time for all
forms of genomics, including the holistic variety concerned with genome size.

THE STATE OF KNOWLEDGE REGARDING PLANT
GENOME SIZES

Since 1950, more than 10,000 quantitative estimates of plant C-values have been
made, covering roughly 4000 species of plants (Bennett and Leitch, 2003). Such
a broad sampling can allow the key questions listed previously to be addressed in
a more comprehensive way—but only if the data are accessible. In plants, unlike
in animals, there has long been an effort to compile genome size data for the pur-
poses of comparative study. Of course, there is an important feedback process
involved in this case, because the compilation of data for one purpose tends to
reveal gaps in the dataset and to stimulate the targeted measurement of new values.
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In 1972, Bennett collected data for 273 angiosperm species to test a possible
relationship between DNA amount and minimum generation time, and inciden-
tally created the largest list of its type available at the time. Although Bennett’s
(1972) list proved to be a valuable reference resource, it became clear within a few
years that the majority of information on plant DNA amounts remained difficult
to locate, in part because much of it was widely scattered in a diverse range of
journals, and still worse, because a significant proportion of existing estimates
were not published anywhere. In recognition of this, Bennett and colleagues
began compiling large lists of published and unpublished C-values in plants.
To date, seven such lists have been published, providing extensive coverage of the
available angiosperm data. Taken together, these lists give DNA amounts for more
than 4000 species (1.6% of the global angiosperm flora) derived from 465 original
sources (Bennett and Smith, 1976, 1991; Bennett et al., 1982a, 2000a; Bennett
and Leitch, 1995, 1997, 2005).

Work in compiling lists of C-values for other plant groups lagged behind that
of angiosperms and it was not until 1998 that the first reference list for a non-
angiosperm group was published (Murray, 1998). This contained estimates for
117 gymnosperm species (corresponding to 16% of described species), cited from
24 original sources. Since then, C-values for a further 64 gymnosperm taxa have
been published from seven new reference sources (e.g., Leitch et al., 2001), but
they have not been compiled into a second published list.

For pteridophytes—that is, lycophytes (clubmosses) and monilophytes
(including ferns and horsetails)—estimates of DNA amounts were pooled into
one list by Bennett and Leitch (2001). The list contained DNA C-values for just
48 species from eight original sources and highlighted the ongoing need for work
to increase knowledge in this area. Since then, new pteridophyte C-value data
have been published by Obermayer et al. (2002) and Hanson and Leitch (2002).

In bryophytes (mosses, liverworts, and hornworts), some limited data are avail-
able but remain scattered, and there is no equivalent compilation of C-values
combined from different sources into a pooled list. The largest dataset comes from
the work by Voglmayr (2000), who estimated C-values in 138 mosses in a care-
fully targeted study whose aim was to cover a representative spectrum of taxa.
Voglmayr’s paper also reviewed C-value estimates made by previous workers and
is thus the closest approximation to a single printed reference source for C-values
in bryophytes currently available.

C-VALUES IN CYBERSPACE: DEVELOPMENT OF THE
PLANT DNA C-VALUES DATABASE

The collected lists of angiosperm DNA amounts were produced to make data
more accessible for both reference and analysis purposes. However, as the number
of such lists rose, it became more cumbersome to determine whether an estimate
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for a particular species was listed. By 1997, the problem had become acute, with
five collected lists published, containing a total of 2802 species. It was therefore
decided to pool available data into a single database and make it available on the
Internet. The first version of the Angiosperm DNA C-values Database went live in
April 1997, and was subsequently updated in 1998 to make it more user-friendly.

Following the publication of a sixth list of angiosperm DNA amounts (Bennett
et al., 2000a), which included first C-values for another 691 species, a third release
of the database was launched in December 2000. As reference lists for other plant
groups were published (i.e., gymnosperms and pteridophytes), the option to make
these data more widely available electronically became possible. The C-value data
for 48 pteridophytes given in Bennett and Leitch (2001) were also released in
December 2000 as the online Pteridophyte DNA C-values Database.

These online databases proved to be very useful, and thought was therefore
given to constructing counterparts for other plant taxa as data became available.
Following one of the key recommendations of the first Plant Genome Size Workshop
in 1997, it was decided to assemble one overarching database to cover all land
plant groups (i.e., the Embryophyta: angiosperms, gymnosperms, pteridophytes,
and bryophytes). The resulting Plant DNA C-values Database (www.rbg.kew.org.uk/
cval/homepage.html) was launched in September 2001.

Since the first release, work has continued to develop and extend the database.
Release 2.0 went live in January 2003 (Bennett and Leitch, 2003) and contains
data for 3927 species, comprising 3493 angiosperms, 181 gymnosperms, 82
pteridophytes, and 171 bryophytes (Table 2.1).

USES AND USERS OF THE PLANT DNA
C-VALUES DATABASE

The Plant DNA C-values Database is widely used, having received more than
40,000 hits since being launched in September 2001. On average, the database is
visited more than 50 times per day, with ∼100 C-values commonly taken in
a single visit. Not surprisingly, the types of questions for which the database is
used are varied. In practical terms, C-value information about individual plant
species is important for planning the construction of genomic libraries, for under-
taking amplified fragment length polymorphism (AFLP) or microsatellite studies
(e.g., Scott et al., 1999; Garner, 2002; Fay et al., 2005), and for deciding which
will be the next plant species to have its genome sequenced.

At the other end of the spectrum, the availability of C-value data in one central
database has opened up the possibility of carrying out large-scale comparative
analyses involving hundreds or even thousands of species. Studies so far reported that
have used the database in this way cover diverse fields of biology including ecology,
evolution, genomics, and conservation. For example, Knight and Ackerly (2002)



TABLE 2.1 Minimum (min.), maximum (max.), mean, mode, and range (max./min.) of  1C DNA valuesa in major groups of plants, together with the level of
species representation of C-value data

No. species % Representation
No. species No. of Species in Plant DNA in the Plant 

Min. Max. Mean Mode Range with DNA species representation C-values DNA C-values 
(pg) (pg) (pg) (pg) (max./min.) C-values recognizedb (%) Databasec Databaseb

Algae

Chlorophyta 0.10 19.6 1.75 0.3 196 85 ~ 6500 ~ 1.3 0 0

Rhodophyta 0.10 1.4 0.43 0.2 28 111 ~ 6000 ~ 1.9 0 0

Phaeophyta 0.10 0.9 0.42 0.25 9 44 ~ 1500 ~ 2.9 0 0

Bryophytes 0.17 2.05 0.51 0.45 12.1 171 ~18,000 ~1.0 171 ~1.0

Pteridophytes

Lycophytes 0.16 11.97 3.81 n/a 74.8 4 ~900 ~0.4 4 ~0.4

Monilophytes 0.77 72.68 13.58 7.8 95.0 63 ~9000 ~0.7 63 ~0.7

Gymnosperms 2.25 32.20 16.99 9.95 14.3 181 ~ 730 ~ 24.8 181 ~ 24.8

Angiosperms ~0.11 127.40 6.30 0.60 ~1000 4119 ~250,000 ~1.6 3493 ~1.4

All land plants ~0.11 127.40 6.46 0.60 ~1000 4538 ~280,000 ~1.6 3927 ~1.4

aC-value data for algae taken from Kapraun (2005), and for bryophytes, lycophytes, monilophytes, gymnosperms and angiosperms from Bennett and 
Leitch (2003) and Bennett and Leitch (2005).

bNumbers of species recognized; taken from Kapraun (2005) for algae, Qiu and Palmer (1999) for bryophytes, lycophytes, and monilophytes, Murray et al.
(2001) for gymnosperms, and Bennett and Leitch (1995) for angiosperms.

cPlant DNA C-values Database (release 2.0, January 2003) (Bennett and Leitch, 2003).



used the database to extract 401 angiosperm C-values to ask ecological questions
such as how DNA amount varied across environmental gradients. This has been
aided by the inclusion of information in addition to genome size and 
taxonomic classification, such as chromosome number, ploidy level, and the
method used to analyze DNA content. Specific information relating to the various
plant groups is also provided, such as life cycle type (annual, biennial, or peren-
nial) in angiosperms, sperm type (multiflagellate or none) in gymnosperms, and
spore type (homosporous or heterosporous), sporangium type (eusporangiate or
leptosporangiate), and sperm flagella number (biflagellate or multiflagellate) in
pteridophytes.

In the field of genomics, Leitch and Bennett (2004) used data for 3021
angiosperm species to provide insights into the dynamics of C-value evolution in
polyploid species. Vinogradov (2003) extracted C-values for 3036 species from
the database to reveal a startling negative relationship between the genome size of
a species and its current extinction risk status. Most broadly of all, insights into
the evolution of DNA amounts across all angiosperms (Soltis et al., 2003), and
indeed all land plants (Leitch et al., 2005), have recently been provided by using
C-values for more than 140 families included in the database.

PATTERNS IN PLANT GENOME SIZE EVOLUTION

Understanding the evolution of plant genome size involves at least four major com-
ponents. First, it is necessary to identify the overall distributional patterns of vari-
ation observed within and among extant plant taxa. Second, it is important to
determine the historical trends that generated the current patterns, and to estab-
lish the basic directionality of genome size change through evolutionary time.
Third are the questions relating to the mechanisms by which genomes change in
size. Fourth are the phenotypic consequences that may influence both the taxo-
nomic and geographical distribution of genome size variation among species.
These issues, all of which deal with variation across species, will be treated in order
in the following sections, followed later by a discussion of the related issue of vari-
ation within species.

THE EXTENT OF VARIATION ACROSS PLANT TAXA

In photosynthetic organisms, reported C-values vary more than 12,000-fold, from
∼0.01 pg in the unicellular alga Ostreococcus tauri (Prasinophyceae) (Courties
et al., 1998) to more than 127 pg in the angiosperm Fritillaria assyriaca (Bennett
and Smith, 1991). Yet the range, minimum, maximum, mean, and modal 
C-values vary considerably between the different groups for which data have been
compiled (Table 2.1). These differences are further highlighted when data are
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plotted as histograms (Fig. 2.2). Whereas each group for which data are available
contains species with small C-values, the upper limit appears to vary greatly. The
smallest range in C-values is found in the Phaeophyta (brown algae, 9-fold), and
the largest in the angiosperms (∼1000-fold) (Tables 2.1 and 2.2).

However, it should be noted from Table 2.1 that the percent species represen-
tation for all but gymnosperms is poor, meaning that the range and distribution
of C-values reported may not be entirely representative. (This may be especially
true for groups in which fewer than 100 C-values are known.) The exception to
this might be the angiosperms, as the ∼1000-fold range was first reported more
than 20 years ago based on C-values for 993 species (Bennett et al., 1982a) but
has not changed even after adding a further 3126 species.

GENOME SIZE IN A PHYLOGENETIC CONTEXT

Given the large range in DNA amounts encountered in plants, any attempt to
investigate the directionality of genome size evolution requires that the data are
viewed within a rigorous phylogenetic framework. In plants, there are only a few
cases where this has been done (Bennetzen and Kellogg, 1997; Cox et al., 1998;
Leitch et al., 2001; Obermayer et al., 2002; Wendel et al., 2002). In most cases,
this has involved examining variation within individual families of angiosperms,
but large-scale analyses across the angiosperm phylogeny have also been con-
ducted, first by Leitch et al. (1998) and then extended using character-state map-
ping by Soltis et al. (2003). Although an analysis of a continuously varying
character such as genome size presents problems when defining character states,
it was possible to partially circumvent this difficulty by assigning genome sizes to
a series of distinct categories (Soltis et al., 2003): “very small” (C-values ≤1.4 pg),
“small” (>1.4 to ≤3.5 pg), “intermediate” (>3.5 to <14.0 pg), “large” (≥14.0 to
<35 pg), and “very large” (≥35 pg). With the exception of the “intermediate”
category, these size classes were the same as those first defined by Leitch et al.
(1998) based on the modal C-value of 0.7 pg for a sample of 2802 species
available at the time of analysis. In this sense, the very small and small C-value
categories were twice and five times the mode, respectively, while large and very
large C-value categories were 20 times and 50 times the mode, respectively.

Using gymnosperms as the outgroup, character-state reconstruction data
showed that a very small genome was the ancestral state not only at the root of
angiosperms, but also for most major clades within angiosperms (e.g., monocots,
magnoliids, all core eudicots, Caryophyllales) (Fig. 2.3) in agreement with the
earlier analysis of Leitch et al. (1998). The evolution of very large genomes was
shown to be phylogenetically restricted to a few derived families within the monocot
and Santalales clades (Fig. 2.3), suggesting that very large genomes have evolved
independently more than once during the evolution of angiosperms (Leitch et al.,
1998; Soltis et al., 2003).
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FIGURE 2.2 Histograms showing the distribution of DNA C-values for (A) 4119 angiosperms,
(B) 181 gymnosperms, (C) 63 monilophytes, (D) 4 lycophytes, (E) 171 bryophytes, (F) 85 green algae
(Chlorophyta), (G) 44 brown algae (Phaeophyta), and (H) 111 red algae (Rhodophyta). The maximum
C-value for each group is indicated. (A–E) Redrawn from Leitch et al. (2005), reproduced by permission
(© Oxford University Press); (F–H) Data from Kapraun (2005).



TABLE 2.2 Some well-known representative species showing the range of 1C DNA amounts in angiosperms

Chromosome 1C DNA amount
Species Common name number (2n) Ploidy level (x) pg Mba

Arabidopsis thaliana Thale cress 10 2 0.16 157

Oryza sativa Rice 24 2 0.50 490

Lycopersicon esculentum Tomato 24 2 1.00 980

Glycine max Soybean 40 2 1.10 1078

Zea mays Maize 20 2

Seneca 60 line 2.50 2450

Zapalote Chico line 3.40 3332

Hordeum vulgare Barley 14 2 5.55 5400

Secale cereale Rye 14 2 8.28 8110

Vicia faba Bean 12 2 13.33 13,060

Allium cepa Onion 14 2 16.75 16,415

Triticum aestivum Wheat 42 6 17.32 16,970

Lilium longiflorum Easter lily 24 2 35.20 34,500

Fritillaria assyriaca Fritillaria 48 4 127.40 124,850

a1 pg ≈ 980 Mb (see Chapter 1).



