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Abstract—Single image dehazing has been a challenging 

problem because of its ill-posed nature. For this reason, numerous 
efforts have been made in the field of haze removal. This paper 
proposes a simple, fast, and powerful algorithm for haze removal. 
The medium transmission is derived as a function of the saturation 
of the scene radiance only, and the saturation of scene radiance is 
estimated using a simple stretching method. A different medium 
transmission can be estimated for each pixel because this method 
does not assume that transmission is constant in a small patch. 
Furthermore, this paper presents a color veil removing algorithm, 
which is useful for an image with fine or yellow dust, using the 
white balance technique. The proposed algorithm requires no 
training, prior, and refinement process. The simulation results 
show that the proposed dehazing scheme outperforms state-of-the-
art dehazing approaches in terms of both computational 
complexity and dehazing efficiency. 
 

Index Terms—Single image dehazing, medium transmission, 
saturation stretch, white balance.  

I. INTRODUCTION 

UTDOOR images captured in inclement weather conditions 
have poor visibility caused by the absorption and 

scattering of light by atmospheric particles. Particles, such as 
dust and water droplets, reduce the light of an object along the 
line of sight. Because hazy images have poor contrast and color 
fidelity, they do not guarantee faithful results in vision 
applications. Therefore, haze removal, known as dehazing, is a 
challenging preprocessing method to improve the performance 
of various computer vision tasks.  

Earlier dehazing approaches were based on multiple images 
or additional information because haze removal is an ill-posed 
problem. Polarization-based algorithms [1]-[3] have been used 
for image dehazing using multiple images of the same scene 
obtained with different degrees of polarization. Such methods 
can improve the visibility of hazy images and produce 
impressive results. On the other hand, it is difficult to find the 
maximum and minimum degrees of polarization under the same 
scene during rapid scene changes. Therefore, these methods are 
unsuitable for image restoration in real time. Multiple images 
of the same scene under different weather conditions were 
exploited to remove haze from images [4], [5]. These types of 
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dehazing algorithms can achieve good results. Image dehazing 
is difficult to realize for real-time applications because two or 
more different images of the same scene are required. 

In recent years, many studies have focused on using a single 
reference image for dehazing. Image enhancement-based haze 
removal methods have been initially proposed. These methods 
do not require image degradation models, but merely use 
various image processing techniques to improve the contrast 
and details of the image. These approaches include histogram-
based [6], [7], Retinex-based [8]-[10], and transform domain 
enhancement algorithms [11]-[13]. Generally, image 
enhancement-based dehazing approaches cannot generate 
satisfactory results because they do not consider any image 
degradation model. 

Popular dehazing methods are based on the physical image 
formation model in a scattering medium. These model-based 
approaches require reasonable assumptions and priors. 
Therefore, considerable efforts have been made to set up an 
appropriate prior for image dehazing. In 2008, Tan [14] 
introduced a contrast prior under the assumption that the local 
contrast of a haze-free image is significantly higher than that of 
a hazy image. Based on this assumption, he presented a 
dehazing algorithm by maximizing the local contrast of the 
image. This method easily causes color over-saturation in 
images with a heavy haze. To resolve the over-enhancing 
effects of Tan’s algorithm, a range of variational frameworks 
[15]-[17] for dehazing have been presented. 

Based on the prior knowledge that there is no correlation 
between object surface shading and transmission map, Fattal 
estimated the medium transmission map using the independent 
component analysis and Markov random field model [18]. This 
approach can produce impressive results when there is 
sufficient color information. On the other hand, this method 
cannot restore images with heavy haze and may fail in cases 
where the original assumptions are invalid.  

He et al. [19] proposed a simple and effective dehazing 
method based on the dark channel prior (DCP). The basic 
concept of the DCP is that at least one color channel has 
extremely low intensity for most non-sky patches. In this 
approach, minimum filtering is used to produce a rough 
transmission map, and soft matting is adopted to refine the map 
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and obtain better performance. Owing to the effectiveness of 
the DCP, a majority of recent dehazing techniques have 
exploited this concept. Intensive efforts have been made to 
refine the coarse transmission map based on the DCP, such as 
bilateral filtering [20], [21], guided filtering [22], [23], median 
filtering [24], smooth filtering [25], and fusion-based 
approaches [26], [27]. Improving DCP is an issue for dehazing. 
A median DCP [28] was presented to improve He et al’s map 
by calculating the median neighborhood instead of the 
minimum value. Meng et al. [29] introduced a new geometric 
perspective for DCP using a boundary constraint. This method 
is fast and can attenuate the image noise and enhance interesting 
image structures. In addition to the aforementioned methods, 
many DCP-based dehazing approaches [30] have been 
proposed. 

