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The estimation of accuracy and applicability of QSAR and QSPR models for biological and physicochemical
properties represents a critical problem. The developed parameter of “distance to model” (DM) is defined as a
metric of similarity between the training and test set compounds that have been subjected to QSAR/QSPR modeling.
In our previous work, we demonstrated the utility and optimal performance of DM metrics that have been based
on the standard deviation within an ensemble of QSAR models. The current study applies such analysis to 30
QSAR models for the Ames mutagenicity data set that were previously reported within the 2009 QSAR challenge.
We demonstrate that the DMs based on an ensemble (consensus) model provide systematically better performance
than other DMs. The presented approach identifies 30-60% of compounds having an accuracy of prediction
similar to the interlaboratory accuracy of the Ames test, which is estimated to be 90%. Thus, the in silico predictions
can be used to halve the cost of experimental measurements by providing a similar prediction accuracy. The
developed model has been made publicly available at http://ochem.eu/models/1.

INTRODUCTION

Any QSAR/QSPR prediction of biological and/or physi-
cochemical properties has limited value without an estimated

applicability domain of a model. Researchers cannot make
much use of a prediction for a particular compound if there
is no information available on whether this prediction is
reliable or not, in other words, whether the given model is
applicable. Currently, this problem is being addressed by
ongoing studies of applicability domain (AD) assessment.

The conventional methods for estimating model perfor-
mance are the root-mean-square error (RMSE) and the
Pearson correlation coefficient (R2) of cross-validation. These
measures are easily computable and interpretable. However,
in general, some groups of chemical compounds can be
predicted well, whereas others allow only low prediction
accuracy. Thus, depending on the data composition, one can
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observe significant differences in the estimated and observed
statistical parameters.

In particular, when assessing QSAR model performance,
one should not only ensure that the predicted accuracies for
the training and testing sets are comparable and high but
also that the distribution of descriptors’ values is uniform
within the sets. Under this assumption, the statistical
parameters for the new data should indeed be similar to the
estimated average values. However, average values can
provide biased results if external data distributed differently
compared to the modeling set.

Moreover, the number of experimentally available obser-
vation points is usually in the range of hundreds (complex
biological properties, such as ADMETox data) to hundreds
of thousands of measurements (physicochemical properties
or HTS data). These numbers are dramatically smaller than
the number of compounds for which estimation of properties
is needed, e.g. 2 × 107 commercially available molecules
or 1020 to 1024 synthetically accessible molecules1 or even
1080 to 10100 theoretically existing chemical structures. Thus,
the scenario when QSAR/QSPR predictive models are
intended for chemical structures that are different from the
training/testing set molecules is a rule rather than an
exception.

Thus, the goal of the AD approaches is to estimate the
prediction accuracy for each modeled compound individually.
Using this information, one can estimate the accuracy of
prediction for an arbitrary data set regardless of its similarity
to the set used to validate the model.

QSAR studies can assess the accuracy of predictions in
different ways. The simple ones try to distinguish reliable
vs. nonreliable predictions. They usually assume that the
accuracy of prediction of molecules, which are inside a space
of descriptors covered by the training set, is similar to the
estimated accuracy of the model. These methods include:

• Descriptor boxes: consider compounds with descriptors,
lying in predefined parallelepipeds in multidimensional
descriptor space, as being inside of the applicability domain
of the model.2–4

• Leverage-based: all compounds, whose leverage (known
as the Mahalanobis distance) with the training set exceeds
some predefined limit, are considered to be outside the
applicability domain.5,6

Approaches that are more sophisticated directly assess the
accuracy prediction of each compound, instead of “inside
AD/outside AD” information:

• approaches that evaluate the probability distribution of
predictions rather than giving point estimates3,7

• empirical approaches based on the “distance to model”
concept.

The latter approaches are most commonly used in QSAR
modeling8 and represent the subject of the current study. The
“distance to a model” (DM) stands for a numerical measure,
which monotonically increases as the accuracy of the model
decreases.8 The AD can be defined on the basis of DM;
namely, all compounds that have DM values less than a
predefined threshold are considered to be inside the AD. The
threshold for the DM is chosen to ensure necessary prediction
accuracy for compounds within the AD. For predefined
prediction accuracy, DMs covering large numbers of mol-
ecules are preferred. Leverage, mentioned before, can be used
as a distance to the model. In our analysis, we did not fix a

“warning leverage” threshold but, rather, investigated the
prediction accuracy for all leverage values.