OUTGROUP BASAL ANGIOSPERMS EUDICOTS

Monocots Magnoliids Ranunculales Caryophyllales AsteridsSANT

Very small (≤1.40)

1C values (pg)

Small
Intermediate (>3.5 –<14.0)
Large
Very large (≥35)
Polymorphic
Equivocal

FIGURE 2.3 Parsimony reconstruction of C-value diversification in the angiosperms using the “all most parsimonious states” resolving option of MacClade
(based on Soltis et al., 2003). SANT = Santalales. From Leitch et al. (2005), reproduced by permission (© Oxford University Press).
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Extending the analysis to include other land plant groups (i.e., gymnosperms,
monilophytes, lycophytes, and bryophytes) has provided both insights into the size
of ancestral genomes at different parts of the land plant phylogeny and evidence for
the bidirectionality of genome size evolution (Leitch et al., 2005) (Fig. 2.4). The main
results can be summarized as follows:

1. Different land plant groups are characterized by different ancestral
genome sizes. Whereas angiosperms and bryophytes are reconstructed
with very small ancestral genomes (i.e., ≤1.4 pg), in gymnosperms and
most branches of monilophytes the ancestral genome size is reconstructed
as intermediate (i.e., >3.5 to <14.0 pg).

2. Genome size evolution across land plants has been dynamic, with
evidence of several independent increases and decreases taking place.
Examples of genome size reductions are evident within the monilophytes
at the base of the heterosporous water ferns and within the gymnosperms
in the branch leading to Gnetaceae (Gnetales). Evidence of large
independent increases is seen in the Ophioglossaceae + Psilotaceae clade
(monilophytes) and within heterosporous water ferns in Marsileaceae.
Thus, observations made within Malvaceae (angiosperms) that both
increases and decreases can take place during genome size evolution
(Wendel et al., 2002) appear to form a pattern that is repeated across
land plants, except perhaps in bryophytes where all species to date have
small or very small genomes (Table 2.1).

3. The differences in C-value profiles and patterns of evolution based on
reconstruction data strongly suggest that each major group of land plants
has been subject to different evolutionary forces. Conversely, it is likely
that genome size has itself influenced the shape of the overall plant
phylogeny. As will be discussed in a later section, a small genome size
correlates with several developmental phenotypic characters (e.g., rapid
seedling establishment, short minimum generation time, reduced cost of
reproduction, and increased reproductive rate) (Bennett, 1972, 1987;
Midgley and Bond, 1991), which together may permit greater
evolutionary and ecological flexibility. Thus, the smaller genome sizes of
angiosperms may provide one functional explanation as to why they have
become so dominant in the global flora relative to the larger-genomed
groups like gymnosperms and many monilophytes (Leitch et al., 1998).

HOW DO PLANT GENOME SIZES EVOLVE?

The absence at the time of any known mechanism for decreasing DNA amount led
Bennetzen and Kellogg (1997) to speculate that plants may have a “one-way ticket
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to genomic obesity” through amplification of retrotransposons and polyploidy.
However, as noted previously, there is considerable evidence that both increases
and decreases may occur in plant lineages. The revised view is that the net DNA
amount of an organism reflects the dynamic balance between the opposing forces
of expansion and contraction, in terms of both mechanisms (e.g., Petrov, 2001)
and selective consequences (e.g., Gregory, 2001a). Thanks to detailed studies at
the DNA sequence level, an understanding of the mechanisms by which genomes
change in size is finally taking shape. In many ways, plant studies have led the way
on this issue, even though most of the large-scale eukaryotic sequencing projects
conducted to date have been from animals and fungi.

SEQUENCES RESPONSIBLE FOR THE RANGE OF GENOME
SIZES ENCOUNTERED IN PLANTS

It is generally accepted that different amounts of noncoding, repetitive DNA are
primarily responsible for the large range in genome sizes observed in plants (e.g., >70%
of some plant genomes are repetitive DNA) (Flavell et al., 1977; Barakat et al., 1997).
However, information on the exact nature of the repetitive DNA involved, such as the
length of each repeat and their relative contributions, remains elusive in most species
(Feschotte et al., 2002).

Based on available data, it is clear that much of the repetitive DNA in plants is
composed of transposable elements (TEs). As discussed in detail in Chapter 3, these
can be divided into two distinct classes. Class I elements use an RNA-mediated
mode of transposition, whereas Class II elements use DNA-mediated transposition
mechanisms.

Class I elements are further divided into two subclasses: (1) retrotransposons,
which are characterized by direct long terminal repeats (LTRs) (e.g., Ty1-copia and
Ty3-gypsy elements) and appear to be ubiquitous in vascular plants (Voytas et al.,
1992; Suoniemi et al., 1998), and (2) retroposons, which lack terminal repeats
and are referred to as non-LTR retroelements (e.g., long interspersed nuclear
elements [LINEs] such as Cin4 in Zea mays, and del2 in Lilium speciosum, and
short interspersed nuclear elements [SINEs] such as the S1 element in Brassica).
Both subclasses may reach very high copy numbers in plants.

In grasses (Poaceae), LTR-retrotransposons are clearly the most abundant type
of transposable elements, and in some species may comprise more than 60% of the
nuclear genome (Vicient et al.,1999a; Wicker et al., 2001). In maize, for example,
estimates of the size and copy number of retrotransposons in a 240 kilobase (kb)
region flanking the adh1 gene suggested that 33–62% of the genome was com-
posed of high copy number retrotransposons, with an additional 16% of the
genome containing low to middle copy number retrotransposons (SanMiguel and
Bennetzen, 1998). By comparing the structure of the same 240 kb DNA segment
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in maize (Zea mays) and sorghum (Sorghum bicolor) it was further shown that the
approximately 3-fold larger genome of maize was predominantly due to the 
presence of retrotransposon sequences that had inserted into the maize genome
(SanMiguel and Bennetzen, 1998). Thus, whereas the order of the genes remains
largely conserved between the two species, extensive differences in genome size
have emerged since their split ∼20 million years ago, predominantly reflecting the
different extent to which retrotransposons have undergone amplification in the
two lineages since that time (Fig. 2.5).

It has been speculated that LTR-retrotransposons play an important role in
determining the size of plant genomes in general (Kumar and Bennetzen, 1999).
However, although this may be the case in grasses, sequences other than these appear
to have a greater influence on genome size differences in other organisms (Wendel
and Wessler, 2000), especially those with smaller genomes (Kidwell, 2002).

Class II elements include the Helitrons, Mu, and mutator-like elements
(MULEs), which tend to be large (up to 20 kb), and the smaller miniature inverted
repeat transposable elements (MITEs) (0.1–0.5 kb). From available sequence
data, Class II elements make up ∼ 6% and ∼12% of the Arabidopsis thaliana and
Oryza sativa genomes, respectively (Feschotte et al., 2002; Jiang et al., 2004).

WHAT TRIGGERS THE SPREAD OF
TRANSPOSABLE ELEMENTS?

From the previous section, it is evident that transposable element proliferation
plays a major role in increasing plant genome sizes through time. However, the
factor(s) responsible for triggering amplification in certain lineages are still not
clearly understood in most plant systems. In fact, there remains a puzzling discrep-
ancy between the large number of plant TEs characterized to date and their apparent
transcriptional silence observed during normal plant development. The few excep-
tions to this include the BARE-1 element from barley (Vicient et al., 1999a), the
related OARE-1 element from oats (Kimura et al., 2001), and IRRE elements from
some Iris species (Kentner et al., 2003), which have been shown to be transcrip-
tionally active under normal growing conditions.

In at least some cases, transcriptional activation can be induced by experimental
manipulations of various biotic or abiotic stresses such as wounding, tissue
culture, and pathogen attack (e.g., Grandbastien, 1998; Feschotte et al., 2002).
Similar effects have also been documented in a natural setting, as with the recent
report of retrotransposon activation in natural populations of Hordeum spontaneum
by Kalender et al. (2000). These authors showed that the BARE-1 LTR-retrotransposon,
which comprises ∼3% of the H. spontaneum genome (Vicient et al., 1999a), had been
highly insertionally active in recent times within different plant populations from the
single location of “Evolution Canyon” in Israel. They also showed that copy number
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varied 3-fold between different populations and that there was a correlation between
copy number and various ecological variables, most notably water availability.
Specifically, the population with the highest copy number of BARE-1 elements occu-
pied the driest site in the canyon, suggesting the possibility that water stress induced
the activation of BARE-1. Although the question as to the role BARE-1 might play in
the physiological stress response remains to be determined, the data highlight the
potential for natural environmental cues to trigger retrotransposon activity.
Interestingly, analysis of the draft sequence of the rice genome has also shown that a
DNA transposon (mPing MITE) has been preferentially amplified in cultivars adapted
to environmental extremes (Jiang et al., 2003).

A few studies have suggested that polyploidization and interspecific hybridiza-
tion may also trigger TE amplification in plants, for example in Nicotiana (Fig. 2.6A)
(Comai, 2000), Aegilops-Triticum allopolyploids (Kashkush et al., 2002), and
Spartina anglica (Baumel et al., 2002). However, this is clearly not always the case.
The doubling of the maize genome as a result of LTR-retrotransposon activity was
estimated to have taken place primarily in the last three million years (SanMiguel et al.,
1998), roughly eight million years after the polyploidization event that gave rise to the
species (Gaut and Doebley, 1997). Similarly, bursts of retrotransposon amplification 
estimated to have occurred in the last two million years in Arabidopsis thaliana (Devos
et al., 2002) and the last five million years in Oryza sativa (Vitte and Panaud, 2003)
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FIGURE 2.6 Examples of intraspecific variation in DNA amount visible at the chromosome level. (A)
Megachromosome (arrowed) observed in a corolla metaphase cell from a Nicotiana tabacum × N. otophora
hybrid made by Gerstel and Burns (1966). (B) Loss of heterochromatin blocks of DNA (arrowed) from
chromosomes of Secale kuprijanovii. (C,D) Intraspecific differences in amount of heterochromatic
DNA visible as C-bands (some of which are arrowed) in maize, Zea mays ssp. mays. (C) Commercial
hybrid Seneca 60 (1C = 2.5 pg), a line of maize with few heterochromatic C-bands; (D) Race Zapalote
Chico Oaxaca 50 (1C = 3.4 pg), a line of maize with many C-bands. (A) From Reed (1991),
reproduced by permission (© Elsevier Inc.), (B) From Gustafson et al. (1983), reproduced by
permission (© Springer-Verlag), (C,D) From Laurie and Bennett (1985), reproduced by permission
(© Nature Publishing Group).

do not coincide with any known hybridization or polyploidization event. Further,
where TE amplification has been shown to take place following hybridization, this
may be quickly silenced by other genetic and epigenetic events such as methylation
(e.g., Liu and Wendel, 2000), so the effects of TE amplification owing to hybridization



and polyploidization may be minimal. The recent studies in Arabidopsis thaliana
showing that TE amplification may be under epigenetic control, together with the 
development of tools such as transposon display or sequence-specific amplification
polymorphism (S-SAP) for detecting TE activity, offer the potential for significant
progress to be made in this field in the near future (Feschotte et al., 2002).

In summary, whereas TEs contribute greatly to the large variation in genome size
observed among many plant species, especially the grasses, the factors responsible
for triggering their amplification still remain unknown in the majority of cases.
Moreover, it remains to be determined to what extent TE amplification contributes
to changes in total genome size within a species. The study by Kalendar et al. (2000)
discussed earlier showed that although copy number of the BARE-1 retrotransposon
varied considerably between different ecological sites, no correlation was found
between genome size and copy number of the repeat. Such results suggest that
although TE amplification clearly has the potential to increase genome size, whether
or not it actually does so, or instead is compensated for by a reduction in sequence
repeats elsewhere in the genome, may depend on other factors within the cell. The
possibility that genome size is maintained by internal stabilizing mechanisms will be
an important consideration in the discussion of intraspecific variation given later.

SATELLITE DNA

Tandemly arranged repeats of identical or similar sequences (satellite DNA) can
also comprise large fractions of plant genomes. Indeed, some of the first satellite
DNAs to be isolated were from rye (Secale cereale), with one type comprising ∼6%
of the genome (Bedbrook et al., 1980). Although satellite sequences are variable
in size, the most common monomeric units are 150–180 bp and 320–380 bp.
The structure of the repeat may be highly complex, and in some cases may include
DNA from other repeat classes. For example, a centromeric satellite sequence in
Brassica campestris was shown to contain DNA sequences related to both tRNA
genes and SINEs (Kubis et al., 1998). Minisatellites (10–40 bp repeats) and
microsatellites (2–6 bp, also called simple sequence repeats or SSRs) may also
represent an appreciable amount of DNA, such as in telomeric sequences. These
are believed to occur ubiquitously in all eukaryotic genomes, but their number
and the proportion of the genome they occupy vary significantly among species
(Ellegren, 2002; Morgante et al., 2002).

GENOME SIZE INCREASE BY POLYPLOIDY

Polyploidy, resulting from combining three or more basic chromosome sets or
genomes in a single nucleus, is a prominent mode of speciation, especially
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in angiosperms and monilophytes (see Chapter 7), and results in an instant
increase in the DNA content of the nucleus (i.e., its C-value). Its prominence in
plant evolution has been brought into even sharper focus by recent large-scale
genomic analyses that have uncovered the polyploid nature of many plant
genomes that were traditionally considered to be diploid, including maize (Moore
et al., 1995) and Arabidopsis thaliana (Bowers et al., 2003). The fact that even
small-genomed plants such as these appear to be ancient polyploids has led to the
suggestion that all angiosperms may have experienced polyploidization at some
point in their evolutionary history (Wendel, 2000) (see Chapter 7).

The issue of polyploidy leads to terminological complications when referring to
“C-value” versus “genome size.” Specifically, for a diploid with just one genome in
each gametic nucleus, C-value and genome size are interchangeable. However, in
a polyploid, the C-value will represent the total DNA amount of all genomes within
the nucleus (e.g., in a tetraploid, each gametic nucleus will have two genomes,
whereas a hexaploid will have three). Thus in polyploids, C-value and “basic”
genome size sensu stricto are not equivalent: in a polyploid with more than two
genomes in the gametic nucleus, basic genome size will always be smaller than the
C-value. In general, the basic genome size of a polyploid can be estimated by dividing
C-value by the number of genomes in the gametic nucleus (i.e., half the ploidy) but
it should be recognized that this only gives an accurate estimate in taxa with equal
genome sizes. In taxa with genomes of different sizes (e.g., some allopolyploids) it
gives only a mean genome size. The value will be close to the actual genome sizes in
most but not all species (e.g., some taxa with bimodal karyotypes). As polyploidy is
so prevalent, especially within angiosperms and monilophytes, this has led some
authors to suggest that terminology should distinguish between the 1C-value, repre-
senting the original definition of C-value (which is independent of ploidy level), and
the 1Cx-value, which indicates the basic genome size (Greilhuber et al., 2005).