Most haze removal algorithms assume that the transmission 
and radiance are piece-wise constant, which leads to the use of 
a patch-based approach. For this reason, patch-based methods 
take significant care to avoid artifacts by the internal patch 
recurrence property [31], and multiple patches [32]. Berman et 
al. suggested a pixel-based dehazing algorithm using the haze-
lines (HL) model [33] to improve their non-local image 
dehazing (NLD) method [34]. This model is based on the 
assumption that colors tend to repeat in natural scenes and are 
often located at different distances from the camera. This 
algorithm requires no training, and performs well on a wide 
variety of images. This method, however, shows failure cases 
when lighting is non-uniform and the sky shows unnatural 
colors. In addition, it incurs significant computational cost. 

Recently, machine learning-based dehazing approaches have 
become popular. Cai et al. provided DehazeNet [35], which is 
a deep learning model for single image dehazing. By accepting 
a hazy image as input, DehazeNet calculates and outputs its 
corresponding transmission map. The limitation of this method 
is that fixed global atmospheric light is less accurate than 
dynamic local light. A multiscale convolutional neural network 
(MSCNN) based dehazing approach was presented [36]. This 
algorithm first generates a coarse-scale transmission matrix and 
then refines it gradually. An all-in-one dehazing network 
(AOD-Net) [37] was used to generate a haze-free image directly 
via a CNN and exploited a local airlight estimation for better 
results. Zhang et al. proposed a densely connected pyramid 
dehazing network (DCPDN) [38] to learn the transmission map, 
and atmospheric light jointly. This method exploited an 
encoder-decoder architecture with a multilevel pyramid pooling 
module to learn multi-scale features. Ren et al. presented a 
gated fusion network (GFN) [39] by adopting an encoder-
decoder architecture. GFN adopted a fusion-based strategy that 
derives three inputs from an original hazy image by applying 
white balance, contrast enhancing, and Gamma correction. A 
fully point-wise CNN (FPCNN) [40] for modeling statistical 
regularities in natural images was proposed to remove haze. 
This method shuffled the pixels randomly in the original image 
and leveraged the shuffled image as input to make CNN more 
concerned with the statistical properties. Xu et al. proposed an 
encoder-decoder architecture as an end-to-end system for single 
image dehazing [41]. This network has an encoder-decoder 

architecture with skip connections and instance normalization, 
and adopts the convolutional layers of a pre-trained VGG 
network as an encoder to exploit the representation power of 
deep features. Yang et al. provided a disentangled dehazing 
network (DDN) [42], which is an end-to-end model that 
generates realistic haze-free images using only unpaired 
supervision. This approach alleviated the paired training 
constraint by introducing a physical model-based 
disentanglement and reconstruction mechanism. Yang et al. 
proposed a proximal dehaze network (PDN) [43], which is a 
deep learning approach for single image dehazing by learning 
the dark channel and transmission priors. This network 
combines the advantages of traditional prior-based dehazing 
methods and deep learning methods by incorporating haze-
related prior learning into a deep network. Haze removal 
methods based on deep learning show promising results, but, 
the results can be affected by the training dataset.  

Generally, haze increases the brightness of an image and 
reduces saturation. Haze removal studies considering image 
saturation have been reported. In [44], a color attenuation prior 
(CAP), which assumed that the brightness and saturation of 
pixels in a hazy image vary sharply along with the change in the 
haze concentration, was used for image dehazing. Under this 
prior, a linear model for modeling the scene depth of hazy 
images was developed, and the parameters of this model were 
obtained by supervised learning. A transmission estimation 
method for image dehazing using saturation and intensity was 
reported [45]. In this method, the authors assumed that all 
atmospheric lights are the same, and local patches share the 
same transmission map. The initial transmission map was 
calculated based on these assumptions. This algorithm requires 
refinement and post-processing to estimate the transmission 
more precisely. 

In this paper, we propose a new and fast estimation method 
of medium transmission based on the saturation of an image for 
single image dehazing. The medium transmission is derived on 
a pixel-by-pixel basis without any prior. The transmission of 
this method is a function only of the saturation under the 
assumption that the atmospheric light is known. Furthermore, 
we present an efficient method based on white balancing to 
remove the color veil in the image generated in yellow or fine 
dust. The proposed method is fast, requires no training and 
refinement, and generates reasonable dehazing results on a wide 
variety of images. 

The remainder of this paper is organized as follows. Section 
II introduces the atmospheric scattering model for dehazing. 
Section III presents details of the proposed method. Section IV 
reports and discusses the experimental results. Finally, the 
concluding remarks are given in Section V. 

II.  ATMOSPHERIC SCATTERING MODEL 

A hazy image can be modeled as a convex sum of a haze-free 
image and the atmospheric light traveling through air. The 
formation of a hazy image is usually described by the 
atmospheric scattering model [46] as follows. 
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where λ is the wavelength of visible light, d is the distance from 
the scene to the camera, and β(λ) is the atmospheric scattering 
coefficient. The first term on the right-hand side of (1) is the 
direct attenuation, which describes the attenuation result of light 
reflected in the medium, and the second term is the airlight, 
which represents scattering of global atmospheric light. By 
letting H(x)=E(d,λ), J(x)=E0(λ), t(x)=e-β(λ)d, and A=E∞(λ), (1) 
can be simplified to 
 

 (x) (x) (x) 1 (x)t t  H J A ,                                   (2) 

 
where x=(x,y) is the position of the pixel within the image, H(x) 
is the hazy image, J(x) is the scene radiance representing the 
haze-free image, A is the atmospheric light, and t(x) is the 
medium transmission describing the portion of light that is not 
scattered. In general, β(λ) is wavelength dependent. Therefore 
t(x) is different per color channel. In almost all haze removal 
approaches, this dependency has been assumed to be negligible 
to reduce the number of unknowns. The boldface symbols (H, 
J, and A) represent the vectors that have three color components. 

