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Abstract 
 
The Chalcones are open-chain flavonoids with diverse biological activities. In recent time, 
quantitative structure activity relationship (QSAR) is employed in the elucidation of the structural 
requirements of various biological activities. In this research, QSAR was employed to investigate the 
structural requirements of free radical scavenging properties of selected chalcones and their 
derivatives. The data set was optimized at the density functional theory (DFT) level. The optimized 
structures were employed to develop chalcone antioxidant models by genetic function algorithm 
(GFA). The range of applicability of these models were assessed by leverage approach. Five predictive 
models were developed for the chalcone antioxidants with highly encouraging results upon 
validation [R= 0.988, R2= 0.977, Q2 (R2. CV)= 0.954,  R2pred = 0.916, cRp2= 0.861]. The electrotopological state 
atom type and the extended topochemical atom descriptors were found to be significant in the 
determination of the free radical scavenging properties of the chalcone antioxidants. This research is 
a gateway towards the design of new set of chalcone antioxidants with potent free radical scavenging 
properties.  
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Introduction 
Compounds that have the ability to delay autoxidation by preventing the formation of free radicals or 
disrupting their propagation are regarded as antioxidants (Brewer, 2011). On the other hand, molecules that 
contain unpaired electrons in their atomic or molecular orbitals are recognised as free radicals (Zhang et al., 
2014). The metabolic processes that take place in the human system result in the generation of free radicals, 
which are also scavenged by an efficient network of antioxidants. When the balance between the free 
radicals and the antioxidants is disrupted, oxidative damage to cell structures results.  This is responsible for 
many degenerative diseases such as cancer, cardiovascular disease, cataracts, immune system decline, and 
brain dysfunction (Sinha et al., 2009). Antioxidants and their derivatives such as the Chalcones, scavenge 
free radicals such as   peroxide, hydroperoxide or lipid peroxyl, and consequently inhibit the oxidative 
mechanisms that lead to degenerative disease. According to Todorova et al in 2011, Chalcones ((1,3-
diphenylprop-2-en-1-ones) are open-chain flavonoids that consist of two aromatic rings joined by a three-
carbon α, β-unsaturated carbonyl linkage. The synthesis of many biologically important heterocycles such 
as flavones employ the chalcones as starting materials (Patel et al., 2013).  In this research, various 
chalcones and their derivatives whose antioxidant activities were tested using the stable 1,1-diphenyl-2-  
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picrylhydrazyl, inhibition assay, were subjected to 
quantitative structure activity relationship (QSAR) 
studies. The QSAR method is a statistical technique that 
is widely employed in correlating the properties of 
molecular structures with their biological activities 
(Mitra et al., 2010; Ravichandran et al., 2011). In recent 
time, various attempts have been made by researchers 
towards the elucidation of the structural requirements 
of the antioxidant activities of various compounds by 
employing QSAR technique (Wang et al., 2015; Alisi et 
al., 2018; Ogadimma et al., 2018).  In 2014, Pachori et 
al., employed QSAR technique to computationally 
design and identify novel methoxy substituted 
chalcones. QSAR has been employed in the 
chemometric modelling of free radical scavenging 
activity of flavone derivatives (Mitra et al., 2010). Also, 
Xue et al., in 2012, employed QSAR to investigate the 
molecular structure and radical scavenging activity of 
newly synthesized hydroxychalcones.  Other QSAR 
studies involving chalcone derivatives include the 
application of QSAR in the analysis of selected chalcone 
derivatives as Mycobacterium tuberculosis inhibitors 
(Ogadimma and Adamu, 2016). 
Materials and methods 
2.1. Data set, descriptors development and pre-treatment  
The data set of sixty substituted Chalcone derivatives 
and their respective antioxidant activities were generated 
from literature (Beom-Tae et al., 2008; Shenvi et al., 
2013; Lahsasni et al., 2014). The free radical scavenging 
activity of these molecules were investigated using the 
1,1-diphenyl-2-picrylhydrazil (DPPH) free radical 
inhibition assay. The DPPH free radical inhibition assay 
is preferred to other methods such as nitric oxide 
radical ( ), superoxide anion radical , 
Hydroxyl radical (OH⦁), hydrogen peroxide  or 
2,2ˈ-azinobis (3-ethylbenzothiazoline-6-sulfonate) 
cationic radical (ABTS⦁+) scavenging assays, due to its 
simplicity and rapidity. Also, it is unaffected by sample 
polarity (Koleva et al., 2001). 
 The antioxidant activities of these molecules are 
represented by their   values in  . The 

 values were subsequently transformation to their 
corresponding  values according to equation (1). 
                                                                                                         