The accuracy of a model can be specified in terms of
RMSE, MAE, classification rate, etc. among others. It is
worthwhile to distinguish DMs, based solely on descriptor
values, from those that use models’ predictions, so-called
DMs in the property space. To some extent, this terminology
may be confusing, since both types of measures solely rely
on the structural information. The DMs in the property space
can be, of course, applied to new molecules for which
experimental values are not known. Both these measures
explore disagreements between models developed with
different subsets of the initial training data set. To some
extent, the DMs in the property space use descriptors that
are normalized according to the target property, while the
descriptor space DMs ignore this information (e.g., all
descriptors are normalized and contribute equally in the
LEVERAGE measure). Thus, if some descriptors are more
relevant for a given property, they will have higher impact
on the DMs in the property space and Vice Versa. As it has
been shown,2 the DMs in the property space yield higher
quality AD assessments compared to the DMs in the
descriptor space. We confirmed this observation in our
previous study8 and demonstrated that DMs based on the
standard deviation of predictions of the model ensemble
outperformed descriptor-based DMs such as leverage.

This and several other studies were used for the analysis
of classification models which differ from regression-based
modeling by the discrete nature of the target (output) labels,
which are commonly selected as “-1” (inactive) and “+1”
(active; sometimes “0” and “1” are used instead). Interest-
ingly, most machine learning methods, such as neural
networks, KNN, or linear regressions, yield continuous
predictions. These quantitative values are frequently used
to assess classification accuracy, with values close to “-1”
and “+1” considered as more reliable predictions than those
that are near 0.9,10 For example, Manallack et al.9 showed
that the classification accuracy of molecules on soluble and
insoluble compounds dramatically increased when only
molecules with values close to “-1” and “+1” were
considered.

In our previous study we introduced a new DM, STD-
PROB, which combined measures used by Manallack et al.9

with the standard deviation of predictions. The latter measure
was the best DM criterion for quantitative models.8

In the current study, we extend our benchmarking analysis
to 30 classification models developed within the 2009 Ames
mutagenicity challenge.11

METHODS

Data Sets. The Data Set of the Ames Test Measurements.
The Ames mutagenicity data set12 described in our previous
article11 was used in the current benchmarking study. The
Ames test relies on the determination of the mutagenic effect
of a given compound on histidine-dependent strains of
Salmonella typhimurium. Thus, the measurable mutagenic
ability of a compound may signal its potential carcinogenic-
ity.13 The Ames test can be used with different bacteria
strains and can be performed with or without metabolic
activation using liver cells. For this study, all such diverse
data were pooled together as described in ref 12. According
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to that approach, a molecule can be considered as active if
it demonstrates mutagenic activity for at least one strain.
Thus, considering that the benchmark set molecules were
tested with different strains, there may be a significant
variance in results. Moreover, different authors used different
thresholds to decide whether a given molecule is active or
not. As shown in the Results and Discussion section, we
estimated the intra- and interlaboratory accuracies of mea-
surements in the Ames mutagenicity data set to be 94% and
90%, respectively.

The initial data set was randomly divided into training and
external test sets. The training set contained 4361 compounds,
including 2344 (54%) mutagens and 2017 (46%) nonmu-
tagens. The external test set contained 2181 compounds (1/3
of initial set) including 1172 (54%) mutagens and 1009
(46%) nonmutagens. These data sets were used for the 2009
Ames mutagenicity challenge, where the external test set was
given to the participants for “blind predictions”.11

The Data Sets of Chemical Compounds. To investigate
the performance of the QSAR models on the Ames test, we
have estimated the prediction accuracy for three external data
sets: ENAMINE, EINECS, and HPV. The ENAMINE data
set contains over 287 000 drug-like chemicals synthesized
in 2009 by the Enamine company (http://www.enamine.net).
The HPV (high production volume) data set contains
chemicals produced or imported into the United States in
quantities over 1 million pounds per year. After filtering out
composite substances, stereoisomers, and metals from the
HPV data set, 2356 compounds were used for analysis. The
EINECS (European Chemical Substances Information Sys-
tem) data set was downloaded from http://ecb.jrc.it/qsar/
information-sources and contained 68 779 compounds.

Analyzed Models. Twelve international teams submitted
29 models to the 2009 Ames mutagenicity challenge (the
models are summarized in Table 1). All of the models were
evaluated according to a 5-fold cross-validation procedure
as described in the work by Tetko et al.8 Additionally, each
group developed their models using the whole training set,
and these models were “blindly” applied to predict test
compounds. The resulting consensus model (CONS) was
calculated by averaging the predictions of all 29 individual
models. The complete information on descriptors, methods,
and specific details about each approach can be found
elsewhere,11 while below we will briefly describe the utilized
methodologies.