In recognizing the difference between basic genome size and C-value it
becomes clear that polyploidy will only result in an increase in C-value and not
basic genome size. In simple terms, the expectation in new polyploids is that
C-value will increase in direct proportion with ploidal level, and that the basic size of
the individual genomes included will be unchanged. This expectation is observed
in some polyploid series, especially those newly formed (e.g., see Pires et al.,
2004). However, there are many examples suggesting that C-values in particular
polyploids are less than the expected sum of parental genomes (e.g., Ozkan et al.,
2003; Leitch and Bennett, 2004). On a larger scale, a recent analysis of 3008
angiosperms revealed that mean 1C DNA amount did not increase in direct 
proportion with ploidy (Fig. 2.7A), and thus that mean basic genome size (calcu-
lated by dividing 1C value by half the ploidy) tended to decrease with increasing
ploidy (Fig. 2.7B) (Leitch and Bennett, 2004). These results suggest that “genome
downsizing” following polyploid formation may be a widespread phenomenon of
considerable biological significance.
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FIGURE 2.7 DNA C-values and basic genome sizes (2C value divided by ploidy) in an “all
angiosperms” sample with known C-values and even ploidies between 2x and 12x. (A) Mean 1C DNA
values observed (   • ) compared with expectation (- -�- -) assuming C-value and ploidy are 
directly proportional. (B) Mean basic genome size values observed (    • ) compared with expectation
(- -�- -). From Leitch and Bennett (2004), reproduced by permission (© Blackwell Publishing).
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In fact, the loss of DNA following polyploidy has been reported both at the
gene level (e.g., loss of ribosomal DNA genes, reviewed by Wendel, 2000) and on
a genomewide scale (e.g., Shaked et al., 2001; Ilic et al., 2003; Ozkan et al., 2003).
For example, a comparison of DNA sequences in orthologous regions of maize,
sorghum, and rice suggested that maize may have lost up to 40% of its genes in
the analyzed regions since the polyploid event that gave rise to it (Ilic et al., 2003)
(see Fig. 2.5). Mechanisms responsible for the loss remain ambiguous, but there
are some indications that this involves unequal crossing over.

In some cases, polyploid formation involves the bringing together of genomes
that may be similar enough to undergo homoeologous chromosome pairing
during meiosis (i.e., between the equivalent chromosomes derived from the
different parental species; see Chapter 7). This may lead indirectly to DNA loss as
a result of a breakdown in the postreplicative mismatch repair system (Comai,
2000), which corrects any mismatched base pairs or displaced loops in 
double-stranded DNA following DNA replication and normally also blocks 



homoeologous recombination by the binding of mismatch repair proteins. In a
newly formed polyploid, the excessive number of mismatches caused by homo-
eologous recombination may lead to the depletion of the mismatch repair pro-
teins, and consequently to a rise in the amount of homoeologous recombination
and associated deletion of DNA. A positive feedback loop could be envisaged with
increasing homoeologous recombination and associated DNA deletions as the mis-
match repair proteins are used up (Comai, 2000). How much DNA is lost from
polyploids by this mechanism may be species-dependent, because the extent of
homoeologous recombination in different polyploids may vary. It should be noted
that this is probably not a ubiquitous mechanism, as there are cases in which 
polyploidy is associated with only a minimal level of homoeologous recombination
(e.g., in Brassica polyploids) (Axelsson et al., 2000).

In short, polyploidy will undoubtedly lead to an increase in C-value, but the
extent to which this persists over evolutionary time may vary considerably from
one case to the next. Also, as discussed in Chapter 1, this will constitute a change
in genome size, strictly defined, only following rediploidization.

MECHANISMS OF GENOME SIZE DECREASE

Mechanisms responsible for bringing about a reduction in DNA amount have only
recently come to light, and there is still much to learn regarding their significance
in genome evolution. However, already the available studies suggest that dele-
tional mechanisms may play a more prominent role in genome size evolution than
previously recognized. Several such mechanisms have been identified in plants.

Unequal Intrastrand Homologous Recombination

The process of unequal intrastrand homologous recombination occurs between
the long terminal repeats of LTR-retrotransposons, and can lead to deletion of the
internal DNA segment and one LTR, leaving behind only one “solo LTR.” If this
occurs between adjacent LTR-retrotransposons of the same family, several ele-
ments may be lost in a single step. That this mechanism could provide a way to
counteract retroelement-driven genome expansion was first proposed by Vicient
et al. (1999b), based on an observed 16-fold excess of solo LTRs to intact BARE-1
elements in barley.

Subsequent research has shown that the extent to which unequal homologous
recombination takes place between individual LTRs, and hence its contribution
to genome downsizing, may depend on the particular LTR-retrotransposon in 
question. Notably, recent studies by Vicient and Schulman (2002) and Vitte and
Panaud (2003) found that the proportion of solo LTRs varied considerably
among retroelement types in rice. For example, the ratio of solo LTRs to complete
retroelements ranged from 6.3:1 for the RIRE1 Ty1-copia–like element to 0.1 :1
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for the Retrosat1 Ty3-gypsy–like element. It was speculated that these differences
may be determined by the specific characteristics of the retroelement such as 
the preferential insertion site (e.g., centromeric versus dispersed along the 
chromosome).

The length of the LTR element may also be a crucial factor in determining the
efficacy of this deletional mechanism. Thus Shirasu et al. (2000) suggested that
the lower frequency of solo LTRs in maize arose from a lower recombination
efficiency between the comparatively short LTRs of maize retroelements (average
450 bp) compared with the longer LTRs of five barley retroelements studied
(1.5–4.9 kb). Interestingly, the only two solo LTRs identified in the analysis of a
240 kb segment of the maize genome had longer than average LTRs (1.1 kb)
(SanMiguel et al., 1996). Further, Vitte and Panaud (2003) noted that the proportion
of solo-LTRs increased with increasing LTR size in three rice retroelements. Overall,
the extent to which DNA is lost via unequal homologous recombination may be
determined, at least in part, by the characteristics of the LTR-retrotransposons
that comprise a species’ genome.

Whether unequal homologous recombination occurs continuously through
time or is triggered by bursts of retrotransposon amplification (as proposed by
Rabinowicz, 2000) remains to be determined, although preliminary data from a
study of three Ty3-gypsy–like retroelements in rice suggest that solo LTR formation
seems to be concomitant with the amplification of active copies of the retro-
elements (Vitte and Panaud, 2003).

Illegitimate Recombination

Illegitimate recombination, or recombination that does not require the participation
of a recA protein or large (>50 bp) stretches of sequence homology, can be the 
product of many different mechanisms including slipped strand repair and double
strand break repair. Because it does not require such long stretches of homologous
sequences to work as unequal homologous recombination, it has the potential to
occur within any region of the genome. Indeed, an analysis by Devos et al. (2002) of
LTR-retrotransposons concluded that illegitimate recombination was the main 
driving force behind genome size decrease in Arabidopsis thaliana, removing at least
five times more DNA than unequal homologous recombination because it can act
on a larger fraction of the genome. A role for illegitimate recombination as a mech-
anism to remove DNA has also been suggested by Bennetzen et al. (2005) and Ma
et al. (2004) in rice, and by Wicker et al. (2003) in their study of the much larger
genomes of Triticum species.

Loss of DNA During the Repair of Double Stranded Breaks

The repair of double stranded breaks (DSBs) in plant DNA is often accompa-
nied by DNA deletions, although insertions may also occur in some species.
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Kirik et al. (2000) compared the products of DSBs between Arabidopsis thaliana
and Nicotiana tabacum (tobacco), two species differing more than 20-fold in DNA
amount. They found that the size of the deletions differed markedly between the
two species: Arabidopsis deletions were on average larger than in tobacco, and
were not associated with insertions. The apparent negative correlation between
the size of the deletions and genome size led to the speculation that species-
specific differences in DSB repair pathways may contribute significantly to the
evolution of genome size. This has been supported by recent data showing differ-
ences in the mechanisms used by Arabidopsis and tobacco to repair DSBs
(Filkowski et al., 2004). Another component, namely differences in the stability of
the free DNA ends resulting from DSBs, was assessed by Orel and Puchta (2003).
They established that free DNA ends were more stable in tobacco than
Arabidopsis, owing to lower DNA exonuclease activity and/or better protection of
the DNA break ends. The implication is that if such patterns were observed to
occur on a wider range of species, then differences in the degree of exonucleolytic
degradation of DNA ends might prove to be an important force in the evolution
of genome size (Orel and Puchta, 2003).

KEY CORRELATES OF GENOME SIZE
ACROSS PLANT SPECIES

The recognition that DNA amount in eukaryotes varies over several orders of mag-
nitude, even in related groups of organisms of similar complexity, has provoked
considerable interest in the biological effects and other consequences of such
differences. The first studies indicating that this is an important line of enquiry
were in animals (see Chapter 1), but, as seen in the following section, work on
plants has also played a major role in developing this field.

EARLY WORK ON THE PHENOTYPIC CONSEQUENCES
OF GENOME SIZE VARIATION IN PLANTS

Much of the earliest work on the phenotypic effects of genome size variation in
plants was motivated by strong practical, and even political, interests. During the
early Cold War days of the 1950s and 1960s, much attention was focused on the
relationship between genome size and radiosensitivity in plants (e.g., Sparrow and
Miksche, 1961; Abrahamson et al., 1973) (Fig. 2.8). That genome size studies
were seen as potentially important for national security interests explains the
generous funding obtained for such work by a group at the Brookhaven National
Laboratory (Upton, NY) led by Arnold Sparrow.
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FIGURE 2.8 (A) Relationship between forward mutation rate per locus per rad and the 1C DNA
amount; (B) The relationship between nuclear volume and radiosensitivity in 23 species of plants.
(A) From a figure redrawn in Bennett (1987) based on a figure originally presented by Abrahamson
et al. (1973), reproduced by permission (© Blackwell Publishing); (B) Data from Sparrow and Miksche
(1961).

Sparrow’s analyses included a major emphasis on plant materials to develop a
theoretical understanding of the principles involved in radiation sensitivity. This
was primarily because plants (1) display a very wide range of DNA content, in terms
of both polyploidy and basic genome size; (2) represent staple food sources of
national and global strategic significance; (3) are readily available and remain
immobile during prolonged exposure to various types of radiation treatment; and
(4) are socially more acceptable than animal subjects for work that involves killing
large numbers of specimens. Such studies first revealed close correlations between
radiosensitivity and nuclear volume (Sparrow and Miksche, 1961), then showed
a positive relationship between nuclear volume and DNA amount (Baetcke et al.,
1967), and hence revealed an association between DNA content and sensitivity to



nuclear radiation. There was considerable discussion as to which was the most
meaningful and determining character given the possibly confusing effects of
ploidy level (x), heterochromatin, and chromosome number (2n), and it was 
concluded that interphase chromosome volume (i.e., mean DNA amount per
chromosome, equal to nuclear DNA amount ÷ 2n) gave the closest correlation
(Baetcke et al., 1967).

From the perspective of genome size evolution, the correlations with sensitiv-
ity to intensive radiation were not particularly important. Fortunately, other exper-
imental work undertaken by members of Sparrow’s group (e.g., Van’t Hof, Price),
though still focused on the strategic questions, was of much broader significance
and led to seminal discoveries relating to fundamental aspects of cell development
(Van’t Hof and Sparrow, 1963) and overall patterns of genome size variation
(Sparrow and Nauman, 1976).

Meanwhile, other laboratories began parallel studies on the effects of genome
size on various additional characters of practical significance. This included a
British group of cytogeneticists led by Hugh Rees at University College of Wales,
Aberystwyth, whose primary interest was plant breeding. Such work focused on
relationships between DNA amount and physical characters (length, volume,
mass) at the chromosomal, nuclear, and cellular levels, especially in crops and
their close relatives (Rees et al., 1966).

Today, relationships are known between nuclear DNA amount and more than 40
widely different phenotypic characters at the nuclear, cellular, tissue, and organismal
levels. Moreover, these extend to all types of plants, and are no longer limited to
species of practical interest (e.g., crops or common experimental subjects).

CHROMOSOME SIZE

Early work revealed highly significant positive correlations between nuclear DNA
amount and chromosomal characters, such as total mitotic metaphase volume in
samples of species in the genera Lathyrus, Vicia, Lolium (Rees et al., 1966), and
Allium (Jones and Rees, 1968). Such findings have since been confirmed in many
other comparisons both within and across genera. For example, Figure 2.9A
shows the relationship between DNA amount and total mitotic chromosome
volume per somatic metaphase cell in 14 angiosperm species estimated from
reconstructed cells using quantitative electron microscopy (Bennett et al., 1983),
and more recently chromosome area and length were shown to be positively
correlated with DNA amount among 12 diploid rice species (Uozo et al., 1997).
A positive relationship was also found to apply to specialized chromosome
regions; Figure 2.9B shows the tight relationship between DNA C-value and 
the total volume of centromeres per cell in 11 angiosperm species (Bennett
et al., 1981).
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FIGURE 2.9 Relationship between DNA amount and six nuclear characters in angiosperms.
(A) Total somatic chromosome volume (µm3) at mitiotic metaphase in 14 species; (B) Total volume of
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In addition to volume, total mitotic metaphase chromosome length has been
shown to correlate positively with genome size (e.g., Rothfels et al., 1966).
However, these relationships are not typically as close as with volume because of
the differential condensation of various chromosomal segments (especially
euchromatin versus heterochromatin). During meiosis, when chromatin con-
densation is more relaxed, such differences may be minimized. Thus Anderson
et al. (1985) showed a tight correlation between genome size and the total length
of the haploid chromosome complement at meiosis (measured by tracing the
lengths of synaptomental complexes in spread pachytene cells of 10 angiosperms
with a roughly 30-fold range of DNA C-values) (see Fig. 2.9C). In addition, total
chiasma frequency (i.e., recombination rate) per chromosome and per complete
complement are also positively related to genome size (Rees and Narayan, 1988)
(see Fig. 2.9D).