(1) 
ChemBioDraw version 12.0 program (Li et al., 2004), 
was employed in drawing the chemical structures of the 

compounds. The molecular geometries were first 
minimized and subsequently optimized at the DFT level 
using Becke's three-parameter Lee-Yang-Parr hybrid 
functional (B3LYP), and the 6-311G* basis set. This 
was accomplished with the aid of the Spartan 14 
program (Shao et al., 2006). The low energy conformers 
were subequently submitted for the generation of 
molecular descriptors using the software "PaDel-
Descriptor version 2.20" (Yap, 2011).  
Data pre-treatment was accomplished using "Data Pre-
Treatment GUI 1.2" tool that uses V-WSP algorithm 
(Ballabio et al., 2014; Ambure et al., 2015).  The 
resulting data was normalized and subsequently split 
into training and test sets by employing Kennard Stone 
algorithm technique using the program "Dataset 
Division GUI 1.2" (Todd et al., 2012).  
2.2. Model development and validation   
Material studio program was employed in the 
development of QSAR models from the training set 
compounds. The descriptors (independent variables) 
and  values (dependent variables) were subjected 
to multivariate analysis by Genetic Function 
Approximation (GFA).  The model fitness was 
determined by calculating the Friedman lack-of-fit 
(LOF) (Ogadimma et al., 2018).  
The validation of the developed models internally was 
achieved by leave- one- out (LOO) cross- validation 
technique. This resulted in the computation of various 
parameters such as the correlation coefficient, R; the 
Cross-validated squared correlation coefficient, 

; the adjusted  ( ); the variance ratio, 
F and the standard error of estimate (s) (Rudra and 
Kunal, 2012). 
The robustness of the developed QSAR model was 
checked by Y-randomization test using the relation 
presented in equation 2.  
c                                                                                                
(2) 
Where,   = squared correlation coefficient of the 
non-random model. 
  = squared mean correlation coefficient of the 
randomized model.  
c  = correction in squared mean correlation 
coefficient deviation. 
Various parameters were calculated in order to validate 
the models externally. These include: 
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The predictive R2 (R2pred) of the test set compounds 
which indicates the extent of predictivity of the model 
(equation 3). 

                                                                                              
(3) 
Where, 
  = Predicted activity values of the test set 
compounds. 
  = Observed activity values of the test set 
compounds. 
  = Mean activity value of the training set.  
Other external validation parameters calculated include: 
the Root Mean Square Error in Prediction (RMSEP), 
the modified  ( ),   

  .  
Where, 
  = Squared correlation coefficient of plots between 
observed and predicted activities with intercept set to 
zero and slope equal to . Interchanged of the axes 
gives slope equal to  .  

 = Squared correlation coefficient of plots between 
observed and predicted activities with intercept not set 
to zero (Roy and Roy, 2008; Rudra and Kunal, 2012).   
2.3. Investigation of the mean effect and degree of contribution  
The mean effect (MF) of each descriptor in the model 
was estimated using equation (4). The MF value for a 
given descriptor in a model indicates the relative 
significance and contribution of that descriptor in 
comparison to the other descriptors (Alisi et al., 2019). 

                                                                                                                            
(4) 
Where, 

 = Descriptor  mean effect value. 
 = Coefficient of descriptor . 

  = Descriptors value for each molecule. 
  = Number of descriptors in the model.  
The Degree of Contribution (DC) (standard regression 
coefficient) for each descriptor was also calculated. 
2.4. Applicability domain investigation  

The applicability domain of a given antioxidant model is 
the chemical space where the model can reliably make 
predictions (Netzeva et al., 2005). The leverage 
approach was employed in assessing the applicability 
domain of the model (Gramatica et al., 2007). This was 
accomplished by computing the leverage matrix (H) for 
the dataset  (equation 5). 