UniVersity of Insubria (UI). Linear discriminant analysis
(LDA) was used to develop the UI_Drag_LDA model. The
LDA calculates a hyperplane, which subdivides the n-
dimensional descriptor space into two regions corresponding
to analyzed classes of compounds. The model was based on
454 Dragon descriptors, which were selected from a total
pool of 2032 descriptors after removing constant and highly
correlated (r > 0.9) descriptors.

Technical UniVersity of Berlin (TUB). The Random Forest
model (TUB_3DDrag_RF) was a collection of 50 decision
trees where each tree depended on a set of randomly selected
descriptors.14 In comparison to the original work of
Breimann,14 all samples were used to build trees (no
bagging). The TUB_3DDrag_SVM model was developed
using the libsvm15 implementation with the radial basis
kernel. Both of the models were based on 957 3D Dragon
descriptors, which were reduced to 872 by removing the
descriptors with constant and missing values.

Table 1. Summary of the Analyzed QSAR Modelsa

model name descriptors used training method numeric predictions DM provided

CONS +
EPA_2D_FDA 2D +
EPA_2D_NN 2D NN +
LNU_Drag_PLS Dragon PLS +
MSU_FRAG_LR Fragments Linear regression +
MSU_FRAG_SVM Fragments SVM + SVM1 AD
OCHEM_ESTATE_ANN E-State indices ASNN +
PCI_Drag_RF Dragon Random forest +
PCI_SiRMS.Drag_RF SiRMS+Dragon Random forest +
PCI_SiRMS_RF SiRMS Random forest +
TUB_3DDrag_RF Dragon Random forest DA Index
TUB_3DDrag_SVM Dragon SVM DA Index
UBC_ID_IWNN Inductive descriptors IWNN
UBC_ID_NN Inductive descriptors NN
UI_Drag_KNN Dragon KNN
UI_Drag_LDA Dragon LDA
ULP_ISIDA_NB ISIDA Fragments Naı̈ve Bayes + Trust level
ULP_ISIDA_SQS ISIDA Fragments Stochastic QSAR sampler + Trust level
ULP_ISIDA_SVM ISIDA Fragments SVM + Trust level
ULP_ISIDA_VP ISIDA Fragments Voted Perceptron + Trust level
ULZ_3DDrag_KNN Dragon KNN
ULZ_3DDrag_SVM Dragon SVM
UMB_Drag_DT Dragon Decision Tree
UNC_Drag_KNN Dragon KNN
UNC_Drag_RF Dragon Random forest +
UNC_Drag_SVM Dragon SVM + AD Mean
UNC_SiRMS.Drag_RF SiRMS+Dragon Random Forest +
UNC_SiRMS.Drag_SVM SiRMS+Dragon SVM + AD Mean
UNC_SiRMS_RF SiRMS Random forest +
UNC_SiRMS_SVM SiRMS SVM + AD Mean

a There were 30 models including the consensus model. The continuous numeric prediction values were available for 20 models.
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Lanzhou UniVersity (LZU). All of the molecules were
converted to 3D structures and optimized using MM+
molecular mechanics with semiempirical PM3 partial charges
implemented in the HyperChem program (HyperChem for
WindowssMolecular Modeling System, Hypercube, Inc.,
Gainesville, Florida). The Dragon software16 was used to
calculate 1664 molecular descriptors for each molecule. After
deleting the descriptors with constant or highly correlated
(r > 0.95) values, 716 descriptors remained. Support vector
machine-recursive feature elimination (LZU_3DDrag_SVM
model)17 was employed to select calculated descriptors and
perform classification of the new molecules as described
elsewhere.11 Another model was calculated using the k
nearest neighbors method (LZU_3DDrag_KNN).

Linnæus UniVersity (LNU). Partial least-squares discrimi-
nant analysis (PLS-DA) was used, which is an extension of
PLS regression for classification.18,19 The initial set of
descriptors contained 929 2D Dragon descriptors. After
removal of 103 constant variables, 826 remained. Nonsig-
nificant descriptors were further removed using a jack-knife
method for significance testing of the PLS procedure.20

Finally, 82 descriptors were used to develop the LNU_
Drag_PLS model.