NUCLEUS SIZE

Examples of other size-related correlations at the nuclear level include the posi-
tive relationship observed between genome size and interphase nuclear volume
mentioned in the previous section (e.g., Baetcke et al., 1967). Many of the stud-
ies reporting positive relationships between genome size and total chromosome
volume also noted similar relationships between genome size and total nuclear
dry mass (measured using interference microscopy) in the same plant genera (Rees
and Hazarika, 1969; Pegington and Rees, 1970; Paroda and Rees, 1971). For exam-
ple, Figure 2.9E shows a close relationship between genome size and total nuclear
dry mass in six Sorghum species. White and Rees (1987) also reported a positive
relationship between nuclear dry mass and DNA content in six Petunia species.
Similar positive relationships have been found with total nuclear histone content
(Rasch and Woodard, 1959) and total nucleolar dry mass (Paroda and Rees, 1971)
(see Fig. 2.9F). More recently, rRNA gene copy number has been shown to corre-
late positively with DNA amount in both plants and animals across a wide range
of taxa (Prokopowich et al., 2003).

CELL SIZE

As in the well-known example of vertebrate erythrocytes (see Chapter 1), the
effects of bulk DNA content extend to characters at the cellular level in plants. 
For example, Martin (1966) noted a positive correlation between DNA amount
and cell mass in root tip cells of 12 angiosperm species, and Holm-Hanson 
(1969) reported a relationship between DNA content per cell and the total 
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weight of carbon per cell in 10 unicellular algae (Fig. 2.10A). Grime (1983)
showed a strong positive relationship between nuclear DNA content and the
linear dimensions of leaf epidermal cells for 37 British herbaceous angiosperms
(Fig. 2.10B).

CELL DIVISION RATE

It has long been appreciated that nucleus size, cell size, and cell division rate are
closely linked. As part of the radiosensitivity research program, Van’t Hof and
Sparrow (1963) noted that “for diploid plants a relationship does exist between
the minimum mitotic cycle time, the interphase nuclear volume, and the DNA
content per cell. Moreover, the relationship is such that if any one of the three
variables is known, an estimate can be made for the remaining two.” Figure 2.11A
shows their data for a sample of root-tip meristem cells from six angiosperm
species, all grown at 23°C, and reveals a strikingly close association between DNA
content and mitotic cycle time. Additional experiments showed that a relationship
could even be identified between DNA amount and the duration of the DNA 
synthesis phase (S-phase) in particular (Van’t Hof, 1965). These results were 
first obtained using only small numbers of species, but larger subsequent 
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comparisons strongly confirmed the original conclusions (Van’t Hof, 1974). It 
has also since been demonstrated that the durations of all phases of the cell cycle,
not only of S-phase, are positively related to C-value (e.g., Evans and Rees, 1971;
Evans et al., 1972).

Reproductive cell development is both protracted (compared with other
stages) and highly canalized, and hence is particularly useful for showing rela-
tionships between genome size and other characters. Thus Bennett (1971) found
a strong positive correlation between genome size and the duration of meiosis
in diploid angiosperms when he examined reproductive cell development in shoots.
This was later confirmed for a larger sample of species (Bennett, 1977). By way of
example, Figure 2.11B shows the remarkably precise relationship between DNA
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C-value and the duration of meiosis in 18 unrelated diploid angiosperm species, all
grown at 20°C.

Interestingly, comparisons for plants at different ploidal levels revealed close
positive correlations between nuclear DNA C-value and the duration of meiosis,
but also showed highly significant differences in the slope of the relationship
according to ploidy (see Fig. 2.11C). Surprisingly, the duration of meiosis in
plants grown at 20°C was reduced as ploidy increased. In wheat, for example,
meiosis was found to take 42 hours in diploids, 30 hours in tetraploids, but only
24 hours in hexaploids, despite the proportionately higher DNA contents of the
polyploids (Bennett and Smith, 1972). This shows conclusively that such 
relationships are not determined by DNA amount alone. Although this is
undoubtedly one key factor, its effects can be modified by genetic factors such as
genotypic differences and variation in gene dosage owing to polyploidy (Bennett
et al., 1974), as well as abiotic factors such as temperature (Bennett et al., 1972).
The duration of meiosis in plants can even differ between male and female
meiocytes of the same species (Bennett, 1977).

CAUSATION AT THE CELLULAR LEVEL:
THE NUCLEOTYPE CONCEPT

It is clear that cell size and division rate are not determined solely by C-value, given
that both parameters can vary considerably within and among organisms even with
constant nuclear DNA amount. Nevertheless, many relationships discussed in the
previous section are strikingly close, a fact that is especially clear when several plots
for widely different characters are viewed together, as in Figures 2.9 through 2.11.
Indeed, some of these linkages are so strong as to be more reminiscent of physical
or chemical relationships than biological ones (Bennett, 1987).

Taken together, these considerations suggest that the relationship between DNA
content and chromosomal, nuclear, and cellular parameters is causal in nature,
albeit with other factors involved. This is quite evident at the chromosomal level, in
which the amount of DNA necessarily impacts upon total chromosome volume and
mass, but in which proteins (e.g., histones) also play a role. Figure 2.1, which
shows the chromosome complements from species differing ∼220-fold in DNA
amount all taken at the same magnification, illustrates this point. Similarly, as the
nucleus is assembled around a scaffolding of DNA, C-value must causally influence
nuclear volume (Cavalier-Smith, 1985).

For biophysical reasons, it is impossible to increase greatly the C-value without
also increasing the minimum time needed for cell division. This is because more
DNA not only takes longer to replicate (i.e., prolongs S-phase), it also impacts on
all stages of the cell cycle (see Gregory, 2001a, and Chapter 1). According to the
model developed by Gregory (2001a) this delay in cell division is ultimately
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responsible for generating the positive correlation between DNA content and cell
size (see Chapter 1). At the very least, it is clear that one cannot increase DNA
content beyond a certain point without also increasing nucleus and cell size.
For example, a comparison between Fritillaria sp. (1C ≈ 65 pg) and Myriophyllum
spicatum (1C = 0.3 pg) shows the impossibility of containing the nucleus, chro-
mosomes, and even the DNA of the former in the small cells of the latter (see
Fig. 2.1B,C).

The realization that the relationships discussed in the previous sections were
influenced causally by the amount of DNA led to the development of the “nucleo-
type” concept (Bennett, 1971). Specifically, the nucleotype describes those con-
ditions of the nuclear DNA, most notably its amount, that affect the phenotype
independently of its encoded informational content. Whereas the combined set of
genes defines the “genotype,” the nucleotype consists of all the DNA, both genic
and nongenic (Bennett, 1971). The nucleotype can be considered as setting the
minimum conditions, or perhaps as exerting a very coarse control, of parameters
at the cell level, whereas the genotype is responsible for fine control of these fea-
tures within these limits (Bennett, 1972; Karp et al., 1982; Gregory, 2001a). For
example, while nuclear volume is subject to variation by genetic control during
development despite a constant DNA amount (Bennett, 1970), such control can
operate only at or above the minimum volume determined by the DNA C-value.
The same is true of parameters at the cell level and above.

POLLEN AND SEEDS

There is now considerable evidence that these nucleotypic effects at the cellular
level are additive and extend to higher level features of direct relevance to fitness.
For example, size relationships are known for reproductive structures such as the
male gametophyte (pollen grains) and early sporophyte stages (seeds) in
angiosperms. As examples, Figure 2.12A shows the positive relationship between
DNA amount and mean pollen grain volume in wind pollinated grasses 
(Bennett, 1972), and Figure 2.12B shows the correlation between DNA content
and minimum seed weight in 24 British legumes (Mowforth, 1985). Similar rela-
tionships with pollen size have been shown for species of Ranunculus, Vicia
(Bennett, 1973), and Petunia (White and Rees, 1987). Positive relationships
between DNA amount and seed weight have likewise been reported for compar-
isons within populations of the same species (e.g., Caceres et al., 1998), within
genera, including Vicia and Allium (Fig. 2.12C) (Bennett, 1972, 1973; see also Knight
and Ackerly, 2002), and across large numbers of species (e.g., Thompson, 1990;
Knight et al., 2005). Interestingly, the use of quantile regression analysis by Knight
et al. (2005) suggests that the relationship between seed weight and genome size
may not be linear. Thus it appears that whereas species with small genomes
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display a wide range of seed weights, those with large genomes rarely produce
small seeds.

Of course, these relationships are complex, and again it should not be imagined
that genome size alone determines parameters such as seed weight or pollen size.
Nevertheless, genome size may have a major effect in determining the minimum
values possible for these features—an important consideration, given that seed
weight is believed to affect many other ecologically relevant attributes such as
invasiveness and survivability (Westoby et al., 1992; Rejmanek, 1996).
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MINIMUM GENERATION TIME AND
DEVELOPMENTAL LIFESTYLE

Development at the organism level consists of division and growth at the cell level,
suggesting that it can be strongly influenced by variation in genome size. However,
because genome size is correlated negatively with division rate, but positively with
cell size, the nature of the relationships may vary according to which cellular
parameter dominates in a particular developmental process. Thus, although it is
generally the case that a large genome size limits the rate at which plants can
develop, DNA content may correlate positively with growth rate under certain
conditions (Grime and Mowforth, 1982; Knight et al., 2005).

In 1972, as part of the early work on the nucleotype concept, Bennett asked
whether DNA content might place a lower limit on the duration of the period
from germination until the production of the first mature seed—that is, minimum
generation time (MGT). To test this, Bennett (1972) compared the mean and 
the ranges of nuclear DNA contents for 271 angiosperm species with different 
life cycle types and different ranges of MGT. For this comparison the species 
were divided into one of four types of life cycles: (1) ephemerals, which can 
complete their life cycle in a very short period of time (arbitrarily defined as 
seven weeks or less), (2) annuals, which by definition complete their life cycle
within 52 weeks, (3) facultative perennials, which can potentially set fertile seed
within 52 weeks of germination, and (4) obligate perennials, which require more
than 52 weeks to produce mature seed. The following intriguing results were
obtained:

1. The mean 1C nuclear DNA content for ephemeral species (1.5 pg) was
less than for annuals (7.0 pg), which in turn was less than for perennial
species (24.6 pg). This was true irrespective of whether the comparison
included all species or only diploids.

2. The maximum 1C DNA content was lower for ephemerals (3.4 pg) than
for annual species (27.6 pg), which was much lower than the maximum
for perennials (127.4 pg).

3. The mean and range of DNA amounts for facultative perennials and annuals
(both of which have the same maximum MGT of 52 weeks) were very
similar and both were much less than for obligate perennials.

4. Species with very low DNA amounts (i.e., ≤3.4 pg) had life cycle types
ranging from ephemeral to long lived perennials.

5. With increasing nuclear DNA content, the MGT increased and the range
of life cycle types decreased, such that above 3.4 pg no ephemeral species
were found, and above 27.6 pg no annual species or facultative perennials
were found. Consequently, all species with 1C values greater than 27.6 pg
were obligate perennials.
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Taken together, the results clearly suggested a positive relationship between
nuclear DNA content and MGT. Based on this, Bennett (1973) developed a model
to show the linear relationship between C-value and MGT in which threshold
effects play an important role (Fig. 2.13A). As C-value increases, so does MGT, and
at various points this results in an inescapable shift in developmental lifestyle. To
be an ephemeral, a species would have to have a C-value of less than the limiting
value for a MGT of seven weeks. At the opposite extreme, species with C-values
greater than the threshold value for a MGT of 52 weeks will be obligate perennials.

Of course, many limiting factors (such as availability of phosphorus, essential
for DNA synthesis) can act to slow or delay a plant’s generation time. Such effects
can occur at many points in the development of multicellular organisms, and
therefore can easily confound a relationship between genome size and generation
time. However, it is important to note that their effect is only to delay and hence
is unidirectional in always increasing generation time above the minimum. Thus
the model (see Fig. 2.13A) shows a plot with points distributed either along a
linear relationship between genome size and minimum generation time (line A-B),
or scattered in the triangle for generation times longer than the minimum
(triangle ABC). In this sense, species with a very small genome may include both
ephemerals (e.g., Arabidopsis thaliana, 1C = 0.16 pg), where the point is expected
to fall close to the line A-B, and trees (e.g., birch Betula populifera, 1C = 0.2 pg),
where the point will fall well to the right of the line A-B. Taxa with very large
genomes all have long MGTs, and so are obligate perennials and never ephemerals
or annuals. Nevertheless, they still show variation due to delays in development,
with some taxa falling on or close to the line A-B (with generation times of just
over one year), while others require several or many years to complete a gen-
eration and are shifted to the right of the line.

The concept of thresholds is clearly illustrated by the absence of any points in
the outer triangle (i.e., to the left of the line A-B; compare this with Fig. 2.12B for
seed weight versus DNA amount). However, it should be noted that although it is
easy to find generation time data for plant species in general, records of true min-
imum generation times are difficult to obtain. Figure 2.13B shows such “record”
minimum generation times for 10 herbaceous angiosperm species (ranging from
31 days in Arabidopsis thaliana to at least eight months in Lilium longiflorum)
plotted against 1C DNA amount. Clearly, the shortest minimum generation time
increases with increasing C-value, and the plot suggests that the MGT may be
slightly shorter in polyploids (plotted as open circles) than in diploids with the
same DNA amount. Once again, the important point is that DNA content sets
limits on cellular and organismal development, but does not determine these fea-
tures by itself. Species with low DNA amounts (which exhibit rapid mitosis and
can complete meiosis within one to two days) have the option to express a wide
range of life cycle types, from ephemeral to perennial—subject to further genic
control. By contrast, species with very high C-values spend so long growing and
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completing meiosis and sporogenesis that they are simply precluded from express-
ing an ephemeral (or possibly even an annual) habit, regardless of genotype.