                                                                                                   
(5) 
Where, 
  = Training set two-dimensional  descriptor 
matrix. 
 n = number of training set molecules. 
k = number of descriptors in the model.  

 = Transpose of . 
 The leverage of the th molecule, , was also 
calculated (equation 6). 

                                                                              
(6) 
The cut-off leverage, h*, was estimated using equation 
(7) (Gramatica, 2010). 

                                                                                                                                     
(7) 
The ratio of the residual to the Root Mean Square Error 
( ) was employed in estimating the standard 
residual of each molecule.  
3. Results and discussion 
3.1. Results of data set generation, descriptors development and 
pre-treatment  
The data set and their corresponding activities 
(observed, predicted and residual) are presented in 
Table 1. Upon geometry optimization and subsequent 
minimization a total of 1907 descriptors were produced. 
These descriptors fall in the categories of electronic, 
spatial, structural, thermodynamic and topological.  
After data processing the entire descriptors were 
reduced to 1028 descriptors. This procedure eliminated 
highly correlated descriptors which result in poor 
models. The normalized data was also obtained, and 
this ensures that no particular descriptor dominates the 
model due to larger or smaller pre-scaled (Brignole et 
al., 2013). Also, data division resulted in 48 molecular 
compounds in the training set and 12 compounds in the 
test set.  
3.2. Model development and validation 50 
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A total of five models were developed for the chalcone 
antioxidant derivatives from the training set by GFA as 
presented in Table 2. The summary of internal 
validation results for these models is presented in Table 
3. All the five developed models have results that 
exceed the threshold value of 0.5 for 

.   is a modification of  

in which its result is unaffected by increase in the 
number of descriptor terms in the model unlike  , 
except if such an increase improves the robustness of 
the resulting model. (Rudra and Kunal, 2012).  
 

 
Table 1 Chalcone antioxidants data set and their activities. 