The goal of dehazing is to recover J(x) from H(x). This is an 
ill-posed problem because there are unknown J(x), t(x), and A 
items in a single equation. J(x) can be estimated from a single 
image if some prior knowledge is available, or if the depth 
information of an image is known. From the estimated 
transmission map and atmospheric light, the scene radiance can 
be restored by 
 

  (x)
(x) (x), , (x)

(x)
D t

t


  

H A
J H A A ,              (3) 

 
where D(·)is the dehazing function when the hazy image, 
atmospheric light, and transmission map are given. 

III. PROPOSED METHOD 

A. Basic Formulation for Transmission Map 

When atmospheric light A is assumed to be given, the haze 
imaging equation in (2) can be normalized by A as follows. 
 

 (x) (x)
(x) 1 (x),  , ,

c c

c c

H J
t t c r g b

A A
    ,          (4) 

 
where Hc(x), Jc(x), and Ac are color channels of H(x), J(x), and 
A, respectively. In the DCP-based dehazing approaches, 
transmission in a local patch Ω(x) is assumed to be constant. 
The dark channel on both sides of Eq. (4) is as follows. 
 

y (x) y (x)

(y) (y)
min min (x) min min 1 (x)
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The dark channel of J is close to zero owing to the dark 

channel prior, that is, 
 

 dark

y (x)
(x) min min (y) 0c

c
J J


  .                 (6) 

 
Many haze reduction methods have been presented based on 
two assumptions (dark channel prior and constant transmission 
in a local patch). These two assumptions lead to a simple and 
useful dehazing framework. However, Jdark(x) is not always 
zero, and transmission is not constant in a local patch.  These 
facts produce annoying artifacts in the dehazed image. 
Therefore, a range of post-processing methods such as soft 
matting [19], bilateral filtering [20], [21] and guided filtering 
[22], [23] are followed by a transmission estimation. 

In this paper, we assume that transmission differs from pixel 
to pixel. The following equation is obtained using the minimum 
operation on (4),  

 
min (x) min 1 (x)c c

n nc c
H t J t   ,                        (7) 

 

where (x)(x)
c

c
c H
n A

H  , and (x)(x)
c

c
c J
n A

J  . This equation can 

be rearranged to 
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where (x) min (x)

n

c
nc

m HH , and (x) min (x)
n

c
nc

m JJ . Fig. 1 

shows some examples of (x)
n

mJ  of natural haze-free images. 

The dark images generated by (6) are also shown in Fig. 1. As 
shown in Fig. 1, the dark channel prior is not working under the 
condition that the transmission is not constant in a local patch. 
The images formed by (x)

n
mJ  look like gray images. From Fig. 

1, (x)
n

mJ  is not always zero. Moreover, the dark images 

obtained by the DCP are not zero in the bright background 
regions. Therefore, the dark channel prior is a limited 
assumption that cannot be used extensively in all image areas. 
In this paper, we present a new dehazing framework for 
estimating a pixel-wise transmission map without the DCP. 

 
Fig. 1.  Examples of (x)

n
mJ  and dark images. Left: natural image, middle: 

minimum image by (7), right: dark image by dark channel prior. 
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B. Transmission Map Estimation 

This section presents a saturation-based transmission map 
estimation method. Let SK(x) be the saturation component at 
location x for a given image, K(x), which is defined as 
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(x) 1
(x)

m
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I
  K
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,                               (9) 

 
where 
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c r g b
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K , and IK(x) is the intensity of K(x), 

that is, 
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Using mK(x)=IK(x)(1-SK(x)) from (9), Eq. (8) can be rewritten 
as 
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Thus far, the transmission map can be determined by the 
intensity and saturation of the normalized scene radiance. Two 
unknowns ( (x)

n
IJ  and (x)

n
SJ ) are used to estimate t(x). 

By normalizing (3) to A, (x)
n

IJ  was estimated using (4) and 

(10) as follows. 
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By combining (11) and (12), t(x) is obtained as 
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This is a first-order equation for t(x). Therefore, t(x) can be 

obtained analytically as follows. 
 

(x)
(x) 1 (x) 1

(x)
n

n

n

S
t I

S

 
    

 

H

H
J

.                   (14) 

 
As shown in (14), the transmission map at location x is 
estimated in a simple form using single unknown value (x)

n
SJ . 