For this reason, there tends to be a change in genome size when plants shift
developmental lifestyles from perennial to annual (though not necessarily vice
versa). Specifically, such changes from perennial to annual lifestyle appear to
occur often when plants move into harsh new environments with short growing
seasons, with this derived developmental condition associated with a smaller
genome. Such has been the case in species from numerous genera, including
Arachis, Brachyscome, Calotis, Crepis, Haplopappus, Helianthus, Lathyrus, Papaver,
and Vicia (Resslar et al., 1981; Sims and Price, 1985; Srivastava and Lavania, 1991;
Singh et al., 1996; Naranjo et al., 1998; Watanabe et al., 1999). In one particularly
informative example, Watanabe et al. (1999) examined the shift from perennial to
annual lifestyle in Brachyscome using a phylogenetic framework, and were able to
provide a clear demonstration that a reduction in genome size was part of the shift
in developmental program, and therefore in the adaptation to a new environment.

There is another way of classifying the developmental lifestyles of plants that is
of more practical significance to humans—namely, weeds versus nonweeds.
Weeds represent a taxonomically eclectic group of plants defined by their annoy-
ing habit of growing with great success in places where they are not wanted. Key
factors suggested to be important for the success of many weeds include rapid
establishment and completion of reproductive development, short minimum gen-
eration times, and fast production of many small seeds. All of these factors corre-
late with low DNA amount, thereby raising the possibility that life as a weed
imposes significant constraints on genome size.

Indeed, this is just what is found. In a detailed analysis of the DNA amounts
of 156 angiosperm weed species (including 97 recognized as important world
weeds) versus 2685 other angiosperms, Bennett et al. (1998) provided strong
evidence that small genome size is a requirement for “weediness.” Specifically, the
weed sample had a significantly smaller mean C-value than the nonweed sample,
with DNA amounts in weed species restricted to the bottom 20% of the range
known for angiosperms. Moreover, a highly significant negative relationship was
found between DNA amount and the proportion of species recognized as success-
ful weeds (Fig. 2.14A), demonstrating that the probability of being a recognized
weed decreased with increasing DNA amount, reaching zero at a cutoff value of just
above 25 pg. In other words, while many angiosperm species have DNA amounts
greater than 25 pg, none of them is (or, most likely, could ever become) a weed.

Other unique requirements of developmental lifestyle may impose limits on
genome size. An interesting example is provided by the orchid Erycina pusilla,
which grows as an epiphyte on leaves of tropical trees in South America. In order
to survive, it must complete its life cycle before the leaf of the tree falls. This small
plant can reach reproductive maturation in only four months, compared with 
the one to five years commonly taken by other orchid species. Notably, it has 
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a small genome for an orchid (1C = 1.5 pg) compared with the mean for the
family (1C = 7.7 pg).

PHYSIOLOGY AND CLIMATE RESPONSE

Physiological correlates of genome size are well known for certain animals, most
notably mass-specific oxygen consumption rate in mammals and birds 
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(see Chapter 1). These are based on the effects of genome size on cell size, which
also apply to plants. However, other than comparisons between diploids and poly-
ploids, the corresponding implications for plant physiology had remained unaddressed
until very recently (see Knight et al., 2005). Importantly, it now appears that mass-
specific maximum photosynthetic rate is inversely correlated with genome size (Knight
et al., 2005), in parallel with the situation regarding metabolic rate in endothermic ani-
mals. This is in keeping with the finding of a significant negative correlation between
genome size and specific leaf area (leaf mass ÷ leaf area), which in turn is associated
with a range of physiological and ecological traits (Knight et al., 2005).

The more general issue of how plants respond to climate involves both physio-
logical and developmental components, and has therefore been addressed in several
different ways. Some of the earliest studies in this area were conducted by Grime
and his colleagues. First, Grime and Mowforth (1982) compared genome size with
time of shoot expansion and temperature using 24 herbaceous species growing in
the Sheffield region of the United Kingdom. They found that the species growing
most actively at a given time tended to have smaller and smaller genomes as the
seasons progressed from early spring to midsummer. Thus species with large
genomes tended to grow early in the spring, and those with smaller genomes
started growth later in the year. They suggested that this pattern was related to the
fact that cell division is temperature-dependent and cell expansion is not. In this
case, species with large genomes grew early in the spring predominantly through
the expansion of cells that had divided in the preceding year, whereas small-
genomed species growing in the summer did so by normal cell division.

The idea that large DNA contents facilitate growth under moderately cold 
conditions was reinforced by subsequent studies. In particular, a positive correla-
tion was found between C-value and the mean rate of leaf extension for 14 major
plant species in a damp limestone grassland during the cold conditions of an early
British spring (Grime, 1983; Grime et al., 1985) (see Fig. 2.12D). More recently,
MacGillivray and Grime (1995) also showed larger-genomed plants to be more
tolerant to frost.

ECOLOGICAL AND EVOLUTIONARY
IMPLICATIONS OF GENOME SIZE VARIATION

Through its effects on cell size and division rate, genome size can influence a wide
range of phenotypic characters, including seed and pollen size, developmental
lifestyle (e.g., annual versus perennial, weed versus nonweed), physiology, and
climate tolerance—in short, variation in genome size can play a major role in
determining when, where, and how plants grow. As discussed in the following
sections, this is important for both the natural distribution of plant species and
their responses to changes in the environment.
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GEOGRAPHICAL DISTRIBUTION AND THE LARGE
GENOME CONSTRAINT HYPOTHESIS

The first clues that DNA content might have some relationship with geographical
distribution long predated the availability of genome size data. In 1931, Avdulov
noted that tropical grasses had uniformly small- to medium-sized chromosomes,
whereas most grasses of cool temperate regions had large chromosomes. This is
in keeping with the positive correlations between genome size and both chromo-
some size and capacity for growth under cooler conditions.

The expectation that species with large genome sizes might be concentrated in
temperate regions was confirmed in two separate studies carried out more than
45 years after Avdulov’s (1931) initial report. Levin and Funderberg (1979) 
analyzed a broad range of herbaceous angiosperms and showed that the mean 
1C-value for temperate species (6.8 pg) was more than double that for tropical
species (3.0 pg). However, this difference stemmed from the greater range of DNA
amounts and the higher frequency of species with large genomes in temperate
versus tropical floras, and not from any exclusion of species with small genomes
from temperate regions.

In an analysis of herbaceous cultivated pasture grasses, cereal grain crops, and
pulses, Bennett (1976b) showed that the cultivation of species with high DNA
amounts per diploid genome tended to be localized at temperate latitudes, or to
seasons and regions at lower latitudes where the conditions approximate those
normally found in temperate areas. Overall, it seems that a natural positive cline
of DNA amount with latitude has been reinforced and exaggerated by the ten-
dency of humans to choose species for cultivation with increasing DNA amounts
at successively higher latitudes (Bennett, 1976b, 1987). Importantly, this cline is
exhibited by crop species with both C3 and C4 photosynthesis and by both annu-
als and perennials (Bennett, 1976b). Obviously, the choice of species for domes-
tication was done independently of knowledge about DNA content. Rather, the
prime factor suiting certain species to human requirements would have been their
high yield of seed or leaf per unit area and per unit time. That this indirectly
involved choosing species with higher DNA amounts at higher latitudes is an
intriguing demonstration of the importance of the nucleotype.

However, as with most of the relationships discussed in this chapter, this pattern
involves some important additional complexities. For example, while this DNA–
latitude cline for crops is particularly clear in comparisons of the northerly limits of
cultivation of cereals in the northern hemisphere in the winter, it may take a very
different form in the summer (Fig. 2.15) (Bennett, 1987). Specifically, species with
high DNA amounts, which show a pronounced DNA amount–latitude cline in
winter, tend to be bunched at the northern end of their range in summer. Indeed,
the cline appears to reverse its polarity in summer at the very high latitudes; for
example, barley (1C = 5.5 pg) is grown nearer the pole in summer than rye 
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(1C = 8.3 pg), and, similarly, peas (1C = 4.8 pg) are grown closer to the pole in
summer than field beans (13.4 pg)—the reverse of their northern limits during the
winter.

This reversal at high latitudes in summer agrees with the general trend for DNA
C-value and latitude noted for noncrop species at high latitudes. Thus, for
angiosperms from South Georgia and the Antarctic Peninsula, DNA amounts per
nucleus (of whatever ploidy) and per diploid genome are within the ranges known
for angiosperms at temperate latitudes but, significantly, at their lower end
(Bennett et al., 1982b). Bennett et al. (1982b) concluded that, above a certain
high latitude, maximum DNA content per nucleus and per diploid genome
decreases with increasing latitude (and with decreasing temperature). It was
therefore suggested that at high latitudes, selection against species with high DNA
amounts strongly increases toward the poles as the climate becomes progressively
harsher and growing seasons shorter. In particular, this probably relates to limita-
tions in establishment ability among large-genomed plants (Bennett et al., 1982a).
Further support for this hypothesis comes from Grime and Mowforth’s (1982)
survey of British angiosperms, which showed a significantly higher mean genome
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FIGURE 2.15 The relationship between DNA amount per diploid genome and the northern limits
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size for 69 southern species (1C = 6.7 pg) than for 80 widespread species (3.98 pg),
with even lower 1C DNA amounts noted in eight northern species (1.13 pg).

Overall, studies of genome size versus latitude, altitude, temperature, and precip-
itation have tended to show both positive and negative correlations, depending on
the particular species and environmental parameters analyzed (reviewed in Knight
et al., 2005). In sum, such findings are actually not contradictory, and have recently
led to an interesting “large genome constraint hypothesis” (Knight et al., 2005) in
which species with low DNA amounts are widespread, whereas those with the highest
C-values are progressively excluded from increasingly harsh environments above a
midlatitude. Results for both crop and noncrop species fit this view, but the critical
latitude above which this exclusion operates is probably higher for crops, owing to
the additional input of human selection. Again, within the more intermediate range,
large genomes may be favored in the cold where cell expansion is a more efficient
means of growth than cell division. Outside this range, however, plants with large
genomes appear to be at a disadvantage. This seems to apply to extremes of both
temperature and precipitation (Knight and Ackerly, 2002).

GENOME SIZE AND PLANT RESPONSE TO HUMAN
ENVIRONMENTAL CHANGE

The power of human activity to alter the global climate and the species inhabiting
it should not be underestimated. Anthropogenic effects on the environment pose a
major threat to a great many species, including plants. Given the role that genome
size plays in setting limits to development, physiology, and geographical distribu-
tion, it is important to consider its potential influence in terms of plant responses
to continued human activity.

Global Warming

To predict the effects of human production of greenhouse gasses and the result-
ing increase in global temperature on plants, Grime (1996) looked at how plants
responded to elevated temperatures and showed that plants with small genomes
exhibited a greater enhancement of growth than those with larger genomes. This
led to the suggestion that global warming would stimulate the expansion of
species with small genome sizes in certain floras (Grime, 1996), although this
could potentially be checked by occasional frosts favoring species with large
genomes (MacGillivray and Grime, 1995). On the other hand, Jasienski and
Bazzaz’s (1995) study of the responses of annual grasses to elevated CO2 found
that growth rates were enhanced in a way positively correlated with genome size
(see Fig. 2.14B). So, although the most likely net outcome remains somewhat
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ambiguous, it is clear that genome size variation can be expected to influence the
response of plant communities to global warming in some fashion.

Radiation

As noted previously, sensitivity to radiation was one of the first correlates of
genome size identified (see Fig. 2.8). Although such experiments obviously
employed rather severe doses, the general finding that plants with larger genomes
are more susceptible to radiation could have real-world applications. For one
thing, nuclear radiation continues to be produced and released by various means
(e.g., through the use of nuclear power, and the production of nuclear weapons).
Moreover, it could be that large-genomed plants are more sensitive to additional
mutagens such as ultraviolet light. If so, then the depletion of the ozone layer
might be expected to have especially adverse effects on plants with large C-values.

Chemical Pollution

In a recent study, Vilhar and her colleagues (personal communication and Vidic
et al., 2003) investigated the distribution of plants along a gradient of heavy metal
pollution produced by a former lead smelter at Zerjav, Slovenia. In this case, there
was a negative correlation between the concentration of contaminating metals in
the soil and the proportion of species with large genomes. Their results provided
the first direct evidence that plants with large genomes are at a selective dis-
advantage under the extreme environmental conditions caused by pollution.

Generalized Extinction Risk

In an important recent analysis, Vinogradov (2003) showed that large-genomed
diploid species are significantly more likely to be listed as rare or in danger of
extinction than ones with small genomes (see Fig. 2.14C). This relationship was
shown to hold when the analyses were also carried out within families, overcoming
to some extent complications arising from phylogenetic issues. Further analysis
showed that the effect was independent of ploidy, thereby suggesting that the
process of polyploidy itself is not associated with increased risk of extinction.
Vinogradov also showed that the maladaptive nature of larger genomes was (at
least partially) independent of the duration of the plant life cycle (i.e., whether it
was annual or perennial). Vinogradov (2003) and Knight et al. (2005) both
reported a negative relationship between genome size and species richness in dif-
ferent plant groups, suggesting that plants with large genomes may indeed be
more prone to extinction, and/or that such groups speciate more slowly and
would have more difficulty recovering from a loss in biodiversity.
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INTRASPECIFIC VARIATION IN GENOME SIZE

Until now, most of the discussion in this chapter has focused on variation in
genome size among species and larger clades. Even when dealing with the
processes responsible for generating these patterns, the focus has been on mech-
anisms at the genomic and interspecific levels, without much consideration of
variation within species. In part, this is because intraspecific variation remains
one of the most controversial topics in the study of plant genome size evolution,
and because it is not entirely clear how often such variation even occurs. The fol-
lowing sections provide a review of the controversy in this area, in addition to
highlighting some of the known cases in which intraspecific variation has impor-
tant consequences for phenotypic variation among conspecifics.

OVERVIEW OF INTRASPECIFIC VARIATION

Again, the earliest work on genome size in both plants and animals established
the concept of DNA constancy for a species, given a constant basic chromosome
number and type (i.e., with no variation due to aneuploidy, sex chromosomes, or
supernumerary chromosomes). For plants, this was supported by several studies
in crop species and their wild relatives. For example, whereas Bennett was
routinely able to distinguish between lines of wheat that differed by less than 1%
in DNA amount (M.D. Bennett, unpublished observation), he failed to find any
intraspecific variation in lines of Vicia faba with very different (“major” and
“minor”) seed sizes (Bennett and Smith, 1976) or in land races of Hordeum
vulgare from widely different geographical regions (Finland, England, Ethiopia,
and Iraq) (Bennett and Smith, 1971). Furthermore, several studies reporting intra-
specific variation proved to be unrepeatable. For example, although Zakirowa and
Vakhtina (1974) reported intravarietal variation of up to 77% in Allium cepa,
Bennett and Smith (1976) noted clear problems with the techniques used in
their study.