Comp No Compounds     Observed Predicted Residual 
  (E)-1-(3-nitrophenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one 4.309 5.366 5.282 0.084 
 (E)-1-(4-chlorophenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one 4.593 5.338 5.332 0.006 
  (E)-1-(4-methoxyphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one 4.394 5.357 5.348 0.009 
 (E)-1-(p-tolyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one 4.325 5.364 5.305 0.059 
 (E)-1-phenyl-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one 4.506 5.346 5.379 -0.033 
  (E)-1-(2,4-dihydroxyphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one 4.368 5.36 5.435 -0.076 
  (E)-1-(4-fluorophenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one 4.710 5.327 5.309 0.018 
 (E)-1-(4-morpholinophenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one 4.269 5.37 5.308 0.062 
  (E)-1-(4-(1H-imidazol-2-yl)phenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one 4.757 5.323 5.408 -0.086 
 (E)-1-(4-chloro-3-nitrophenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one 4.472 5.349 5.276 0.074 
  (E)-1-(4-nitrophenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one 4.754 5.323 5.186 0.137 
 (E)-1-(3-(trifluoromethyl)phenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one 5.153 5.288 5.329 -0.041 
 (E)-1-(5-chloro-2-hydroxyphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one 5.073 5.295 5.36 -0.066 
 (E)-1-(4-hdroxy-3-methoxyphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one 4.310 5.366 5.305 0.06 
  (E)-1-(2,5-dihydroxyphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one 2.653 5.576 5.404 0.172 
 (E)-3-(2,4,5-trimethoxyphenyl)-1-(2,4,6-trimethoxyphenyl)prop-2-en-1-one 5.023 5.299 5.446 -0.147 
 (E)-1-(4-bromophenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one 4.318 5.365 5.397 -0.033 
  (E)-1-(3,5-dibenzylphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en -1-one 5.002 5.301 5.158 0.143 
 (E)-1-(4-hydroxyphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one 4.293 5.367 5.313 0.055 
 (E)-2-(3-(2,4,5-trimethoxyphenyl)acryloyl)-1,4-phenylene diacetate 4.650 5.333 5.427 -0.095 
 7-hydroxy-2-(2,4,5-trimethoxyphenyl)-4H-chromen-4-one 4.808 5.318 5.364 -0.046 
 6-hydroxy-2-(2,4,5-trimethoxyphenyl)-4H-chromen-4-one 4.487 5.348 5.382 -0.034 
 6-chloro-2-(2,4,5-trimethoxyphenyl)-4H-chromen-4-one 4.973 5.303 5.33 -0.027 
 6-chloro-3-hydroxy-2-(2,4,5-trimethoxyphenyl)-4H-chromen-4-one 4.680 5.33 5.37 -0.04 
 3,7-dihydroxy-2-(2,4,5-trimethoxyphenyl)-4H-chromen-4-one 4.496 5.347 5.335 0.012 
 6-hydroxy-2-(2,4,5-trimethoxyphenyl)chromen-4-one 4.566 5.34 5.379 -0.038 
 (E)-3-(2,3-dihydroxyphenyl)-1-phenylprop-2-en-1-one 23.000 4.638 4.685 -0.047 
 (E)-3-(2,3-dihydroxyphenyl)-1-(p-tolyl)prop-2-en-1-one 14.000 4.854 4.644 0.21 
 (E)-3-(2,3-dihydroxyphenyl)-1-(4-methoxyphenyl)prop-2-en-1-one 30.000 4.523 4.677 -0.154 
 (E)-3-(2,3-dihydroxyphenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one 26.000 4.585 4.606 -0.021 
 (E)-1-(4-chlorophenyl)-3-(2,3-dihydroxyphenyl)prop-2-en-1-one 27.000 4.569 4.544 0.024 
 (E)-3-(2,5-dihydroxyphenyl)-1-phenylprop-2-en-1-one 19.000 4.721 4.959 -0.238 
 (E)-3-(2,5-dihydroxyphenyl)-1-(p-tolyl)prop-2-en-1-one 16.000 4.796 4.891 -0.095 
 (E)-3-(2,5-dihydroxyphenyl)-1-(4-methoxyphenyl)prop-2-en-1-one 20.000 4.699 4.909 -0.21 
 (E)-3-(2,5-dihydroxyphenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one 19.000 4.721 4.86 -0.139 
 (E)-1-(4-chlorophenyl)-3-(2,5-dihydroxyphenyl)prop-2-en-1-one 11.000 4.959 4.84 0.119 
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 (E)-3-(3,4-dihydroxyphenyl)-1-phenylprop-2-en-1-one 38.000 4.42 4.505 -0.085 
 (E)-3-(3,4-dihydroxyphenyl)-1-(p-tolyl)prop-2-en-1-one 40.000 4.398 4.475 -0.077 
 (E)-3-(3,4-dihydroxyphenyl)-1-(4-methoxyphenyl)prop-2-en-1-one 39.000 4.409 4.462 -0.053 
 (E)-3-(3,4-dihydroxyphenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one 34.000 4.469 4.387 0.082 
 (E)-1-(4-chlorophenyl)-3-(3,4-dihydroxyphenyl)prop-2-en-1-one 68.000 4.167 4.282 -0.115 
 (E)-1-(3-hydroxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one 6.936 5.159 5.149 0.01 
 (E)-3-(3,5-dimethoxyphenyl)-1-(3-hydroxyphenyl)prop-2-en-1-one 6.349 5.197 5.073 0.124 
 (E)-3-(4-bromophenyl)-1-(3-hydroxyphenyl)prop-2-en-1-one 0.378 6.423 6.508 -0.085 
 (E)-1-(4-bromophenyl)-3-(3-hydroxyphenyl)prop-2-en-1-one 0.040 7.398 7.313 0.085 
 (E)-3-(3-hydroxyphenyl)-1-(4-nitrophenyl)prop-2-en-1-one 20.560 4.687 4.862 -0.175 
 (E)-3-(3-(3,5-dimethoxyphenyl)acryloyl)phenyl palmitate 12.635 4.898 5.07 -0.171 
 (E)-3-(3-(4-bromophenyl)acryloyl)phenyl palmitate 10.830 4.965 5.103 -0.137 
 (E)-3-(3-(4-nitrophenyl)-3-oxoprop-1-en-1-yl)phenyl palmitate 6.165 5.21 5.089 0.121 
 (E)-3-(3-(3,5-dimethoxyphenyl)acryloyl)phenyl stearate 6.325 5.199 5.292 -0.093 
 (E)-3-(3-(4-bromophenyl)acryloyl)phenyl stearate 7.916 5.101 5.066 0.036 
  (E)-3-(3-(4-bromophenyl)-3-oxoprop-1-en-1-yl)phenyl stearate 4.993 5.302 5.296 0.006 
  (E)-3-(3-(4-nitrophenyl)-3-oxoprop-1-en-1-yl)phenyl stearate 6.513 5.186 5.093 0.093 
 2,3-dibromo-3-(3,5-dimethoxyphenyl)-1-(3-hydroxyphenyl)propan-1-one 225.446 3.647 3.721 -0.074 
 2,3-dibromo-3-(4-bromophenyl)-1-(3-hydroxyphenyl)propan-1-one 124.118 3.906 3.881 0.025 
 2,3-dibromo-1-(4-bromophenyl)-3-(3-hydroxyphenyl)propan-1-one 129.148 3.889 3.887 0.002 
 3-(3,5-dimethoxyphenyl)-1-(3-hydroxyphenyl)-2,3-di(piperidin-1-yl)propan-1-one 5.119 5.291 5.004 0.287 
 3-(3,5-dimethoxyphenyl)-1-(3-hydroxyphenyl)-2,3-dimorpholino propan-1-one 9.883 5.005 4.985 0.02 
 3-(4-bromophenyl)-1-(3-hydroxyphenyl)-2,3-di(piperidin-1-yl)propan-1-one 19.349 4.713 4.561 0.152 
 1-(4-bromophenyl)-3-(3-hydroxyphenyl)-2,3-dimorpholinopropan-1-one 14.066 4.852 4.928 -0.076 