If (x)
n

SJ  is estimated, t(x) can be obtained. Estimating (x)
n

SJ  

is much easier than estimating (x)
n

mJ  directly. The estimation 

method for (x)
n

SJ  will be discussed in the next section. Fig. 2 

shows examples of the dark channel prior based transmission 
map after guided filtering and the proposed transmission map. 
The transmission maps obtained by the dark channel prior 
cannot represent the detailed textures and edges of the image, 
because they are produced by a local patch. 

When the local patch Ω(x) is a 1x1 window, the proposed 
transmission map is a general equation that can include the dark 
channel prior-based dehazing equation. If (x) 0

n
m J , then 

(x) 1
n

S J . This condition leads t(x) to (x) 1 (x)
n

t m  H , 

which is, (x) 1 min c
c

H
Ac

t   .  This is the DCP-based 

transmission map when Ω(x) is assumed to be a 1x1 window. 
A transmission estimation method for image dehazing using 

saturation and intensity was reported in 2018 [45]. They 
assumed that all atmospheric lights are the same, and local 
patches share the same transmission map. From these 
assumptions, the transmission map is calculated in the 
following form. 

  

(x) (x)
(x) 1 1

(x)

I S
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A S


 
   

 
H H
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,                   (15) 

 
where ψ is the fitting coefficient used to adjust the degree of 
refinement of the initial transmission map. The initial 
transmission (x)t


 was smoothed into a refined transmission by 

minimizing the defined cost function. In addition, this method 
assumed that all atmospheric lights are the same. In this paper, 
we remove all assumptions through the process of normalizing 
the color component to the corresponding atmospheric light. 
For this reason, no refinement and post-processing methods are 
needed to estimate the transmission map in the proposed 
algorithm. 
 

C. Estimating Saturation of Scene Radiance 

The aim in this section is to estimate (x)
n

SJ . The first step is 

to find the constraint of (x)
n

SJ . From (14),  

 
(x)

(x) (x) (x)
(x)

n

n n

n

I
S t S

I
 J

H J
H

.                      (16) 

 

 
Fig. 2.  Transmission maps obtained by the dark channel prior and proposed
method.  
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The relationship between (x)
n

IH  and (x)
n

IJ  from (12) can 

also be obtained as follows. 
 

(x) (x) (x) 1 (x)
n n

I t I t  H J .                 (17) 

 
From (16) and (17), (x) (x)

n n
I IJ H  and (x) (x)

n n
S SJ H  can 

be derived easily because 0≤t(x)≤1. Here, an approximate 
condition of (x) (x)

n n
S SJ H  is obtained. In this paper, we will 

show experimentally that this rough condition is sufficient for 
haze removal. 

The contrast stretch concept is adopted to estimate (x)
n

SJ . 

The common contrast stretch algorithm produced successful 
results in many image processing applications. Three examples 
of the simple stretch function that satisfies the condition 

(x) (x)
n n

S SJ H  are discussed. The first stretch function is  
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,       (18) 

 
where τ(z, p) is the adaptive stretch function for z, p(p>0) is the 
power constant. The second is defined as  
 

( ) (2 )q z z z  .                                  (19) 

 
In (19), q(z) is the quadratic function of z with maximum value 
1 at z=1. Finally, the third saturation function is used as follows. 
 

 
1 1

1 1
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2

z z
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          ,                    (20) 

 

 where η(z, γ) is the stretch function defined in (20), and γ is the 
constant that determines the shape of η(z, γ). The saturation of 
the normalized scene radiance can be estimated using (18), (19) 
or (20). 

Fig. 3 shows example of the three stretch functions. Fig. 3(a) 
presents graphs of these stretch functions. In Fig. 3(b), the 
stretched saturations for a sample hazy image are represented 
in gray image form. Other choices may be possible to estimate 

(x)
n

SJ .  Fig. 4 shows dehazed images using various stretch 

functions. As shown in Fig. 4, the dehazing performance does 
not depend largely on the stretch function. 

 

D. Removing Color Veil 

The hazy image is considered to be a convex sum of the haze-
free image and veil made by atmospheric light. In general, it is 
assumed that all atmospheric light is similar because the haze 
has little color component. However, color veils may be present 
in yellow dust or certain lighting conditions. Fig. 5 gives 
examples of a hazy image with a color veil and its dehazed 
version. The top line in Fig. 5 shows a gray veil because all 
atmospheric light is similar, and the dehazed image has good 
visual quality. The middle line represents a color veil with 
larger red and blue values compared to that of the green 
component. The bottom line presents an ocher color veil, which 
can be seen as a typical veil when there is yellow dust. As 
shown in Fig. 5, the recovered images with a color veil do not 
show good dehazing performance (middle and bottom lines). 

In this paper, we present a simple color veil removing 
algorithm using the white balancing method. The white 
balanced image for H(x), HWB(x) is obtained as follows. 

 

   
 

(x)
(x) (x) (x)

(x)

g

c c c
WB c

H
H W H H

H




  ,          (21) 

 
where μ(Hc(x)) is the average of color component Hc(x), and  
W(·) is the white balancing function. AWB, which is the 
atmospheric light of the whited balanced hazy image, is 
obtained from HWB(x). A larger deviation of the atmospheric 

Fig. 3.  Example of saturation stretching function. (a) graphs of the three 
stretching functions, and (b) stretched saturations for a sample hazy image are
represented in gray image form. 

