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REVIEW review

The replication checkpoint monitors the progress of DNA replica-
tion forks during S phase, and delays the firing of later replication 
origins when active replication forks are stalled due to collisions 
with damaged or abnormally structured DNA.1,2 Key compo-
nents of the replication checkpoint are the apical protein kianse, 
ATR, and its downstream target kinase, Chk1. Activation of the 
ATR-Chk1 pathway is initiated by loading of replication protein 
A (RPA) onto single-stranded DNA (ssDNA) stretches generated 
either through the uncoupling between the active helicase and the 
stalled DNA polymerase or through the 5' to 3' end processing 
of double-stranded breaks (DSBs).3-6 These RPA-bound ssDNA 
attracts ATR and its partner protein ATRIP,7,8 together with a 
replication factor C (RFC)-like complex containing Rad17 that 
localizes specifically at ssDNA-DSB junctions. The Rad17-RFC, 
in turn, promotes loading of the PCNA-like Rad9-Rad1-Hus1 
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A paramount objective of the eukaryotic cell division cycle is to 
overcome numerous internal and external insults to faithfully 
duplicate the genetic information once per every cycle. This 
is carried out by elaborate networks of genome surveillance 
signaling pathways, termed replication checkpoints. Central to 
replication checkpoints are two protein kinases, the upstream 
kinase ATR, and its downstream target kinase, Chk1. When 
the DNA replication process is interrupted, the ATR-Chk1 
pathway transmits signals to delay cell cycle progression, and 
to maintain fork viability so that DNA duplication can resume 
after the initial damage is corrected. Previous studies showed 
that replicative stress not only activated Chk1, but also trig-
gered the ubiquitin-dependent destruction of Chk1 in cultured 
human cells. In a recent study, we identified the F-box protein, 
Fbx6, as the mediator that regulates Chk1 ubiquitination and 
degradation in both normally cycling cells and during replication 
stress. We further showed that expression levels of Chk1 and 
Fbx6 exhibited an overall inverse correlation in both cultured 
cancer cell lines and in breast tumor tissues, and that defects in 
Chk1 degradation, for instance, due to reduced expression of 
Fbx6, rendered tumor cells resistant to anticancer treatment. 
Here we highlight those findings and their implications in the 
replication checkpoint and cellular sensitivity to cancer thera-
pies.
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(9-1-1) complex at the DNA damage site.7,9 Phosphorylation of 
Rad17 and Rad9 by ATR facilitates the recruitment of adaptor 
proteins, including TopBP1 and Claspin, which significantly 
increase the catalytic activity of the ATR kinase to induce phos-
phorylation of the major ATR substrate, Chk1, at Ser-317 and 
Ser-345, leading to checkpoint activation.10-15

Multi-Faceted Regulation of Chk1

CHK1 encodes a serine/threonine protein kinase with a highly 
conserved amino-terminal catalytic domain and a regulatory car-
boxyl-terminus. Loss of CHK1 led to early embryonic lethality in 
mice,11,16 underscoring the importance of this protein kinase in 
the maintenance of cell viability even in the absence of external 
insults. Chk1 responds primarily to replication fork abnormali-
ties via ATR-dependent phosphorylation at two sites, Ser-345 and 
Ser-317,10,11 through which it activates an array of downstream 
events to provoke cell cycle arrest, preserve replication fork viabil-
ity, activate DNA repair mechanisms, and terminate the check-
point to resume cell division cycle.