*Test Set 
Table 2 Developed models for chalcone antioxidants 

Model No Equation 
1  =   - 3.558 * AATSC8m  - 2.296 * AATSC5v  + 0.511 * MATS8m - 1.804 * GATS5v + 0.450 * 

SpMax6_Bhs  - 0.247 * SHBint3  - 2.361 * SsBr  - 11.183 * maxsssCH  + 12.877 * 
ETA_dAlpha_A   + 0.654 * RDF35u + 7.426 

2  =   - 2.955 * AATSC8m   - 0.464 * AATSC5v  - 0.463 * MATS2c   - 0.611 * GATS4v   - 0.409 * 
SHBint3  - 1.726 * SsBr   - 11.375 * maxsssCH  + 11.622 * ETA_dAlpha_A    + 0.590 * RDF55s   
+ 6.654 

3  =  - 3.471 * AATSC8m - 2.395 * AATSC5v + 0.472 * MATS8m  - 1.972 * GATS5v + 0.361 * 
SpMax7_Bhs  - 0.251 * SHBint3  - 2.349 * SsBr - 10.839 * maxsssCH + 12.504 * ETA_dAlpha_A   
+ 0.704 * RDF35u + 7.574 

4  = - 2.978 * AATSC8m  - 2.341 * AATSC5v + 0.398 * MATS1e  - 1.748 * GATS5v  - 2.224 * SsBr + 
0.398 * minssCH2 - 11.002 *  maxsssCH + 12.439 * ETA_dAlpha_A   + 0.699 * RDF55s + 7.446 

5  = - 3.587 * AATSC8m - 1.994 * AATSC5v + 0.934 * MATS8m - 1.663 * GATS5v - 0.363 * GATS6e  
- 2.040 * SsBr - 0.296 * minHBint3  - 10.097 * maxsssCH  + 11.296 * ETA_dAlpha_A  + 0.617 * 
RDF30v + 7.484 

From table 3, model 1 has the highest  values for   of 0.977, 0.971 and 0.956 
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Table 4 Results of y-randomization for chalcone antioxidants 
Parameters Model 1 Model 2 Model 3 Model 4 Model 5 

 0.989 0.985 0.988 0.984 0.988 
 0.977 0.97 0.977 0.969 0.977 
 0.956 0.939 0.954 0.936 0.956 

Random Model Parameters      
Average        0.428 0.440 0.467 0.433 0.408 

Average        0.204 0.208 0.236 0.200 0.173 
Average       -1.134 -0.501 -0.686 -0.470 -0.591 