Fig. 4. Dehazed images using various stretch functions. (a) hazy image, (b)
dehazed image using τ(z, p=2.5), (c) dehazed image using q(z), and (d) dehazed
image using η(z, γ=0.2). 
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light values means the haze veil has a large color component.  
Therefore, the deviations of A and AWB, are compared to 
determine whether to apply the white balance to remove haze. 

Let Δ(y) be the difference between the maximum and 

minimum values of y. If Δ(A)≤Δ(AWB), then the white b  

alancing process increases the difference between the 
maximum and minimum values of A. Therefore, it is assumed 
that the atmospheric veil of H(x) has little chromatic component. 
In this case, the dehazed image J(x)=D(H(x),A,t(x)) is obtained 
using (3). On the other hand, if Δ(A)>Δ(AWB), the white 
balancing process weakens the chromatic component of the 
atmospheric veil because of the gray-world assumption. 
Therefore, haze removal can be performed by 
J(x)=W[D(H(x),AWB,t(x))]. Overall, we present an effective 
and automated dehazing algorithm that can respond selectively 
to color veils. For a given hazy image H(x), the dehazed image 
J(x) is obtained as follows. 
 

 
 

(x), , (x) , ( ) ( )
(x)

(x), , (x) , otherwise
WB

WB

D t

W D t

        

H A A A
J

H A
.    (22) 

 
Fig. 6 shows examples of the proposed dehazing method. Fig. 

6(a) presents an example of dehazing method for hazy image 
with no chromatic veil. The Δ value of A is smaller than that of 

AWB, that is, Δ(A)≤Δ(AWB). In this case, haze removal is 

performed by the dehazing function D(H(x),A,t(x)). From Fig. 
6(a), the dehazing method of J=D(H(x),A,t(x)) is a good choice 

(red box) when Δ(A)≤Δ(AWB). In Fig. 6(b), the difference in A 

is Δ(A)=0.411, whereas Δ(AWB)=0.045. From this result, it is 
expected that a color veil contaminates the image. From Fig. 
6(b), the dehazing method of W[D(H(x),AWB,t(x))] (red box) is 
better than the common dehazing function.  In summary, Δ of  

the atmospheric light plays an important role in achieving good 
dehazing performance. The proposed method can remove haze 
adaptively depending on the type of atmospheric veil. 

 

E. Effect of Atmospheric Light 

Fig. 7 shows two dehazed image using the DCP algorithm 
with different A (He et al.’s A [19] and Tang et al.’s A [32]). 
The DCP-based dehazing results have annoying artifacts in the 
sky as shown in Fig. 7(a). On the other hand, the same dehazing 
function with different A (Tang et al.’s A) alleviates the 
annoying artifact as shown in Fig. 7(b). This is due to the 
median filtering for all the 0.1% pixels with the largest dark 
channel values. In conclusion, the DCP method shows different 
dehazing results depending on A. 

In this paper, we calculate the intensity and saturation using 
the image normalized by A, and estimate t(x) based on these 
two components as shown in (14).  In addition, we assume that 
atmospheric light A is given. An estimation of atmospheric 
light does not affect the proposed method very much. Fig. 8 
shows an example. The atmospheric light is estimated using 
three methods (Tang et al.’s [32], quad-tree subdivision-based 
[47], and He et al.’s method [19]). As shown in Fig. 8, the 
dehazing results are similar. These results show that the 
proposed method is relatively unaffected by the estimation of 

Fig. 5. Example of a hazy image with color veil and its dehazed version. (a)
hazy image, (b) veil image constructed by atmospheric light, and (c) dehazed 
image. 
 

 
Fig. 6. Examples of colored veil removing approach. (a) dehazing method for 
a hazy image with no chromatic veil, and (b) dehazing method for a hazy 
image with chromatic veil. 
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A.  
 

F. Summary of Proposed Method 

Table I lists the overall algorithm of the proposed dehazing 
method. The atmospheric light is estimated from the observed 
hazy image. The method reported by by Tang et al. [32] is used 
to estimate the atmospheric light. A white balanced hazy image 
is obtained using the gray-world assumption shown in (21), and 
the atmospheric light for the white balanced image is estimated. 
The deviations of the two obtained atmospheric lights are 
compared, and one of the two methods of haze removal is 
selected automatically, as shown in Step 5) in Table I. The 
dehazing results of the proposed method are obtained using (22). 
Finally, contrast limited adaptive histogram equalization 
(CLAHE) can be applied to enhance the brightness component. 