During these early stages, Evans et al. (1966) did show heritable differences in
DNA content of up to 16% induced by environmental factors in flax (Linum
usitatissimum), and Furuta et al. (1975) reported DNA variation of greater than
20% in Aegilops squarrosa, but these were considered exceptions to the generally
accepted view of DNA constancy in angiosperms.

By the 1980s this view had changed as reports of detectable, and in some cases
considerable, intraspecific variation became increasingly common. For example,
in 1981 genome size variations of 25% and 27% were reported in two Microseris
species (Price et al., 1981a,b). This variation, independent of any observable
differences in heterochromatin, was reported to be possibly related to environ-
mental factors. In 1985 Bennett reviewed the field, listing 24 angiosperm species
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in which intraspecific variation was reported, from as low as 4% to 40–50% in
Glycine max, 80% in Poa annua, and a staggering 288% in Collinsia verna (Bennett,
1985). In light of such findings, the original concept of the very constant genome
was replaced by a new view of the fairly constant genome.

The 1990s saw the appearance of additional reports (implicit or explicit) of
intraspecific variation, including 46% in Narcissus hedraeanthus (González-Aguilera
et al., 1990), 47% in Festuca arundinacea (Ceccarelli et al., 1992), and 287% in
Helianthus annuus (Johnston et al., 1996; Price and Johnston, 1996). This pro-
duced a further shift in perception as the concept of the fairly stable genome was
increasingly replaced by the idea of outright genome plasticity (Bassi, 1990). Such
studies were often accompanied by molecular data showing that genome size
changes could be associated with variability in particular repetitive DNA
sequences (e.g., Frediani et al., 1994; Cavallini et al., 1996).

Not everyone was convinced that plant genomes were inherently plastic, how-
ever, and some authors began to question whether much of this supposed
“intraspecific” variation might be the result of technical artifacts and taxonomic
errors. Greilhuber (1998), in particular, sought to distinguish between “orthodox”
intraspecific variation owing to genuine chromosomal variation involving dupli-
cations and deletions, spontaneous aneuploidy and polyploidy, heterochromatic
segments, B chromosomes (see Chapter 4), and in special cases sex chromosomes
(see later section) and “unorthodox” intraspecific variation, where genome size
variation could not be explained in terms of “orthodox” events but instead was
explained by unobserved postulated events such as rapid amplification or deletion
of repetitive DNA sequences.

Such concerns stimulated a series of reinvestigations, led by Greilhuber and his
colleagues in Vienna, to carefully repeat some of the claims of intraspecific varia-
tion using the original material. These studies have resulted in many of the claims
for intraspecific variation being rebutted or greatly reduced. For example, several
careful studies (Greilhuber and Ebert, 1994; Baranyi and Greilhuber, 1995, 1996)
found little or no significant genome size variation in Pisum sativum, a species
where others (Cavallini and Natali, 1991; Cavallini et al., 1993) had previously
reported up to 129% variation. Claims of 15% variation in Glycine max related to
maturity group (Graham et al., 1994) were unrepeatable according to Greilhuber
and Obermayer (1997). A report of 130% variation in Dactylis glomerata nega-
tively correlated with altitude (Reeves et al., 1998) was also challenged by
Greilhuber and Baranyi (1999), who could not repeat the different hydrolysis
curves (see later section) claimed for Dactylis compared with the calibration
standard Hordeum vulgare.

Other reported cases of intraspecific variation were shown to be taxonomic
artifacts resulting from insufficient consideration of actual species boundaries and
from an incomplete or nonexistent knowledge of the phytogeographical history of
the populations in question. For example, Scilla bifolia L. sensu lato is treated as

Genome Size Evolution in Plants 135



one species by Flora Europaea (McNeill, 1980) but was split into 18 species (of
which five are polyploid) by Speta (1980). So, whereas Scilla bifolia treated as one
species shows a 2-fold genome size variation, its level of “intraspecific” variation
diminishes to hardly more than methodological error when split up taxonomically
(Greilhuber and Speta, 1985). Further examples disproving claims of intraspecific
variation are given in the critical reviews of Greilhuber (1998, 2005).
Unfortunately, these do not include a direct reassessment of the largest claim for
intraspecific variation of all (288% for Colinsia verna) (Greenlee et al., 1984)
because no original research material is available. Nevertheless, this case is con-
sidered suspect on the grounds of circumstantial evidence (Greilhuber, 1998).

Recent findings in Helianthus annuus (sunflower) provide a particularly relevant
lesson concerning intraspecific variation. In 1996, Price and Johnston made the
surprising claim that the genome size in H. annuus varied 2.8-fold depending on
light quantity and quality. They concluded that the major factor responsible for
inducing a change in genome size was the ratio of red to far-red light, and
suggested that phytochromes might be involved in the stability of genome size in
sunflowers. However, in a subsequent reevaluation, Price et al. (2000) reported
that their previous results were not biologically real, but rather a technical artifact
caused by staining inhibitors (whose levels were presumably influenced by the
quantity and quality of light) and their lack of an internal standard. Similar staining
inhibitors caused by compounds in plant tissue have also been noted in other
plant species including coffee, yams, roses, oaks (Quercus species), and Allium
species (Ricroch and Brown, 1997; Zoldos et al., 1998; Noirot et al., 2000, 2002,
2003, 2005; Yokoya et al., 2000).

As a result of the careful recent studies, the current view is that many, and
perhaps most, previous examples of “unorthodox” intraspecific genome size vari-
ation (sensu Greilhuber, 1998) must be interpreted with caution until confirmed
by independent studies using modern best practice techniques. To be fully
accepted, claims of extensive intraspecific variation should also be accompanied
by appropriate, wide-ranging molecular studies of the entire repeated sequence
profile of the individual materials claimed to show such variation. At present,
cases of orthodox variation and confirmed unorthodox variation are relatively few,
although some intriguing examples do exist.

GENUINE INTRASPECIFIC VARIATION IN ANGIOSPERMS

Orthodox intraspecific variation associated with observable chromosomal
phenomena has been noted in several cases, as with duplications, aneuploidy, and
B chromosomes in Zea mays (e.g., Poggio et al., 1998). Although much rarer in
plants than in animals, the presence of dimorphic sex chromosomes can also
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generate variation between individual plants, as has been found in Silene latifolia
(e.g., Costich et al., 1991).

Events visible under the light microscope can also generate detectable gains or
losses of repeated sequence DNA in heterochromatin. For example, Gerstel and
Burns (1966) noted the occurrence of megachromosomes in F1 hybrids of
Nicotiana tabacum × N. otophora, where one chromosome in a few cells was
enlarged by up to 20 times its normal size (see Fig. 2.6A). Megachromosomes,
whose size varied from cell to cell, contained additional DNA in proportion to
their size (Collins et al., 1970), and appeared to result from the differential repli-
cation of a prominent block of heterochromatin. However, it is unknown whether
such pronounced changes in chromosomal DNA content are heritable, and/or
whether they might be selected against in later generations.

Loss of telomeric heterochromatin from rye (Secale cereale) chromosomes was
also seen under the light microscope by Gustafson et al. (1983) (see Fig. 2.6B).
Selection using cytological screening for reduced telomeric C-bands in hexaploid
triticale (× Triticosecale) (from 23% to 7% of the rye genome length), was accom-
panied by a detectable reduction in C-value (0.3–0.7 pg, equivalent to one
chromosome), and showed that significant (nondeleterious) reductions in DNA
amount can be produced in triticale by artificial selection in just a few years.
Interestingly, a line with similarly reduced heterochromatin was the first hexa-
ploid triticale variety to be awarded plant breeders’ rights in the United Kingdom
(Bennett, 1985).

A few additional examples of genuine intraspecific variation involving differ-
ences in heterochromatic segments are known for both crops (e.g., in Secale
cereale) (Bennett et al., 1977) and noncrops. In this latter category, for example,
Greilhuber (1998) cited the subspecies pair Scilla bithynica Boiss. ssp. bithynica,
which has many large C-bands (1C = 29.20 pg) and S. bithynica ssp. radkae, with
few small C-bands (1C = 22.90 pg).

THE SPECIAL CASE OF MAIZE

One of the most widely studied angiosperm species that shows clear and signifi-
cant intraspecific variation in DNA content is maize, Zea mays ssp. mays.
Pachytene chromosomes of maize can have large heterochromatic knobs, and
comparative studies have shown that the distribution of knobs is virtually the
same as that of heterochromatin detected as C-bands in mitotic chromosomes.
Early studies by Brown (1949) and Bennett (1976a) showed that knob number
was negatively correlated with both latitude and altitude, but it remained unclear
whether any relationship actually existed between knob number and DNA
amount. Independent studies by Rayburn et al. (1985), Laurie and Bennett (1985),
and Tito et al. (1991) have since provided an affirmative answer to this question.
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For example, Laurie and Bennett (1985) showed 37% variation in 1C DNA
amount in 10 accessions of maize ranging from ∼3.35 pg in a Mexican race
(Zapalote Chico) down to 2.45 pg in the Seneca 60 race from New York State.
Further, this was shown to correlate with the number of C-bands observed (see
Fig. 2.6C,D). Results from a study of 21 lines of maize from various locations in
North America by Rayburn et al. (1985) supported this finding, because they
showed significant correlations between DNA content and the numbers of
C-bands and heterochromatic knobs. By assigning their 21 lines to five relative
maturity zones along a south–north axis, Rayburn et al. (1985) were able to demon-
strate significant negative correlations between DNA C-value and maturity zone
(i.e., latitude of origin), and between maturity zone and both heterochromatin
amount and knob number. A similar analysis comparing the zones of origin with
DNA C-value for the 11 lines examined by Laurie and Bennett (1985) likewise
showed a significant negative correlation. Taken together, these studies have pro-
vided convincing evidence that the intraspecific variation in genome size in maize
is largely caused by differences in the amount of heterochromatin, and that pre-
viously reported correlations between geographical location and knob number are
actually related to intraspecific differences in nuclear DNA content.

Rayburn et al. (1985) suggested that the pattern of distribution of DNA contents
in maize “may relate to selection pressures imposed by man … which influence the
DNA content via its nucleotypic effects.” It is generally agreed that maize originated
at low latitude and was taken north by humans until environmental barriers 
(primarily a shorter growing season) prevented normal maturation. Rayburn et al.
(1985) speculated that the lower DNA C-values of varieties adapted to high latitudes
may have resulted from simultaneous selection by humans for earlier maturation
and maximum plant size and yield. This may have involved selection for more cells,
which could result from the shorter mitotic cycle time that correlates with reduced
DNA C-value (see Fig. 2.11A). Significant positive correlations have also been found
in maize between DNA content and altitude of cultivation (Rayburn and Auger, 1990)
and effective growing season (Bullock and Rayburn, 1991), whereas negative rela-
tionships have been reported between genome size and various growth and yield
parameters (Biradar et al., 1994). Clearly, where intraspecific variation is real, it can
be of considerable adaptive significance—to people as well as plants.

GENUINE INTRASPECIFIC VARIATION
IN NONANGIOSPERMS

To date, no studies have reported significant intraspecific variation in pteridophytes
or bryophytes. In gymnosperms, on the other hand, cases of intraspecific variation
have been claimed in some species. For example, Miksche (1968, 1971) reported
intraspecific variation in three gymnosperms, including 58% in Picea glauca and
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92% in P. sitchensis, related to their latitude of growth in North America. However,
paralleling the work in angiosperms, subsequent reinvestigations of the material
collected from the same range sampled by Miksche failed to repeat these obser-
vations (e.g., Teoh and Rees, 1976). Other similar examples are reviewed by
Murray (1998). Indeed, a number of more recent studies have failed to find evi-
dence of intraspecific variation even when measurements have been made using
different methods in different laboratories (e.g., Ohri and Khoshoo, 1986;
Wakamiya et al., 1993) or on highly disjunct populations (Auckland et al., 2001).
Intraspecific variation was reported in Ginkgo biloba by Marie and Brown (1993),
but unfortunately this was done without mention of the sexes of the plants sam-
pled. Because Ginkgo is one of the relatively few plants with sex chromosomes, this
may represent a case of genuine intraspecific variation. In summary, more detailed
studies of a wide range of species are needed to obtain a clearer picture of the
extent of intraspecific variation in gymnosperms, following the same principles as
outlined for work in angiosperms.

INTRASPECIFIC VARIATION AND SPECIATION

Some closely related species may have very similar C-values (e.g., Hordeum
bulbosum, H. glaucum, H. marinum, and H. murinum, which all have 1C DNA
values of 5.5 pg) (Bennett and Smith, 1976), whereas in other species individual
lines may have distinct C-values (e.g., different lines of Zea mays have C-values
that vary by 35%) (Laurie and Bennett, 1985). The implication is that there is no
absolute link between the process of speciation and changes in genome size. That
is, speciation may occur without any detectable change in C-value, and likewise
variation in DNA amount (both gain and/or loss, mostly of repeated sequences)
can also precede reproductive isolation and morphological diversification.

Speciation was once thought to depend mainly on changes in informational
genes. However, comparative genomics has emphasised striking elements of con-
stancy in this part of the genome. Thus Devos and Gale (1997) noted that “gene
content and gene orders are highly conserved between species within the grass
family, and that the amount and organization of repetitive sequences has diverged
considerably.” Such results have led to a rethinking of the role of noncoding
repeated DNA sequences in determining diversity, and even to the suggestion that
they play a major role in plant speciation (Kubis et al., 1998).

To date, there is no research to indicate in any general way whether species
normally diverge before detectable variation in genome size occurs, and/or vice
versa. Nor, for species displaying variation in DNA amount before distinct mor-
phological divergence, is there any definitive information on how much intraspe-
cific variation in C-value usually occurs before species diverge, or if there is any
limit to the amount of variation that may accrue before species divergence
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becomes an inevitable consequence. Furthermore, according to Greilhuber
(1998), nothing reliable is known about the rate of genome size changes in natu-
ral populations. To complicate matters, the answers to these questions will be
greatly influenced by the species concept used because amounts of “intraspecific”
variation will be much greater for lumpers than for splitters, as illustrated earlier
by the example of Scilla bifolia.