Recent studies revealed multi-faceted regulatory mechanisms 
of Chk1. First, our results and work of others indicated a spa-
tiotemporal regulation of Chk1 upon DNA damage, in which 
phosphorylation of Chk1 by ATR triggers its release from the 
chromatin-enriched fraction into soluble nuclear, cytoplasmic 
and centrosome compartments,17-19 where it coordinates the acti-
vation of the cell cycle arrest or repair function, as well as being 
degraded to terminate the activated checkpoint. The chroma-
tin-associated Chk1 probably not only monitors the movement 
of replicating forks, but may also regulate other chromosomal 
activities, such as transcriptional regulation.20 Second, evolution 
has overlaid Chk1 phosphorylation of different functions. For 
instance, while phosphorylation at Ser-317 is a prerequisite for 
phosphorylation at Ser-345, Ser-345 phosphorylation plays an 
essential role for mediating the replication checkpoint and cellu-
lar viability.21-23 Third, increasing evidence suggests that the car-
boxyl-terminal regulatory domain of Chk1 is not only required 
for Chk1 activation, but may also function as an auto-inhibition 
region in cells possibly through forming an intra-molecular inter-
action with the catalytic domain.24-28 Forth, a number of studies 
showed that Chk1 undergoes proteasome-dependent degradation 
under both normal and stressful environmental conditions.18,29-33 
Further investigation indicates that this Chk1 degradation 
requires its ubiquitination by the Skp1-Cul1-Fbx6 and/or Cul4A-
DDB1 ubiquitin E3 ligases.18,32,33 These studies propose a model, 
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and cells will enter mitosis with significant amount of damaged 
DNA; ultimately, those cells will be cleared out through suicide 
mechanisms. In fact, this may well represent one of the molecu-
lar killing mechanisms for many anticancer drugs that target the 
replication checkpoint.

This led us to hypothesize that if cancer cells bear defects in 
downregulating Chk1, then they should show resistance to anti-
cancer therapies, because maintaining a constant level of Chk1 
will better protect them from the harsh anticancer treatment. 
Indeed, from the NCI 60 cell line database we found that two cell 
lines (the breast cancer cell line MDA-MB-231 and renal cancer 
cell line TK-10) that elicited extraordinary resistance to CPT did 
not degrade Chk1 upon replicative stress treatment, including 
CPT and IR. Similarly, an earlier study reported that a trinuclear 
platinum complex induced downregulation of Chk1 in the parent 
ovarian carcinoma cell line, but not in a drug resistant sub-clone.39 
Depletion of Chk1 by RNA interference dramatically increased 
MDA-MB-231 cells’ sensitivity to CPT. Interestingly, inhibiting 
Chk1 suppressed the radio-resistance of glioblastoma cancer stem 
cells.45 These data suggest that Chk1 degradation defects may 
represent a relatively general mechanism by which cancer cells 
acquire therapy resistance, and ultimately facilitate the cell sur-
vival of those resistant cancer cells upon anticancer treatment. 
In consistent with this hypothesis, loss of function mutations of 
Chk1 is rarely observed in human cancers.46 Instead, Chk1 has 
been found to be overexpressed in various tumors compared to 
the adjacent normal tissues,40,47-49 and expression of Chk1 pro-
teins positively correlated with the tumor grade and cancer cell 
proliferation of breast tumors.50 These lines of findings suggest 
that Chk1 plays an important role in regulating cellular response 

in which phosphorylation of Chk1 by ATR transits this protein 
kinase from a “closed” inactive conformation to an “open” active 
structure that both promotes Chk1 substrate phosphorylation 
and checkpoint activation, and renders the protein susceptible to 
proteasome-dependent degradation by ubiquitin ligases,32,33 and 
likely to de-phosphorylation by phosphatases as well,34-36 thereby 
limiting the duration of checkpoint signaling. This coupled 
activation-destruction mechanism prevents the accumulation 
of activated Chk1 as cells cope with transient replication stress 
encountered during a normal S phase; thus, it provides a negative 
feedback regulation to turn off the activated replication check-
point and resume the normal cell cycle progression.

Targeted Degradation of Chk1 in Cancer Therapy

Numerous studies revealed that persistent exposure of cancer cell 
lines to a variety of replicative stresses, including deep hypoxia 
(O

2
 <0.1%), ionization radiation, the topoisomerase I inhibi-

tor—CPT, methylmethanesulfonate and aphidicolin, provoked 
a significant downregulation of the Chk1 protein.10,18,29-33,35,37-43 
This downregulation is mainly attributed to the ubiquitination 
and proteasomal-dependent degradation of Chk1 by the Skp1-
Cul1-Fbx6 and/or Cul4A-DDB1 ubiquitin E3 ligases.18,30-33 
CHK1 is an essential gene; even a 50% reduction in the level of 
Chk1 will lead to spontaneous cell death.44 In agreement with 
this, severe degradation of Chk1 by replicative stress treatment is 
counter-productive, presumably because when the level of Chk1 
is reduced below a threshold, cells would not be able to maintain 
the replication forks and hold at S or G