IV. SIMULATION RESULTS 

To verify the effectiveness of the proposed dehazing 
approach, is was tested on various types of hazy images. Test 
images were composed of natural hazy images, synthetic hazy 
images, natural images with color veils, outdoor dehazing 
benchmark dataset (O-HAZE) [48], and a large-scale 
benchmark for realistic single image dehazing (RESIDE) [49]. 
The performance of the proposed method is compared with that 
of various state-of-the-art dehazing methods, namely, the 
efficient multi-scale correlated wavelet approach (MSCW) [13], 
DCP [19], boundary constrained context regularization (BCCR) 
[29], HL [33], NLD [34], CAP [44], fast visibility restoration 
(FVR) [50], artificial multiple-exposure image fusion (AMIF) 
[51], night-time dehazing by fusion (NDF) [52], and gradient  

residual minimization (GRM) [53]. Furthermore, the 
performance of our algorithm is also compared with that of 
machine learning-based dehazing approaches, namely, 
DehazeNet [35], MSCNN [36], AOD-Net [37], DCPDN [38], 
GFN [39], FPCNN [40], strong baseline for single image 
dehazing (SBID) [41],  DDN [42], PDN [43], and enhanced 
pix2pix dehazing network (EPDN) [54].  

 

A. Computation Time 

The proposed method was implemented on Intel i5-7500 
CPU @ 3.40GHz and 8G RAM without a CPU or 
multithreading acceleration. The code was written in un-
optimized Python in the Window 10 environment. The existing 
methods to be compared were implemented in the same 
environment. All codes are available on the Internet. The 
execution time was averaged per ten execution times, and the 
times for reading and writing images were excluded. Only the 
test time for the machine learning-based dehazing approaches 
were measured. The DCP [19] was implemented using a guided 
filter instead of soft matting for the transmission map 
refinement. Table II presents the execution times for various 
image sizes. As shown in Table II, the proposed approach is 
significantly faster than the other algorithms. Even when the 
given hazy image is large, the proposed method achieves a 
faster processing time. 

 

B. Qualitative Comparison on Natural Images 

The end-to-end dehazing results on challenging natural 
images are presented. Figs. 9 shows a qualitative comparison of 
our results with those of fifteen state-of-the-art dehazing 
methods. DCP [19] does not generate good dehazing 
performance. This method has a poor performance, especially 
in the background region, such as sky. BCCR [29] results in a 
significant amount of color shift in the restored images. FVR 
[50] effectively removes most of the haze, and restores the 
details of the scenes and objects. However, the dehazing results 

 
Fig. 7. Dehazing result based on the DCP method using different A. (a) hazy 
image, (b) dehazed image using He et al.’s A [19], and (c) dehazed image
using Tang et al.’s A [32]. 

Fig. 8. Dehazing result based on the proposed method using different A. (a) 
hazy image, (b) dehazed image using Tang et al.’s A [32], (c) dehazed image
using quad-tree subdivision-based A [47], and (d) dehazed image using He et 
al.’s A [19]. 

TABLE I  
OVERALL ALGORITHM OF THE PROPOSED METHOD 

Input: hazy image H 
Output: dehazed image J 

1) Obtain A from H. 
2) Obtain white balanced hazy image HWB using (21). 
3) Obtain AWB from HWB. 
4) Compute Δ(A) and Δ(AWB) 
5) If  Δ(A) < Δ(AWB) 

A. Obtain normalized hazy image Hn with A. 
B. Estimate saturation of Hn using (18), (19), or (20). 
C. Compute transmission map using (14). 
D. Obtain dehazed image using J=D(H(x), A, t(x)). 

Else  
A. Obtain normalized hazy image Hn with AWB. 
B. Estimate saturation of Hn using (18), (19), or (20). 
C. Compute transmission map using (14). 
D. Obtain dehazed image J=W[D(H(x), AWB, t(x))].  

6) Apply CLAHE (optional). 
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suffer from over-enhancement, which generates halo artifacts  
near discontinuities. The three dehazing algorithms mentioned 
above are based on DCP. Owing to the limit of assumption of 
DCP, these three methods show relatively low haze removal 
performance. 

CAP [44] presents a rapid dehazing algorithm based on a 
color attenuation prior. This method does not remove haze in 
images sufficiently and causes a color shift as shown in Fig. 9. 
MSCW [13] removes the haze quite well, and restores the 

image details properly.  AMIF [51] uses an artificial multiple-
exposure image fusion for image dehazing. This algorithm is 
fast and shows good dehazing performance. However, this 
method does not restore the details of the image fully. NLD [34] 
restores image the detail quite well, but, this method tends to 
overestimate the detail of the image and has a weak point in 
restoring the uniform region.  