THE MYSTERY OF DNA CONSTANCY

Part of the current interest in C-values and what determines genome size focuses on
a tension between the massive interspecific variation in DNA amounts existing in
the angiosperms (Table 2.2), and the surprisingly high degree of genome constancy
found in many widely distributed species (e.g., Bennett et al., 2000b). In view of
the known molecular mechanisms with the potential to rapidly generate consid-
erable variation in C-value and the clear demonstration in some studies that par-
ticular sequences within the genome can fluctuate considerably and often rapidly
(e.g., Kalendar et al., 2000), the degree of C-value constancy found in many
species is remarkable, and needs explanation. Indeed, it is arguable that such
invariance would not be expected without some mechanism(s) to select for con-
stancy (or against changes) in C-value (Bennett et al., 2000b).

Although genome size is widely perceived as free to vary, many results suggest
instead that DNA amount may normally be subject to innate controls by “counting
mechanisms” that somehow detect, quantify, and regulate genomic size characters
within quite tightly defined or preselected limits (Bennett, 1987; Bennett et al.,
2000b). For example, several careful studies have shown evidence of “karyotypic
orthoselection,” whereby large differences in C-value between related plant species
involve strictly proportional changes in all chromosomes, which preserves the par-
ticular form of a complement (Seal and Rees, 1982; Seal, 1983; Brandham and
Doherty, 1998) (Fig. 2.16). This could be a case in which counting mechanisms are
at play, acting to produce proportional changes in all linkage groups and/or 
chromosome arms, presumably driven by some underlying organizational principle.

Clearly, there is still much to be discovered about intraspecific variation in
genome size. Fortunately, modern molecular methods can provide powerful new
insights into how changes at the DNA sequence level relate to others at the whole
genome level, including intraspecific variation in nuclear DNA amount.
Comparisons between whole genome sequences for closely related “diploid” sub-
species and species with different C-values will soon be possible (see Chapter 9).
Meanwhile, complete sequences for homologous chromosome segments in lines
of Zea mays with different C-values distributed in both knobs and euchromatin
should be particularly illuminating. Studies linking DNA information to characters of
environmental and ecological interest will provide an important focus for new work
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on intraspecific variation in plant genome size over the next few years. Such work
may also shed light on whether certain types of plants are more predisposed to
exhibit gain or loss of repeated sequences, and if this is relevant to understanding pat-
terns of gradualistic versus punctuated changes in genome size over time.

METHODOLOGY FOR ESTIMATING
GENOME SIZE IN PLANTS

None of the big questions in plant genome size evolution can be addressed with-
out broad comparative analyses, making the assessment of large numbers of plant
genome sizes a crucial first step toward a resolution of the C-value enigma (see
also Chapter 1). However, as the previous section showed, it is not the case that
any data will do. Rather, these must be collected in such a way as to avoid the
numerous technical pitfalls that may otherwise contribute to an erroneous view of
genome size variation and evolution. The following sections review the several
methods that have been used to estimate genome size in plants, and provide some
best practice guidelines for the implementation of the most commonly used tech-
niques. This is meant to facilitate the accurate measurement of plant genome sizes
in the future, and to inform critical analyses of estimates reported in the past.

CHEMICAL EXTRACTION AND REASSOCIATION KINETICS

Unlike animals, plants characteristically have cell walls thickened with polymers
(e.g., cellulose and lignin) whose presence may complicate the extraction of DNA.
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Nevertheless, chemical extraction methods developed for use in animals (Schmidt
and Thannhauser, 1945) were later successfully applied to plants (Sunderland
and McLeish, 1961; Lyndon, 1963; Rothfels et al., 1966). Under these 
techniques, the total DNA is extracted from a sample of cells and dissolved in a
known volume of solvent. The concentration of DNA is estimated colorimetrically
using a modification of the diphenylamine reaction (Burton, 1956, 1968) to give
a color reaction whose intensity is proportional to the concentration of deoxyri-
bose sugar, and hence of DNA. The method typically used very large numbers of
cells, whose total was estimated using a hemocytometer. Results were usually
expressed as mean DNA amount per cell, which consisted mainly of nuclear 
DNA, but also included small amounts from organelle (mitochondrial and chloro-
plast) genomes. The results were calibrated in absolute units using either a plot
of color intensity against known concentrations of DNA or deoxyribose, or by
ultraviolet spectrophotometry with known concentrations of DNA as a standard 
(Sunderland and McLeish, 1961). Although these methods were usefully reliable,
they were complicated and slow, and hence rate-limiting for many larger compar-
isons; thus these methods have been rarely used since the 1960s.

In the 1970s and 1980s, it became relatively common to employ reassociation
kinetics to assess the composition and size of genomes. In this method, DNA is
extracted from cells and then denatured by heating. The rates of reassociation of
the DNA strands indicate the relative copy number of repeated DNA sequences,
and can be calibrated against a standard to give an estimate of absolute DNA con-
tent. However, as a method for measuring genome size, reassociation kinetics is
very slow (the reassociation of some DNA fragments can last for several days) and
not particularly accurate. Not surprisingly, this technique was only rarely used for
genome size estimates in plants (Table 2.3). Instead, nearly all modern genome size
measurements are made by either Feulgen microdensitometry or flow cytometry.

FEULGEN MICRODENSITOMETRY

The advent and widespread application of photomicrodensitometry represented a
major step forward in genome size estimation (Table 2.3). Rather than extracting
the DNA from cells, this method involves staining the nuclei and then measuring
the amount of light absorbed by the stain. The most commonly employed method
of staining is still the Feulgen reaction, first developed by Feulgen and Rössenbeck
in 1924. In this case, aldehyde groups are freed by hydrolyzing the DNA with
strong acid, followed by staining with Schiff’s reagent containing leuco-basic
fuchsin, which gives a purple coloration when it complexes with the aldehyde
groups. Plant material is typically prepared for Feulgen microdensitometry using
various modifications of the method described by McLeish and Sunderland
(1961) for plants, itself a variant of the method of Leuchtenberger (1958) for
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animal tissues. It is generally accepted that Feulgen staining is specific and
stoichiometric for DNA, meaning that a measure of nuclear stain concentration
(calculated from total optical density), compared against a standard of known
DNA amount, provides an accurate estimate of C-value.

Detailed reviews of standardized staining and measurement protocols have been
provided recently (Greilhuber and Baranyi, 1999; Greilhuber and Temsch, 2001;
Greilhuber, 2005), which the interested reader is urged to consult before perform-
ing new estimates of plant genome size. As noted previously, a failure to follow best
practice guidelines can lead to substantial errors in results and thence to a false
understanding of patterns and mechanisms. Common sources of error include
biological, chemical, and physical (optical) factors, some of which are listed here:

1. Chromatin condensation. The level of chromatin condensation can vary
significantly between different types of plant nuclei (e.g., pollen and egg
nuclei), which directly affects the uptake and/or detection of stain, such
that DNA amount tends to be underestimated as chromatin condensation
increases (Verma and Rees, 1974).

2. Hydrolysis time. The acid hydrolysis is perhaps the most sensitive step in
the procedure, with both insufficient and excessive hydrolysis resulting in
understaining. It is therefore essential that an optimum hydrolysis time is
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TABLE 2.3 Summary of the main methods used to estimate genome size in a sample
of 5844 angiosperms over the period between 1950 and 2003. Data are grouped into five-year
periods (except for 2000–2003). Ch = chemical extraction; Fe = Feulgen microdensitometry; 
FC = flow cytometry; RK = reassociation kinetics; CGS = complete genome sequencing; 
Fe/IA = Feulgen image analysis densitometry.

Estimation method

Time period Ch Fe FC RK CGS Fe/IA

1950–1954 1 0 0 0 0 0

1955–1959 0 5 0 0 0 0

1960–1964 24 1 0 0 0 0

1965–1969 47 101 0 0 0 0

1970–1974 6 434 0 0 0 0

1975–1979 2 573 0 14 0 0

1980–1984 11 757 26 12 0 0

1985–1989 0 883 36 0 0 0

1990–1994 2 449 479 0 0 0

1995–1999 0 687 550 0 0 0

2000–2003 0 291 438 0 3 12

Total 93 4181 1529 26 3 12



used to maximize staining of nuclear DNA in all samples being compared
(both unknowns and calibration standards). This can be determined by the
construction of “hydrolysis curves,” which provide measurements of stain
densities of nuclei from the same individual hydrolyzed for different times.

3. Hydrolysis temperature. For many years “hot hydrolysis” (∼12 minutes
in 1M HCl at 60°C) was used, giving only a relatively short (typically
3–5 minutes) plateau of maximum staining. Longer treatment (1–2 hours)
in 5M HCl at 20°C (“cold hydrolysis”) gives greater control of this important
step and greatly prolongs the plateau of maximum staining. Moreover,
it is important that the hydrolysis step is not done simply at “room
temperature,” because this may be about 20°C in temperate regions
but may be well above 30°C in tropical areas. Failure to recognize the
importance of hydrolysis conditions has been a major contributor to 
false reports of intraspecific variation.

4. Staining inhibitors. A quite different, but equally important source of staining
error is the effect of cytosolic compounds present in many plant materials
that can bind to DNA and greatly reduce its ability to undergo Feulgen
staining (“self-tanning”) (Greilhuber, 1988).

Provided that these problems are recognized, and adequate steps taken to apply
best practice, Feulgen microdensitometry can give quantitative estimates of
nuclear DNA amounts of considerable accuracy, with error variation routinely
controlled to within 5%, and sometimes to within 1–3%.

FEULGEN IMAGE ANALYSIS DENSITOMETRY

One major factor likely to limit the future applicability of Feulgen methods is the
“obsolescence time bomb” of aging microdensitometers, which are no longer manu-
factured and are becoming increasingly difficult to repair (see www.rbgkew.org.uk/
cval/conference.html#outline) (Bennett et al., 2000a). Fortunately, advances in
computing and imaging technology have facilitated the development of inexpen-
sive computer-based image analysis densitometry methods that will allow the
continued implementation of the time-tested method of Feulgen staining.

In this technique, DNA is Feulgen-stained as usual, but the density of stain in
the nucleus is measured using a microscope-mounted video or digital camera to
“grab” images and to display them as composites of pixels on a computer screen.
The intensity (gray value) of each pixel can be used to calculate an individual
point density, allowing the instant and simultaneous measurement of integrated
optical density for all nuclei in the field.

The method was originally developed for DNA quantification in cancer diagnosis
(Jarvis, 1986), for which accuracy is obviously of extreme importance, and with the
result that scientists have reached an international consensus on the methodology

144 Bennett and Leitch



and best practice (e.g., Chieco et al., 1994; Bocking et al., 1995; Puech and Giroud,
1999). However, its application to DNA quantification in other organisms has been
slow to take off. Probably the first reported use of this method in plants was by
Temsch et al. (1998), who used it to estimate genome sizes in species of the moss
genus Sphagnum. This was followed by studies of a variety of plant genera, such as
Crepis (Dimitrova and Greilhuber, 2000), Gagea (Greilhuber et al., 2000), Hedera
(Obermayer and Greilhuber, 2000), and Arachis (Temsch and Greilhuber, 2001).

A recent interlaboratory comparison showed the results of Feulgen image
analysis densitometry to be very comparable to those obtained by other methods,
over a 100-fold range in plant genome sizes (Vilhar et al., 2001). Studies using
animal tissues likewise established the validity of the method (Hardie et al., 2002).
Further studies by Vilhar and Dermastia (2002) have led to proposals for
standardizing the method to maximize accuracy of the data generated in plants.
It is expected that image analysis will become one of the most important sources
of new genome size estimates in the near future.

FLOW CYTOMETRY

Perhaps the first description of a flow cytometry apparatus was that of Moldavan
(1934) for use in counting the number of red blood cells or yeast in a suspension.
With extensive development of the equipment and methodology, the technique of
flow cytometry has since been adapted to many different applications, including
DNA quantification for cancer detection and, more recently, genome sizing.

In plants, this involves mechanically isolating nuclei, usually from leaf tissue,
by chopping. The isolated nuclei are stained with a fluorescent dye that binds
quantitatively to DNA and then passed through a flow cytometer, which forces
nuclei to pass one at a time past a series of lights, lenses, mirrors, and amplifiers
that detect and convert the amount of fluorescent light being emitted by each
nucleus into a digital signal. By comparing the intensity of fluorescence with that
from a plant of a known DNA amount, the absolute DNA content of the plant can
be determined. In physical terms, this is the opposite of densitometric methods.

Although it is now one of the primary methods employed (Table 2.3), the
application of this technology to plant genome size studies came relatively slowly,
limited largely by the difficulty of isolating nuclei from cells with rigid cell walls.
The first successful preparations of intact nuclei suitable for plant flow cytometry
were made from root tips of Vicia faba by Heller (1973), who used the enzymes
pectinase and pepsin to digest the cell wall. Although he noted the potential of
this method to analyse cell cycle kinetics, the method was time-consuming and was
not adopted by other researchers. Alternative approaches were tried in the early
1980s (e.g., use of intact plant protoplasts) (Puite and Tenbroeke, 1983), but these
also suffered from being too laborious and time-consuming. The breakthrough
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came when Galbraith et al. (1983) developed the simple, rapid, and convenient
method of chopping to provide isolated nuclei.

Following Galbraith et al.’s (1983) paper, various researchers carried out 
experiments comparing data obtained using flow cytometry with the established
method of Feulgen microdensitometry. Generally they found good agreement
between the two across a large range of DNA amounts from a broad array of plants
(e.g., Hulgenhof et al., 1988; Michaelson et al., 1991; Dickson et al., 1992; Dolezel
et al., 1998), so long as best practice techniques were implemented. Two of the
most important sources of error turned out to be an inappropriate choice of 
fluorochrome and the presence of staining inhibitors.