2
 phase in the presence 

of replicative stress. As a result, the replication fork will collapse 

Figure 1. Inverse correlation between Chk1 and Fbx6 in breast tumors. A panel of 16 breast tumor tissues were analyzed for expression of Fbx6 and 
Chk1 by quantitative immunostaining using the AQUATM technology that allows reproducible measurements of proteins of interest in both the cyto-
plasmic and nuclear compartments of cells in fixed tissues. These tumor samples had not been categorized for cancer sub-type or stage at the time of 
excision. Expression of Fbx6 and Chk1 was plotted. The linear regression is well fitted, with an R-square of 0.351. The trend line is the result of linear 
regression between Fbx6 and Chk1 AQUA scores with a Pearson correlation coefficient of R = -0.59 (p = 0.016). Rank order correlation analysis of 
the data indicates a Spearman rho = -0.556 (p = 0.025). Two tumor staining representing high Chk1/low Fbx6 and low Chk1/high Fbx6 were shown on 
the left and right, respectively. DAPI and pan-cytokeratin were used to stain the nucleus and cytoplasm, respectively.
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dataset, while suggestive, is not definitive, and that a much 
larger cohort of breast tumors, as well as other tumor types, will 
need to be evaluated before the true significance and scope of 
the Fbx6-Chk1 relationship is fully understood. However, we 
feel strongly that these preliminary results in the breast cancer 
tissue and cultured cell lines do suggest that a broader exami-
nation of human tumors (particularly the anticancer-resistant 
subset) is warranted, and believe that the current findings 
will provide the impetus to undertake a full investigation of 
the Fbx6-Chk1 relationship in tumor tissues with associated 
patient outcome data.

In addition to the reduced expression, deregulated function 
of Fbx6, for instance, abnormal localization or mutation that 
impairs its E3 ligase activity or interaction with Chk1, might 
also contribute to Chk1 degradation defects. This could help to 
explain why different level of Chk1 degradation was observed 
among various studies, and why some cell lines have difficulty 
in degrading Chk1 even they express Fbx6 well, for instance, 
HeLa cell. More work is needed to understand the mechanisms 
whereby certain tumors acquire a loss of Fbx6 function or bear 
Fbx6-Chk1 mutations. Together, these studies suggest a model of 
Darwinian micro-evolution in the tumor tissue, in which cells that 
acquire phenotypic alterations conferring a survival advantage, 

to anticancer treatment, and its expression in primary tumors 
might serve as a predictive biomarker of tumor responsiveness to 
these important anticancer drugs.

In order to understand the molecular mechanisms underly-
ing the Chk1 degradation defect, we examined the expression 
level of Fbx6, the ubiquitin E3 ligase that regulates Chk1 protein 
stability, in both sensitive and resistant cancer cells. Remarkably, 
we found that the two CPT resistant lines (MDA-MB-231 and 
TK-10) displayed very low expression of Fbx6 compared to the 
sensitive cell line, A549; accordingly, the expression level of Chk1 
was higher in these two resistant lines than in the sensitive line. 
To determine whether the relationship between Fbx6 and Chk1 
expression levels extend beyond these three lines, we surveyed 
expression of Chk1 and Fbx6 in non-small cell lung carcinoma, 
glioblatoma and breast cancer cells. Indeed, we find that the 
majority of cell lines showed an inverse correlation between Chk1 
and Fbx6, i.e., cells with high Fbx6 expression tend to express 
relatively low Chk1, and vice versa.

To further confirm this Fbx6-Chk1 correlation, we analyzed 
the expression of Fbx6 and Chk1 protein in chemotherapy-naïve 
human breast tumors. The results showed a significant inverse 
correlation between Chk1 and Fbx6 in a panel of 16 breast 
tumor tissues (Fig. 1). We recognize that the current tumor 

Figure 2. Roles of the Fbx6-Chk1 axis in cellular sensitivity to anticancer therapy. During a transient treatment or a physiological interruption to 
the replication movement, the level of Chk1 will maintain constant due to the balance between transcription and degradation. In this situation, this 
coupled activation-degradation mechanism keeps cell viable. In contrast, during prolonged treatment, continuous phosphorylation of Chk1 will  
eventually lead to significant reduction in the level of Chk1, causing loss of cell viability. However, when cancer cells acquire Chk1 degradation defects, 
for instance, due to reduced expression of Fbx6, the protein level of Chk1 will be kept constant or increased, and cells will survive after treatment, 
which translates into therapy resistance in the clinical setting.
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