Helmholtz Zentrum Muenchen, Online CHEmical Model-
ing EnVironment (OCHEM). The associative neural network
method21,22 was applied using an ensemble of 50 neural
networks. Each neural network had three hidden neurons.
Both atom- and bond-type 2D E-state indices23 (362 descrip-
tors) were used for the structure representation. The filtering
of highly correlated r > 0.95 indices and singletons (found
only in a single molecule) left 233 descriptors, which were
used to develop the OCHEM_ESTATE_ANN model.

UniVersity of British Columbia (UBC). “Inductive” de-
scriptor IND_I24–26 and MOE QSAR parameters (http://
www.chemcomp.com) were used to quantify the structures
of the studied compounds. The in house SVL scripts were
used to calculate IND_I descriptors from 3D structures of
molecules optimized with the MOE MMFF molecular force
field. All correlated descriptors (r > 0.9) were eliminated,
and the most relevant QSAR descriptors (15 and 3 descriptors
for the IWNN model and NN models, respectively) were
selected according to the Information Gain criteria27 using
Weka software (v. 3.5.8).28 The weighted nearest neighbor
(UBC_ID_NN) and iterative weighted nearest neighbor
(UBC_ID_IWNN) models were created as described else-
where.11

Laboratory of Chemoinformatics, Institute of Chemistry,
Louis Pasteur UniVersity, Strasbourg, France (ULP). Two
classes of substructural molecular fragments, “sequences”
(I) and “augmented atoms” (II), were used.29 The ULP_
ISIDA_NB model was developed using naive Bayesian
approach. The ISIDA/VotedPerceptron ULP_ISIDA_VP
model implemented a simple perceptron algorithm re-
expressed in terms of the Tanimoto kernel. For nonlinearly
separable cases, all perceptrons were combined in a voting
pool. The weighted vote was done according to the accuracy
of perceptrons for the training set. The ULP_ISIDA_SVM
model used libSVM with the Tanimoto similarity coefficient
as a kernel. ULP_ISIDA_SQS was created using the
stochastic QSAR sampler (SQS) algorithm, which is a
genetic algorithm-driven regression tool supporting nonlinear
descriptor transformations.30

Moscow State UniVersity (MSU). The ν-modification
support vector machines method31 and regularized logistic
regression implemented in the package LIBLINEAR32 were
used to develop the MSU_FRAG_SVM and MSU_FRAG_
LR models, respectively. Optimal values of algorithm
parameters were found using the grid search and the cross-
validation procedure. Both of the models used the same set
of 19 603 fragmental descriptors33,34 with the size of each
fragment up to five non-hydrogen atoms, which were
computed using the NASAWIN software.34 No descriptor
selection procedures have been applied.

Physico-Chemical Institute of NAS of Ukraine (PCI). The
Simplex representation of molecular structure (SiRMS)35 was
used to calculate 21 378 2D Simplex descriptors (number
of tetra-atomic fragments with fixed composition and topo-
logical structure).35,36 In addition, 2D Dragon descriptors
(943) were used separately and in combination with Simplex
descriptors. The Random Forest (RF)14 method was em-
ployed for obtaining models.37 The final models have been
selected by the highest out-of-bag statistic values. The PCI
group contributed three models, based on SiRMS descriptors
(PCI_SiRMS_RF), 2D Dragon descriptors (PCI_Drag_RF),
and a combination of both (PCI_SiRMS.Drag_RF).

UniVersity MilanosBicocca (UMB). A total of 2489
molecular descriptors16 were calculated using the Dragon
software.38 Constant and nearly constant descriptors were
removed, leading to a final number of 1601 retained
descriptors. The CART (Classification and Regression Trees)
algorithm, a binary tree classification method,39 was used
to develop the decision trees UMB_Drag_DT model. The
final classification tree included 29 descriptors.

UniVersity of North Carolina (UNC). The WinSVM
program implementing the open-source libSVM package40

was employed to build and select mutagenicity models. An
ensemble of 467 Dragon descriptors calculated for two-
dimensional hydrogen-depleted structures, 609 two-dimen-
sional SiRMS descriptors, and a combined set of Dragon/
SiRMS descriptors were used as inputs to build the
UNC_DRAG_SVM, UNC_SiRMS_SVM, and UNC_SiRMS.
DRAG_SVM models respectively.

United States EnVironmental Protection Agency (EPA).
A total of 790 2D descriptors41 were used. The EPA_2D_FDA
model (FDA, Food Drug Administration) was built according
to a methodology developed by Contrera et al.42 For each
test chemical, 30-75 of the most similar chemicals from
the training set in terms of the cosine similarity coefficient
were selected. Then, a local linear regression model was built
to predict the test compound. In the EPA_2D_NN model,
the three closest chemicals in the training set in terms of the
cosine similarity coefficient were selected for the test
compound. The predicted mutagenicity was simply the class,
which dominated for the three chemicals.