 0.881 0.868 0.861 0.871 0.889 
*Model acceptability criteria:   ,    ,    , c  

 
Table 5 Results of external validation for chalcone antioxidants 

 
Validation Parameters Model 1 Model 2 Model 3 Model 4 Model 5 

 0.760 0.729 0.789 0.688 0.710 
 0.753 0.726 0.785 0.688 0.701 

 0.602 0.666 0.681 0.555 0.467 
 0.696 0.691 0.736 0.684 0.643 

 0.458 0.546 0.530 0.437 0.360 
 0.577 0.619 0.633 0.560 0.502 

Delta   0.238 0.145 0.206 0.247 0.283 
 0.009 0.004 0.006 6E-05 0.012 
 0.208 0.086 0.137 0.194 0.341 

 0.986 0.963 0.991 0.977 0.99 
 1.013 1.037 1.008 1.022 1.008 

 0.151 0.060 0.104 0.133 0.234 
rmsep 0.179 0.250 0.160 0.216 0.187 

 0.894 0.792 0.916 0.846 0.883 
*The acceptable threshold values for the given parameters are as follows: 

 ,  ,     , Delta    ,       
 (Golbraikh, and Tropsha, 2002). 
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Table 6 Specification results of the observed descriptors in model 3 
 

Descriptor Description Coefficient Standard 
Error 

P-Value DC MF 
AATSC8m Average centered Broto-Moreau 

autocorrelation – lag 8 / weighted by 
mass 

-3.471 0.223 8.11E-18 -15.560 0.480 

AATSC5v Average centered Broto-Moreau 
autocorrelation – lag 5 / weighted by 

van der Waals volumes 
-2.395 0.294 8.72E-10 -8.155 0.331 

MATS8m Moran autocorrelation – lag 8 / 
weighted by mass 0.472 0.13 0.00084 3.635 -0.065 

GATS5v Geary autocorrelation – lag 5 / weighted 
by van der Waals volumes -1.972 0.286 3.83E-08 -6.902 0.273 

SpMax7_Bhs Largest absolute eigenvalue of Burden 
modified matrix – n 7 / weighted by 

relative I-state 
0.361 0.09 0.000267 4.030 -0.050 

SHBint3 Sum of E-State descriptors of strength 
for potential hydrogen bonds of path 

length 3 
-0.251 0.063 0.00028 -4.014 0.035 

SsBr Sum of atom-type E-State: -Br -2.349 0.213 2.99E-13 -11.030 0.325 
maxsssCH Maximum atom-type E-State: >CH- -10.839 0.405 7.87E-26 -26.790 1.498 

ETA_dAlpha_A A measure of count of non-hydrogen 
heteroatoms 12.504 0.61 8.73E-22 20.486 -1.728 

RDF35u Radial distribution function – 035 / 
unweighted 0.704 0.096 9.82E-09 7.347 -0.097 
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3.2. Model development and validation   
A total of five models were developed for the chalcone 
antioxidant derivatives from the training set by GFA as 
presented in Table 2. The summary of internal validation 
results for these models is presented in Table 3. All the 
five developed models have results that exceed the 
threshold value of 0.5 for .   
is a modification of  in which its result is unaffected 
by increase in the number of descriptor terms in the 
model unlike  , except if such an increase improves 
the robustness of the resulting model. (Rudra and Kunal, 
2012).. Thus in terms of internal model validation results, 
model No 1 should be recognised as the best of the five 
models. Never the less, this should not be accepted as the 
best of the five models until other validation criteria such 
as external validation and y-randomization test results are 
compared. It is worthy to note that the ability of the 
developed model to make good prediction of the test set 
activities depends on the impute parameters employed 
during model development. The y-randomization test 
results for the five developed models are presented in 
Table 4. From this Table, model 1 has the highest    
value of 0.989. This parameter  measures how closely 
the observed data tracks the fitted regression line (Indrani 
et al., 2011). We observe that the five models met all the 
criteria for model acceptability and statistical robustness 
as judged by the highly encouraging results of y-
randomization tests with values of c  well above the 
threshold value of 0.5 after several trials. These 
encouraging results for y-randomization suggest that the 
developed models are robust and were not obtained as a 
mere outcome of chance.  Model 5 with c  value of 
0.890 is recognised as the most robust of the five 
developed models.  The external validation results for the 
developed models are presented in Table 5. External 
validation was employed in order to determine the 
predictive capacity of the developed model as judged by 
its ability to predict the activity values of the test set. 
These developed models passed all the Golbraikh and 
Tropsha criteria for model acceptability.  All the external 
validation results were above threshold values for the 
various parameters as presented in Table 5.   
Model 3 has the highest  value of 0.736. The  
value determines how closely the predicted activity data 
fits the corresponding observed activity range 