As shown in Fig. 9, machine learning-based dehazing 
approaches do not show annoying artifacts except for SBID 

TABLE II  
EXECUTION TIMES OF VARIOUS ALGORITHMS (UNIT: SECOND) 

 Image size 

Method 408x512 786x1024 1193x1590 1536x2048 2304x3072 2034x4032 

MSCW [13] 
DCP [19] 

BCCR [29] 
NLD [34] 
CAP [41] 
FVR [50] 

AMIF [51] 

 0.213 
3.626 
1.527 
5.472 
0.614 
3.362 
1.527 

0.810 
12.878 
5.661 

11.198 
2.209 

44.967 
5.661 

2.150 
33.780 
15.304 
19.836 
5.555 

236.482 
15.304 

3.659 
56.851 
25.725 
29.113 
9.479 

804.323 
25.725 

8.219 
129.418 
57.222 
57.727 
21.321 

3540.866 
57.222 

14.589 
222.965 
89.719 
239.123 
36.167 

8028.500 
89.719 

DehazeNet [35] 
MSCNN [36] 

1.842 
1.482 

6.743 
5.297 

17.622 
21.379 

29.392 
28.556 

76.612 
362.530 

145.754 
1019.745 

Proposed 0.071 0.345 0.866 1.594 3.642 5.950 

 

Fig. 9. Performance comparison of various single image dehazing methods using sample natural images. 
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[41]. SBDI has a poor visual result in the background region for 
some images. DehazeNet [35], MSCNN [36], AOD-Net [37], 
and DDN [42] cannot fully remove the haze. On the other hand, 
recently reported machine learning-based dehazing schemes, 
such as GFN [39], FPCNN [40], and PDN [43], have good 
dehazing performance. The proposed algorithm has competitive 
results with these three methods.  

For a broader performance comparison, this paper presents 
the haze removal results for ten popular natural images in Fig 
10. From Fig 10, the dehazing results using the proposed 
algorithm are competitive or superior to those of other methods 
in terms of the haze removal capability, detail recovery, color 

shift, and uniform region recovery. The advantages of the 
proposed method are significant when considering the 
computation time. 
 

C. Qualitative Comparison on Synthetic Images 

Fig. 11 presents the image dehazing results for various 
synthetic images. MSCW [13], and NLD [34] recover the image 
details well. However, these two methods cannot remove the 
color veils shown in the fourth, and fifth columns of Fig. 12. 
GFN [39] and SBID [41] recover image details well, but they 
have visually uncomfortable artifacts. FPCNN [40] and DDN 
[42] do not fully remove the haze. PDN [43] is good at 

 
Fig. 10. Performance comparison of various single image dehazing methods using sample natural images. 
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removing haze, but fails to remove the color veils. In 
comparison, the proposed method effectively recovers the 
image details and removes color veils. 

 

D. Qualitative Comparison on Natural Images with Color 
Veil 

In general, the hazy image is composed of an original image 
and a light gray veil. In this situation, the atmospheric lights 
corresponding to each color are similar. However, color veils 
exist in yellow dust or certain lighting conditions. Almost none 
of the dehazing approaches consider this situation. Fig. 12 
shows dehazing results for natural images with color veils. As 
shown in Fig. 12, the proposed approach effectively removes 
the color veils. All methods, except for the proposed method, 
are unable to remove the color veil. 

 

E. Quantitative Comparison 

Ancuti et al. [48] generated a dehazing benchmark dataset to 
evaluate the dehazing performance. In this paper, an outdoor 
dataset (O-HAZE) composed of 45 images is exploited to 
quantify dehazing performance. Three evaluation measures are 
tested, including the peak signal-to-noise ratio (PSNR), 
structural similarity index (SSIM) [55], and CIEDE2000 color 
difference [56]. The SSIM evaluates the ability to preserve the 
structural information of the algorithms, and the CIEDE2000 
evaluates the color fidelity. The SSIM ranges from -1 to 1, with 
a maximum value of one for two identical images. The 
CIEDE2000 accurately measures the color difference between 
two images and generates values in the range from zero to 100, 
with smaller values indicating the better color preservation.  

 
Fig. 11. Performance comparison of various single image dehazing methods
using synthetic images. 

 
Fig. 12. Performance comparison of various single image dehazing methods 
using natural images with chromatic veil. 
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Table III presents the average performance of various 
dehazing algorithms in terms of the PSNR, SSIM, and 
CIEDE2000. The PSNR, SSIM, and CIEDE2000 values were 
taken from [34] and [48]. The top three performances are 
highlighted in red, cyan and blue, respectively. Three dehazing 
results are obtained using τ(z,p), q(z), and η(z, γ). As shown in 
Table III, the performance of the proposed methods is similar. 
Our results have the best SSIM and CIEDE2000 values, and 
have the second highest PSNR performance. 

In 2019, Li et al. provided the RESIDE benchmark dataset 
[49]. The RESIDE training set contains 110,500 synthetic hazy 
indoor images and 313,950 synthetic hazy outdoor images. The 
RESIDE testing set is composed of a synthetic objective testing 
set (SOTS) and the hybrid subjective testing set (HSTS), 
designed to manifest a diversity of evaluation viewpoints. A 
SOTS includes both the indoor and outdoor images (500 of 
each).  HSTS selects 10 synthetic outdoor hazy images. 