Additional details of models and a detailed description of
models and results can be found elsewhere.11

Preprocessing of Results. Some models provided predic-
tion as {0,1} while other models provided it as {-1,+1}
for mutagenic and nonmutagenic compounds, respectively.
In order to be consistent, we converted all predictions to the
{-1,+1} values. After this processing, for some models, i.e.,
neural networks or SVM, there were predictions outside of
the [-1,+1] interval. We did not normalize or round these
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values to [-1,+1]; instead, we used the original values for
the calculation of DM as described below.

Numeric prediction values were available only for 20
models (including the consensus model). As some of the
investigated DMs require numeric prediction values, only
these 20 QSAR models were used in the current study.
Several DMs that could be used only with qualitative
predictions were applied to all 30 models.

Distance to Model and Applicability Domain. Let us
designate any numeric measure calculated solely on the basis
of chemical structures or prediction values and which
increases with a decrease in the reliability of classification
as “distance to model” (DM). Then, on the basis of a model
performance, we can identify a threshold for the DM that
provides a predefined accuracy of classification. All data set
entries with DM values below the threshold form a model’s
“applicability domain” (AD). Criteria for the performance
of distances to the model are suggested in the section below.

Most DMs investigated in this article are developed on
the basis of those used previously for regression problems2,8,43

and were introduced in our preliminary study.
Let us introduce notation to represent predictive modeling

entities: J, a compound to be predicted; y(J), a continuous
prediction value, calculated by the model; c(J), the predicted
class for the given compound J, identified by:

We will designate DM for a compound J as d(J).
CLASS-LAG. For the binary classification problem, labels

for the predictive model are discrete and are selected in our
study as -1 and +1. However, most machine learning
methods give a quantitative number as a result of prediction.
The absolute value of the difference between the prediction
value and the nearest of the labels can be used as a measure

of prediction uncertainty. This measure, referred to as
CLASS-LAG, is calculated according to

CLASS-LAG can be interpreted as the amount of rounding
to the nearest class label; the more rounding that is required,
the less reliable the prediction is expected to be. Thus, the
measure punishes deviations from target class values {-1,+1},
both positive and negative deviations (i.e., both 1.2 and 0.8
predicted values have the same DM). Obviously, punishing
negative deviations applies only to models that have predic-
tion values outside of the [-1,+1] interval; there were only
three models with such predictions: EPA_2D_FDA, LNU_
Drag_PLS and OCHEM_ESTATE_ANN.

Figure 1A illustrates the simplicity of this idea: green dots,
which are closer to the edge of the class, are predicted to
have better prediction accuracy than red dots, located in the
“uncertainty area” between the classes, near a value of 0. In
this figure, triangles are positive (mutagens) and circles are
negative (nonmutagens) predictions. The classes are more
mixed together near zero line. The continuous values of
predictions may not always be available: some machine
learning methods provide only discrete {-1,+1} outputs.
In this case, CLASS-LAG is always equal to zero and
obviously cannot be used. This DM is the most obvious one,
and it was used, e.g., by Mannalack et al.9

STD. The standard deviation of the predictions, obtained
from an ensemble of models, can be used as an estimator of
model uncertainty for a given compound. The general idea
is that if different models yield significantly different
predictions for a particular compound, then the prediction
for this compound is more likely to be unreliable. The sample
standard deviation can be used as an estimator of model
uncertainty.

Figure 1. Test set predictions of the OCHEM_ESTATE_ANN model. Three DMs (CLASS-LAG, CONS-STD, and PROB-CONS-STD)
are encoded by color. Green represents low values of the corresponding DM; red represents high values. Triangles are mutagens, and
circles are nonmutagens according to the Ames mutagenicity test. Values outside the [-1,+1] interval appear due to a specific normalization
for neural network training (value -1 corresponded to 0.1, and +1 corresponded to 0.9).

c(J) ) { 1, y(J) > 0
-1, y(J) e 0 } (1)

dCLASS-LAG(J) ) min{|-1 - y(J)|, |1 - y(J)|} (2)

2098 J. Chem. Inf. Model., Vol. 50, No. 12, 2010 SUSHKO ET AL.
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Let us assume that Y(J) ) {yi(J), i ) 1-N} is a set of
predictions for a compound J given by a set of N trained
models. The corresponding distance to model (STD) is
calculated by

This DM has been proven to provide excellent results for
the discrimination of highly accurate predictions in the case
of regression models.2,8,9 In the given study, we investigate
two variations of the STD measure that differ in the contents
of the used models: (i) ASNN-STD, based on predictions of
a neural network ensemble of OCHEM_ESTATE_ANN, and
(ii) CONS-STD, based on predictions of several models that
were built using different machine learning methods and
different parameters (and including OCHEM_ESTATE_
ANN as one of the models).2 Although it is possible to
calculate STD for virtually any model, i.e., by replicating
multiple models of the same method using the bagging
technique44 and computing the standard deviation of predic-
tions, in this study, STD values were available only for
OCHEM_ESTATE_ANN.