(Ravichandran et al., 2011).  Also model 3 has the lowest 
rmsep value of 0.160 and the highest   value of 
0.916.  Since a good model is expected to have a small 
value for rmsep and a high value for      and 
model 3 has the best external validation results in terms 
of these parameters, it is therefore recognised as the best 
of the five developed models. Recall that the choice of 
the best model is based on (i) meeting the requirements 
for internal validation and (ii) possessing the best external 
validation results.   Based on this result, the predicted 
activities for the entire data set as represented in table 1 
are those generated from model 3. Also a plot of the 
predicted activities against the experimental values are 
presented in Figure 1 for the training set, while that of the 
test set is presented in Figure 2. These plots indicate that 
the experimental activities are in very good agreement 
with and predicted activities with residual values having 
little deviations from zero (Table 1). The predicted 
activities of the training set compounds were also 
generated during model development. The training and 
test set predicted activities for the five generated models 
are presented in tables S1 and S2 of the supplementary 
data. Table 1 gives the predicted activities together with 
the residual and standardized residual values generated 
using model 3. 
3.4. Results of applicability domain: A plot of standardized 
residuals against the corresponding leverage values gave 
the Williams plot. The Williams plot was employed in the 
estimation of the applicability domain for the entire data 
set as presented in Figure 3. In the Williams plot, the 
applicability domain was established inside a squared area 
in the range of  bound for residuals and a leverage 
threshold,  value of 0.688. No response outliers were 
detected while six structural outliers (two training and 
four test set compounds) were observed (Fig. 3). 
Predictions for these six molecules are unreliable since 
they are outside the applicability domain of the developed 
model for chalcone antioxidants (Alisi et al., 2018). 
Observe that majority of the data set are found within the 
applicability domain of the developed model. This result 
is a confirmation of the strong predictive ability of this 
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Fig. 1. Plot of predicted  against experimental 
 values of chalcone antioxidants training set. 

 
 

Fig. 2. Plot of predicted  against experimental 

 values of chalcone antioxidants test set. 
model. Response outliers are molecules with standard 
residuals greater than ±2.5 standard deviation units while, 
structural outliers are those molecules with  ≥  
((Sharma and Singh, 2013; Saaidpour, 2016).  
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Fig. 3. Williams plot of standard residuals against 
leverage values for the chalcone antioxidants data set 
3.5. Interpretation and significance of the descriptors in the 
developed QSAR model  
The results for the standard error, P-value and mean 
effect (MF) computations for the various descriptors in 
the developed model are presented in table 6. Also the 
degree of contribution (DC) for each descriptor in the 
developed model was calculated and the results also given 
in table 5. 
AATSC8m (Average centered Broto-Moreau 
autocorrelation – lag 8 / weighted by mass); AATSC5v 
(Average centered Broto-Moreau autocorrelation – lag 5 
/ weighted by van der Waals volumes); MATS8m 
(Moran autocorrelation – lag 8 / weighted by mass) and 
GATS5v (Geary autocorrelation – lag 5 / weighted by 
van der Waals volumes): These are 2D autocorrelation 
descriptors whose functions are applied to molecular 
graphs in order to measure the distribution of atomic 
properties (mass and van der Waals volume) on the 
molecule topology (Consonni and Todeschini, 2010). A 
weighting scheme in terms of a physicochemical property 
(m for mass, v for van der Waals volume) is incorporated 
in each descriptor. Also a number n which indicates the 
number of consecutively connected edges considered in 
the computation of the unit fragment is embedded in the 
nomenclature of the descriptor. From the developed 
QSAR model in this research, the descriptors AATSC8m, 
AATSC5v and GATS5v are negatively correlated with the 