1. Choice of fluorochromes. A range of fluorochromes has been used for plant
DNA estimations by flow cytometry. These divide into two groups: DNA
intercalating dyes (e.g., propidium iodide and ethidium bromide), which
bind to DNA independently of the DNA sequence, and base pair–specific
dyes, which preferentially bind to AT-rich (e.g., DAPI, Hoechst 33258) or
GC-rich (e.g., mithromycin) regions of the DNA. In a comparative study,
Dolezel et al. (1992) showed that use of base pair–specific dyes could lead
to errors approaching 100%, and recommended that only intercalating
fluorochromes be used. This recommendation was endorsed at the first
Kew Plant Genome Size Workshop in 1997 (see www.rbgkew.org.uk/cval/
conference.html#keyrecs).

2. DNA staining inhibitors and the importance of internal standardization.
Although the use of intercalating fluorochromes overcomes some of 
the problems encountered in obtaining accurate genome size estimates, 
in recent years it has become apparent that compounds in the cytoplasm,
released during nuclear isolation, can interfere with fluorochrome 
binding and fluorescence and lead to erroneous genome size data 
(Noirot et al., 2000, 2002, 2003; Price et al., 2000). Even though 
the nature of many of these compounds remains elusive, identifying 
their existence, understanding how their levels may be influenced by 
environmental and/or genetic factors, and determining how they affect
genome size estimations are vital for accurate genome size studies. 
The importance of testing for the presence of inhibitors was emphasized 
in the more recent Kew Plant Genome Size Workshop in 2003 (see
www.rbgkew.org.uk/cval/workshopreport.html). In practice, this problem
can be addressed by chopping, staining, and measuring standards and
unknowns together.

If done correctly, flow cytometry has the great advantage of providing rapid and
accurate measurements of DNA amount for a large number of nuclei from a small
sample of plant tissue. This allows thorough plant population studies to be made
in situ, enabling the extent and evolutionary significance of intraspecific variation
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to be more completely assessed and evaluated. For example, flow cytometry has
been the method of choice for comparisons of ecotypes of Medicago species
(Blondon et al., 1994), and of different populations, F1 hybrids, and inbred lines
of maize (Bullock and Rayburn, 1991; Biradar and Rayburn, 1993).

That said, it is important to recognize that flow cytometry is subject to two
major constraints. First, running a flow cytometer can be very expensive and
requires high levels of technical support and other infrastructure. Second, using
flow cytometry does not remove the need for cytological work on the species
being studied, because although it may give a highly accurate DNA value for a
taxon, this will be of limited value if the chromosome number (2n) of the indi-
vidual plant (or even tissue) measured is unknown. Also, if chromosomal varia-
tions such as aneuploidy, duplications and deletions, and sex and supernumerary
chromosomes are not identified along with flow cytometric measurements, then
the interpretation of the results could be flawed. So, although flow cytometry is
appealingly fast and highly suited to certain types of studies (e.g., population
studies, ploidy screening), the importance of cytological analyses, which can be
time-consuming, must not be neglected.

COMPLETE GENOME SEQUENCING

Although thousands of DNA amounts have been determined using the previously
discussed techniques over the past 50 years, every one of them is but an estimate,
inevitably subject to technical errors. For this reason, the need for an exact cali-
bration standard whose C-value is not subject to such errors has long been
recognized. Since the mid-1990s, a large number of highly accurate determina-
tions of genome size based on complete genome sequences have been published
for numerous microbes (see Chapter 10). Because of the high cost and intensive
effort currently required, it is unlikely that complete genome sequencing will
become a viable and routine method for determining plant genome size in the
near future. However, the first complete genome sequence for a plant was eagerly
awaited by those in the plant genome size community, because it was expected to
provide a highly accurate baseline reference point for calibrating future estimates
by Feulgen densitometry and flow cytometry. By 1997 it was clear that the prime
candidate for this honor would almost certainly be Arabidopsis thaliana
(Arabidopsis Genome Initiative, 1997).

December 2000 saw the landmark publication giving the genome sequence for
Arabidopsis thaliana ecotype Columbia (Arabidopsis Genome Initiative, 2000), 
and an estimate for its genome size of 125 megabases (Mb), based on the size of
the sequenced regions (115.4 Mb) plus a rough estimate of 10 Mb for the unse-
quenced centromere and ribosomal DNA regions. Sadly, this was not the long-
awaited benchmark standard, because it was not the result of “complete genome
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sequencing” as these words would be understood by most people. Indeed, later
work showed that the amount of DNA in the unsequenced regions had been seri-
ously underestimated and that the genome size of Arabidopsis thaliana was in fact
about 157 Mb (Hosouchi et al., 2002; Bennett et al., 2003).

SOME COMMENTS ON PLANT GENOME
SIZE STANDARDS

The early comparative studies in plants used various plant species as calibration
standards, including Pisum sativum and Vicia faba (McLeish and Sunderland, 1961).
By the 1970s, onion (Allium cepa), had already emerged as the most frequently used 
calibration standard. Onion has the advantage that it is widely cultivated and glob-
ally available as seed or bulbs, can be readily grown to provide a source of actively
growing root-tips over long periods, and is highly amenable to cytological tech-
niques to make root-tip squashes. An analysis of 5871 plant taxa in 2004 showed
that ∼39% were calibrated either against onion (2259 taxa) or a secondary stan-
dard that itself was calibrated against onion (52 taxa). It follows from this that the
absolute accuracy of genome size estimates for many plants are directly depend-
ent on the accuracy of the value (1C = 16.75 pg) determined for onion by Van’t
Hof (1965) using chemical methods. Fortunately, this agrees closely with esti-
mates from four independent studies that used animal species (including Homo
sapiens) as calibration standards. Importantly, recent work found no significant
differences in DNA amount between cultivars from widely different environments,
confirming that it has the stable genome size required for a key calibration stan-
dard (Bennett et al., 2000b).

For technical reasons, however, it is desirable to use a calibration standard
whose genome size is within about 2-fold of the unknown taxon being studied.
Thus a need was recognized for other calibration standards with smaller genome
sizes than A. cepa, spread at useful intervals over the range of genome sizes
encountered in plants. The first attempt to provide a range of such standards 
was made by Bennett and Smith (1976), who listed eight species with 1C-values
from 1.5 pg to 17 pg, including Pisum sativum, Hordeum vulgare, and Vicia faba,
all calibrated against A. cepa. Subsequently, other studies have attempted to refine
the values for these taxa, and/or to extend the number and range of standard cal-
ibration species to include smaller genomes such as Vigna radiata, Oryza sativa
(Bennett and Leitch, 1995), Lycopersicon esculentum (Obermayer et al., 2002), and
Arabidopsis thaliana (Bennett et al., 2003).

About 10% of all plant C-value estimates have used an animal standard, 89%
of these being chicken red blood cells (CRBC). Chicken (Gallus domesticus) is
used for several reasons. First, like Allium cepa, it is readily accessible across the
globe. Second, it has long been used in animal studies (Gregory, 2001b) and was
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therefore chosen by Galbraith et al. (1983) in their seminal work developing flow
cytometry for plant genome size studies. Third, it is an amenable material: one
animal can be bled nondestructively at intervals to provide a stable and constant
standard for several years. However, in general the use of chicken blood, and
animal standards in general, has been discouraged for plant studies because of the
different DNA condensation levels and other staining properties of animal versus
plant cells. There is one important exception to this, however, namely the poten-
tial use of the nematode Caenorhabditis elegans (which is the only multicellular
organism whose genome has actually been completely sequenced) as the basal
calibration standard for genome size comparisons in both plants and animals.
Indeed, C. elegans was the species used to identify the previous error in the
Arabidopsis thaliana genome size estimate (Fig. 2.17) (Bennett et al., 2003). Work is
already under way to create a ladder of reliable standards, from A. thalania on up,
using C. elegans as the baseline “gold standard.”

CONCLUDING REMARKS AND 
FUTURE PROSPECTS

In an important sense, the field of genome size research in plants may be consid-
ered to have reached “the end of the beginning.” The first big push for represen-
tative and accessible coverage of plant genome size data has been completed by
the launch of the Plant DNA C-values Database (Bennett and Leitch, 2003). This has
allowed at least a basic understanding of the major patterns and consequences of
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genome size variation, although much work remains to be done in these areas.
With a large and growing dataset, the field is poised to tackle some of the key
comparative questions relating to the biological, ecological, and evolutionary
importance of genome size variation.

EXPANSION OF THE PLANT GENOME SIZE DATASET

Although the Plant DNA C-values Database includes representatives from each of
the major land plant groups, the percent coverage at the species level remains very
poor (generally <2%) for all but the gymnosperms (see Table 2.1). Furthermore,
Release 2.0 of the database does not currently contain information for any algae.
This latter gap will be filled in the next release of the database because Kapraun
(2005) recently compiled three reference lists containing C-value data for 240 algal
species, including 85 green algae (Chlorophyta), 111 red algae (Rhodophyta), 
and 44 brown algae (Phaeophyta). It also bears noting in more optimistic terms
that the current state of knowledge of plant genome size is largely due to sig-
nificant progress made in recent years (e.g., Leitch et al., 2001; Leitch and
Hanson, 2002; Hanson et al., 2003), indicating that the rate of data acquisition is
accelerating.

One of the key driving forces behind the expansion of the genome size dataset
has been the targets set at the Plant Genome Size Workshops held at the Royal
Botanic Gardens, Kew in 1997 and 2003. These provided a forum for identifying
crucial gaps in plant C-value knowledge, and for setting targets to fill them. In
September 2003, the progress achieved after the 1997 meeting was reviewed and
new five-year goals were set:

1. Angiosperms: To estimate first C-values for the next 1% of species
(i.e., an additional 2500 species). Within this, targets of achieving 75%
familial (i.e., an additional ∼114 families) and 10% generic (i.e., an 
additional ∼400 genera) representation were set.

2. Pteridophytes: To estimate first C-values for a further 100 species, with
particular emphasis on leptosporangiate ferns (the most diverse group of
land plants after the angiosperms).

3. Bryophytes: To improve geographical representation by targeting 
species from the tropical and southern hemisphere floras (no data are 
currently available for species in these regions). Further, for conservation
studies targets were set to estimate C-values in rare taxa in the European
flora.

4. Algae: Two groups were identified as targets for future C-value research:
the Micromonadophyceae, which are considered to hold a place close to
the origin of plants, and Charophyceae, now recognized as the sister
group to land plants.
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MECHANISTIC QUESTIONS

One of the most fundamental questions in the field of genome size research is “How
and why do DNA amounts change?” In recent years there have been huge advances
in understanding how DNA amounts can increase and decrease, but this probably
represents only the tip of the iceberg. Future research should continue to search for
novel mechanisms capable of generating changes in DNA amount, and use com-
parative studies to determine the extent to which such mechanisms are either
specific to a particular taxon or universal to all plants. In addition, the natures of the
evolutionary forces acting on these mechanisms to promote or restrict their activity
are largely unknown, but are becoming increasingly amenable to study with the
development of large-scale comparative genomics. All of these issues are essential
for shedding light on the molecular bases underlying the C-value enigma.

ECOLOGICAL AND ENVIRONMENTAL QUESTIONS

Another key question for future researchers to address is “What role does genome
size play in the response of plants to their environment?” Given that DNA amount
is linked to numerous cytological, morphological, and physiological parameters,
it will be a critical component of attempts to determine the evolutionary fates of
plants subjected to changing ecological and environmental conditions. Already
there is evidence that genome size plays an important, yet complex, role in affect-
ing how a plant may respond to anthropogenic changes in the environment such
as global warming (Grime, 1996), increased nuclear radiation (Sparrow and
Miksche, 1961; Underbrink and Pond, 1976), elevated CO2 levels (Jasienski and
Bazzaz, 1995), and pollution (Vilhar, personal communication). These questions
can be approached from various perspectives, including comparative surveys
across natural ecological gradients, experimental manipulations in the laboratory,
and theoretical modeling designed to examine how organisms will respond to the
multifaceted environmental changes induced through human activities. Such
work also promises to illuminate the factors that influence the natural distribu-
tions of plants with differing genome sizes.

EVOLUTIONARY QUESTIONS

The ability to track changes in C-value over time using characters such as fossil
cell size as a proxy for DNA content (Masterson, 1994) will enable the evolutionary
patterns of genome size evolution to be viewed over millions of years. Such approaches
will provide insights into the role genome size has played during key evolutionary
developments in plants, such as the transition onto land, the development of 
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a vascular system for efficient water conduction, the evolution of the seed habit
found only in angiosperms and gymnosperms, and the evolution of angiosperms
themselves, the most diverse and species-rich group of plants on this planet.

Studies of extant taxa can also allow insights into the origin of long-term
evolutionary patterns, for example by combining genome size data with detailed
information of plant phylogeny (Leitch et al., 1998, 2005; Soltis et al., 2003) and
by further investigating the links between genome size and susceptibility to
extinction (Vinogradov, 2003) and propensity for speciation (Knight et al., 2005).

In the roughly 50 years that have elapsed since the first plant genome size
estimate was recorded, genome size research has moved from simply document-
ing C-values and expressing confusion over the “C-value paradox” to identifying
the major patterns of variation, illuminating some of the molecular mechanisms
and evolutionary forces responsible, and framing a specific series of questions as
part of the “C-value enigma.” With continued surveys of plant genome size and 
integration with other fields ranging from molecular biology to ecology, it is
possible that the future will finally see the emergence of the “C-value solution(s).”
Such an effort will clearly require an appreciation of the biological and evolution-
ary significance of genome size variation and the development of a more holistic
framework for genomics.
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PART II

The Evolution of
Genomic Parasites





Transposable elements (TEs) are discrete DNA sequences that move from one loca-
tion to another within the genome. They are found in nearly all species that have been
studied and constitute a large fraction of some genomes, including that of Homo 
sapiens. TEs are potent broad-spectrum mutator elements that are responsible for
generating variation in the host genome and have a role as key players in the ecology
of the genome. This chapter presents an overview that includes coverage of TE
structures, regulation, distribution, and dynamics. A wealth of examples provides
many illustrations of the diversity of TE types and behaviors as well as the rich variety
of interactions between TEs and their host genomes. It is evident from this that
knowledge of these elements is essential for a full understanding of genome evolution.

A BRIEF HISTORY OF THE STUDY 
OF TRANSPOSABLE ELEMENTS

Transposable elements comprise a group of distinct DNA segments with the
capacity to move, or transpose, between many nonhomologous (unrelated) sites 
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