In our study, we used two variations of this measure:
CONS-STD uses quantitative values of predictions to
calculate standard deviation, and CONS-STD-QUAL uses
qualitative (discretized) values. The rationale for using
CONS-STD-QUAL lies in the unavailability of quantitative
values for some machine learning methods.

Applicability of the standard deviation to classification
tasks follows from the property of the Bernoulli-distribution,
which is used for characterizing the distribution of random
binary values. The standard deviation of the Bernoulli
distribution rises as the probability for each class approaches
0.5, which corresponds to the most uncertain prediction.
Hence, both the normal (used in regression tasks) and
Bernoulli distributions (used in classification tasks) follow
the same lawsthe prediction uncertainty rises as the standard
deviation rises.

In Figure 1B, built on the basis of the OCHEM_ESTATE_
ANN model, the green dots denote the highest level of
agreement between 20 individual models, used for CONS-
STD. These points correspond to low values of standard
deviation. The red points, on the contrary, show that the
individual models yielded quite a wide range of predictions;
so the standard deviation for these points is relatively high.
In this figure, we observe that red and green points are mixed,
which means the STD measure does not depend on the value
of prediction and can provide information that is comple-
mentary to CLASS-LAG.

STD-PROB. This DM, suggested in a recent study,45

combines the two previously mentioned measures into a
single value to improve the estimation of prediction accuracy.
Having obtained a prediction p(x) for a given compound,
we replace this point prediction with a distribution of
probabilities. In other words, instead of giving a point
prediction, we provide a probabilistic one. We assume the
mentioned distribution is Gaussian with a mean p(x) and
standard deviation that correspond to its STD value. The
suggested distance to model is

namely,

where N(x,y(J),dSTD(J)) is the normal distribution density
function with mean y(J) and standard deviation dSTD(J). Here,
y(J) is an actual prediction of the analyzed model for a
compound J and dSTD(J) is an STD-based distance to model
(ASNN-STD or CONS-STD), calculated according to eq 3.

This measure can be graphically illustrated as the square
of the area under the curve of the normal distribution density
function.

Four examples are given in Figure 2, where the rounded
prediction value is always fixed to “+1”; however, the
quantitative prediction values and STD values are different.
It is obvious that shifting the curve away from the center
(decreasing CLASS-LAG) results in a decrease of the filled
area. The same effect appears when we make the curve less
flat, i.e., decrease the STD value. Thus, STD-PROB com-
bines information about uncertainty from both measures:
CLASS-LAG and STD.

STD-PROB has an easy interpretation: values close to 0.5
indicate an equal probability of finding the given compound
in either class; i.e., the model cannot provide reliable
prediction. On the contrary, values close to 0 indicate a high
probability of finding the compound in one of the classes.

We analyze two variations of STD-PROB, ASNN-STD-
PROB and CONS-STD-PROB, which correspond to the
ASNN-STD and CONS-STD measures, respectively.

Similarly to the depiction of previously introduced mea-
sures, green dots in Figure 1C denote compounds whose
CONS-STD-PROB value, i.e., minimal area under the
probability density chart on the intervals (-∞; 0] and
[0; +∞), is relatively high. The square of this area is
computed using eq 4.

Importantly, the STD-PROB measure is an empirical one.
This approach proved to work successfully in our previous
study using ensembles of neural networks,45 and it is applied
here to analyze the results produced by other machine
learning methods.

CONCORDANCE. This measure shows whether a predic-
tion of an individual model is concordant with predictions
of other models within the ensemble. More accurately,
CONCORDANCE is the number of models that give the
same prediction that the current model does:

where y(J) and yi(J) are predictions of compound J, given
by the target model and the members of the ensemble, N is
the size of the ensemble, and eq is equality indicator (equal
to 1 if the arguments are equal and to 0 otherwise).