The dehazing performance of the SOTS is first compared 
using PSNR and SSIM. Table IV shows the scores of each 
algorithm in terms of two full-reference metrics. As shown in 
Table IV, machine learning-based dehazing approaches 
generally outperform the image prior-based methods for the 
SOTS indoor dataset. The SBID [41] has the best PSNR and 
SSIM scores, and EPDN [54] is following it. The PSNR score 
of the proposed method is eighth out of sixteen algorithms. On 
the other hand, the SSIM score of the proposed algorithm ranks 
fifth, which is three levels higher than our PSNR ranking. For 
the SOTS outdoor dataset, the proposed dehazing algorithm 
achieves the best PSNR and SSIM scores. The machine 
learning-based results of the SOTS outdoor dataset are quite 
different from those of the indoor dataset. We compared our 
method with the image prior-based methods in Table V for the 
HSTS dataset. As shown in Table V, the proposed approach 
surpasses the second-best methods by a large margin. In 
addition, the results of the proposed method for the HSTS 
dataset are similar to those of the SOTS outdoor dataset.  

For a subjective evaluation of the RESIDE dataset, the 
sample images are selected from the HSTS dataset. Fig. 13 
shows a qualitative example of dehazed results on a synthetic 
hazy image. Compared to the clean images, the proposed 
algorithm generates the closest results to the clean images. Fig. 
14 represents a qualitative comparison on a real-world hazy 
image from HSTS. Even in this case, the proposed dehazing 
algorithm achieves good haze removal results. 

V. CONCLUSION 

In this paper, we proposed a fast and efficient single image 
dehazing method using saturation-based transmission map 
estimation. The proposed method does not assume that 
transmission is constant in a small patch. Therefore, pixel-based 
medium transmission can be obtained. The normalized 
atmospheric scattering model with atmospheric light was used, 
and the minimum operation was applied for the normalized 
atmospheric scattering model. From this, the transmission map 
was derived as a function only of the saturation component of 
the scene radiance. The saturation of scene radiance was 
estimated using a simple stretching method. Using a simple test, 
the dehazing performance does not depend largely on the type 
stretch function. In addition, a color veil removing algorithm 
using the white balance technique was presented. This method 
was useful in recovering various hazy images with color veils. 

We evaluated various types of hazy images, including natural 
images, synthetic images, and natural images with color veils. 
In addition, the performance of the proposed method was 
compared with that of the existing dehazing algorithms. The 
simulation results showed that the proposed dehazing scheme 
outperforms state-of-the-art dehazing approaches in terms of 
both the computational complexity and dehazing efficiency. 
Because our algorithm requires no training, prior, and 
refinement process, we achieved an efficient dehazing 
algorithm. 

TABLE III 
QUANTITATIVE COMPARISONS OF VARIOUS ALGORITHMS USING O-HAZE 

[48] IMAGE DATASET 

Method PSNR (dB) SSIM CIEDE2000 

DCP [19] 
BCCR [29] 

HL [33] 
NLD [34] 
NDF [52] 

DehazeNet [35] 
MSCNN [36] 

Proposed: τ(z,p) 
Proposed: q(z) 

Proposed: η(z, γ) 

 16.586 
17.443 

- 
16.610 
16.855 
16.207 
19.068 
17.604 
17.721 
17.673 

0.735 
0.753 
0.781 
0.750 
0.747 
0.666 
0.765 
0.794 
0.796 
0.794 

20.745 
16.968 
16.579 
17.088 
16.431 
17.348 
14.670 
14.169 
14.039 
14.024 

 

TABLE IV 
QUANTITATIVE COMPARISONS OF VARIOUS ALGORITHMS USING RESIDE 

SOTS [49] IMAGE DATASET 

Method 
Indoor Outdoor 

PSNR (dB) SSIM PSNR (dB) SSIM

DCP [19] 
BCCR [29] 
NLD [34] 
CAP [44] 
FVR [50] 
GRM [52] 

 16.62 
15.72 
17.29 
19.05 
15.72 
18.86 

0.8179 
0.7913 
0.7489 
0.8364 
0.7483 
0.8553 

  

DehazeNet [35] 
MSCNN [36] 
AOD-Net [37] 
DCPDN [38] 

GFN [39] 
FPCNN [40] 
SBID [41] 
DDN [42] 
EPDN [54] 
Proposed 

21.14 
17.57 
19.06 
19.13 
22.30 
20.92 
27.79 
19.38 
25.06 
19.93 

0.8472 
0.8102 
0.8504 
0.8191 
0.8800 
0.8729 
0.9556 
0.8242 
0.9232 
0.8633 

22.46 
 

20.29 
22.49 
21.55 
22.75 

 
 

22.57 
24.96 

0.8514
 

0.8765
0.8565
0.8444
0.9014

 
 

0.8630
0.9421

 
TABLE V 

QUANTITATIVE COMPARISONS OF VARIOUS ALGORITHMS USING RESIDE 

HSTS [49] IMAGE DATASET 

Method PSNR (dB) SSIM 

DCP [19] 
BCCR [29] 
NLD [34] 
CAP [44] 
FVR [50] 
GRM [52] 
Proposed 

 14.84 
15.08 
18.92 
21.53 
14.48 
18.54 
25.35 

0.7609 
0.7382 
0.7411 
0.8726 
0.7642 
0.7624 
0.9429 
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