antioxidant activities of the chalcones while MATS8m is 
positively correlated. 
SpMax7_Bhs: (Largest absolute eigenvalue of burden 
modified matrix – n 7 / weighted by relative I-state). This 
is a 2D burden modified eigenvalues descriptor which is 
related to the molecular weight of the antioxidant.  This 
descriptor is positively correlated with the antioxidant 
activities of the chalcone derivatives. This implies that an 
overall increase in the molecular weight of the compound 
improves the antioxidant activity of chalcones. 
SHBint3: (Sum of E-State descriptors of strength for 
potential hydrogen bonds of path length 3); SsBr: (Sum 
of atom-type E-State: -Br) and maxsssCH: Maximum 
atom-type E-State: >CH-. These are 2D 
electrotopological state atom type descriptors whose 
indices are numerical values computed for each atom in a 
molecule and which encode information about both the 
topological environment of that atom and the electronic 
interactions due to all other atoms in the molecule. The 
topological relationship is based on the graph distance to 
each other atom. The electronic aspect is based on an 
intrinsic state plus perturbation due to intrinsic state 
differences between atoms in the molecule. The SHBint3 
descriptor defines the E-state descriptors of potential 
internal H-bond strength that describe the H-bond in the 
antioxidant molecule in spatial distance. It is associated 
with the Formation of 5-membered ring for potential 
internal H bond. The role of the number of H-bonds 
suggested is not an essential structural requirement for 
the improvement of antioxidant activity for the chalcone 
series based on the negative correlation of the SHBint3 
descriptor in the developed QSAR model. The SsBr 
descriptor indicates the sum of the atom level E-state 
values for all the bromine atoms in the molecule. It is 
negatively correlated with antioxidant activities of the 
chalcones. maxsssCH: This descriptor is also negatively 
correlated with antioxidant activities of the chalcone 
series. This negative correlation is supported by negative 
sign of the DC value of -26.793 which is the highest in 
comparison with the other descriptors. This highest value 
for DC in conjunction with the high MF value of 1.498 
are indications of the strength of this descriptor in the 
determination of antioxidant activities of the chalcones.   
ETA_dAlpha_A: This is an extended topochemical atom 
descriptor that signifies a measure of count of non-
hydrogen heteroatoms in the molecule. It has an 
encouraging P-value of 8.73E-22 at the 95% confidence 
level and it is positively correlated with the antioxidant 
activities of the chalcones. In comparison to the other 
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descriptors in the developed model, this descriptor has 
high DC and MF values of 20.486 and -1.728 respectively. 
If we recall that for a given descriptor, the higher the 
value of the MF, the higher the relative significance and 
contribution of that descriptor in the developed model. 
These features depict the magnitude, importance and 
strength of this descriptor in influencing the free radical 
scavenging activities of the chalcones.  
RDF35u (Radial distribution function – 035 / 
unweighted): This is a 3D descriptor based on the radial 
distribution function and signifies the positive correlation 
of the antioxidant radical scavenging activity of the 
chalcones with the 3D molecular distribution of the 
unweighted scheme calculated at a radius of 3.5  from 
the geometrical centers of each molecule. Thus the ability 
of a descriptor in a model to influence the activity of a 
compound is determined by its sign, magnitude, degree of 
contribution and mean effect values.  
Conclusion 
The antioxidant radical scavenging activities of the 
selected chalcones have been successfully investigated by 
the application of QSAR studies at the DFT level of 
theory. Five models were developed and subjected to 
various statistical validation tests. Degree of contribution 
and mean effect values for descriptors in the developed 
model were also computed. All the five developed models 
satisfied the various validation standards for model 
acceptability. Based on the results of the various 
validation tests conducted, model 3 was found to be the 
best of the five models. This model indictates that the 
descriptors which are relevant in the determination of the 
radical scavenging activities of chalcones are the 
autocorrelation, burden modified eigenvalues, 
electrotopological state atom type, topochemical atom 
and radial distribution function descriptors. The highly 
encouraging validation results obtained are indications of 
the good predictive ability and acceptability of the 
developed models. Thus this model can be applied in the 
design of new set of antioxidants employed in combating 
the dangerous effects of free radicals in the human 
system. We also recognise that the ability of a descriptor 
in a model to influence the activity of a compound is 
determined by its sign, magnitude, degree of contribution 
and mean effect values.  
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