CORREL. This measure is based on the correlation of
vectors of the ensemble’s predictions for the target compound
and compounds from the training set. More precisely, the

dASNN-STD(J) ) stdev(Y(J)) ) � ∑ (yi(J) - yj)2

N - 1
(3)

dSTD-PROB(J) ) min{probability(c > 0|N(y(J), dSTD(J)))
probability(c < 0|N(y(J), dSTD(J)))

(4)

dSTD-PROB(J) ) min
∫0

+∞
N(x, y(J), dSTD(J)) dx

∫-∞

0
N(x, y(J), dSTD(J)) dx

(5)

CONCORDANCE(J) ) ∑
i)1

N

eq(y(J), yi(J)) (6)
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CORREL measure for the target compound J is calculated
according to the following expression:

where yb(Ti) and yb(J) are vectors of the ensemble’s predictions
for the training set compound Ti and the target compound J,
and corr designates the Spearman rank correlation coefficient
between the two vectors, and M is the number of compounds
in the training set. The low value of CORREL (i.e., high
Spearman correlation coefficient) indicates that for target
compound J there is a compound Tk from the training set
for which predictions of the ensemble of models are strongly
correlated. Indeed, if a compound Tk has the same descriptors
as J, then the predictions of the models will be identical for
both molecules, and thus CORREL(J) ) 0. The performance
of this measure for regression models is discussed elsewhere.8,46

LEVERAGE. Leverage is a descriptor-based DM; i.e., it
is based only on model input but not on output, in contrast
to CLASS-LAG, STD, and STD-PROB. LEVERAGE is a
special case of Mahalanobis distance, calculated according
to expression 8:

where x is a vector of descriptors for compound J and X is
the matrix of descriptors for the training set. The LEVERAGE
values were available only for the OCHEM_ESTATE_
ANN model and were based on E-State indices.

DA-Index. The applicability domain employed by the TUB
group is based on the κ, γ, and δ indices introduced by
Harmeling et al.47 The first two indices are heuristics that
have been previously used in the chemoinformatics com-
munity: κ is the distance (here in this section and below,
Euclidian distance calculated using descriptors is assumed)
to the k-nearest neighbor, and γ is the mean distance to the

k nearest neighbors. The last index, δ, corresponds to the
length of the mean vector (i.e., a mean of vectors) to the k
nearest neighbors. Since κ and γ are only based on distances,
they do not explicitly indicate whether interpolation or
extrapolation is expected for prediction. δ allows making
this distinction and indicates the degree of extrapolation.
Input descriptors for all indexes were weighted following
the development of the Gaussian process classification
model.48 The arithmetic mean values of γ and δ indices were
used to estimate prediction confidence. A threshold value
determined using the training set was used to decide whether
a test compound was inside or outside the AD. The output
of this decision process was called DA-Index.

AD_MEAN. AD_MEAN values were provided by the
UNC group for SVM models that were developed using three
sets of descriptors (SiRMS, Dragon, and combined).
AD_MEAN corresponds to the average Euclidean distances
between a compound and its three nearest neighbors in the
training set. All distances are calculated using the entire pool
of descriptors. AD_MEAN was available for two models,
UNC_SiRMS_SVM and UNC_Drag_RF; therefore, we
investigated two respective measures, AD_MEAN1 and
AD_MEAN2.

ELLIPS. ELLIPS values were calculated using the
EPA_2D_FDA model. A prediction is within the applicability
domain of the model if the test chemical is within the
multidimensional ellipsoid defined by the ranges of descriptor
values for the chemicals in the cluster (for the descriptors
appearing in the cluster model). The model ellipsoid con-
straint is satisfied if the leverage of the test compound (h00)
is less than the maximum leverage value (hmax) for all of the
compounds used in the model.49 The ratio h00/hmax was used
as a distance to the model, referred to as ELLIPS.

SCAVg (AVerage Similarity Coefficient). The cosine simi-
larity coefficient to the three nearest neighbors used in the
EPA_2D_NN method was used as the SCAvg DM.

Two groups classified predicted molecules in several
classes with different qualities of prediction as described
below.

Trust LeVel. The applicability domain for the models,
provided by the ULP group, is based on a measure, referred
to as the trust score. This measure has values in the range
of {1,2, ...5}, where the “5” corresponds to the highest trust
level (“optimal”) and 1 is the lowest trust level (“none”).
The trust score for a particular compound is based on three
factors: (i) the number of models having the compound in
their local applicability domain, MINDIFF-OK, as described
in ref 50, (ii) the number of dissident predictors in the set
(i.e., models that gave predictions, different from the mean
prediction), and (iii) the average prediction value, where
values close to 0.5 are considered less reliable. Further details
on the calculation of the trust score are shown in Figure SF1
(Supporting Information).

SVM1 AD. The applicability domain for the MSU models
was computed using the one-class classification approach
(novelty detection) based on 1-SVM.51 The parameters of
the 1-SVM method were chosen as follows: the RBF-kernel
parameter γ was taken from the same value used for building
classification SVM models, while the value of ν was fixed
at 0.01.

The SVM1 AD procedure associates the applicability
domain of QSAR/QSPR models with the area in the input

Figure 2. STD-PROB is the square of the filled area on each of
the four charts. The charts show how CLASS-LAG and STD affect
STD-PROB. STD corresponds to the flatness of the curve, and
CLASS-LAG corresponds to the shift of the curve from the center.
Larger values of STD correspond to flatter curves and larger STD-
PROB values. As CLASS-LAG decreases, the curve shifts more
from the center and the STD-PROB value decreases.

CORREL(J) ) 1 - max
i)1-M

|corr(y(Ti)
f, y(J)f)| (7)

LEVERAGE(J) ) x(XTX)-1xT (8)
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descriptor space where the density of training data points
exceeds a certain threshold. The main assumption of this
procedure is that the predictive performance of the models
tends to be higher for the test compounds inside the high
density areas than for those that are outside. This could take
place since outside the high density area all test objects are
located far from training objects, which makes interpolation
of the properties from the training to test objects unreliable.
Instead of searching a decision surface separating high and
low density areas in the input space, the one-class classifica-
tion 1-SVM approach looks for a hyperplane in the feature
space associated with the RBF-kernel.

The ability of novelty detection models to be used as the
AD of machine learning models was earlier demonstrated
by Bishop.52 The use of a one-class SVM novelty detection
method to assess the applicability domain of models based
on structured graph kernels has recently been suggested by
Fechner et al.53

Benchmarking Criteria. To compare the performances
of different DMs, it is necessary to assess their ability to
separate predictions with low and high accuracy. Our
approach is to determine the percentage of compounds in
the training and test sets that are predicted with a DM-defined
accuracy. For a particular DM, there are two possible ways
to separate compounds, predicted with a given accuracy:

Bin-Based Accuracy AVeraging (BBA). BBA groups the
compounds, sorted by a particular DM, into bins having an
equal number of compounds, averages the accuracy in the
bins, and selects a DM threshold, which provides predefined
model accuracy for every bin within this threshold. However,
this criterion has some drawbacks. First, it does not take into
account the actual prediction accuracy as long as it is higher
than the threshold. Second, the detection of a DM threshold
in practice can be a subjective task and will depend on the
size of the bin. For example, when predictions for different
models were sorted according to DMs, and their accuracies

were averaged using a sliding window of, e.g., 200 mol-
ecules, we could observe a significant variation in predictions
as a function of the DMs when using one defined threshold
(see solid lines in Figure 3).

Integral Accuracy AVeraging (IA). Instead of bin-based
averaging, one can use the average accuracy of a model for
molecules with a DM less than a predefined threshold value.
The plots of average predictions of models for a DM less
than the predefined threshold are smoother and easier to
interpret: i.e., this threshold defines the average (accumula-
tive) accuracy of the model. Moreover, this criterion directly
corresponds to, e.g., the average accuracy of inter- or
intralaboratory measurements. Therefore, for all further
analyses, we used the integral criterion and compared the
DMs with respect to their accumulative average accuracy.
A threshold of 90% was used. More precisely, we did the
following steps to estimate the performance of the investi-
gated DMs:

• For the training and test sets, sort all of the compounds
according to DM.

• For each model, identify the largest DM value for which
the accumulative accuracy of compounds from the analyzed
set (training or test) is g 90% (DM_90%).

• For each model, calculate the percentage of compounds
with a DM less than the respectiVe DM_90% threshold for
the training set (referred to as CTRAIN-90%, C stands for
coverage) and the test set (CTEST-90%). Notice that thresholds
are selected separately for the training and test sets.

Values CTRAIN-90% and CTEST-90% are used to estimate
performances of the DMs for each analyzed model. Indeed,
for a given model, the larger CTRAIN-90% and CTEST-90% values
correspond to DMs with larger numbers of reliable predic-
tions. Similar to our previous study,8 we ranked DMs
according to their CTRAIN-90% and CTEST-90% values (i.e., the
DM with the highest CTRAIN-90% or CTEST-90 receives a rank

Figure 3. Prediction accuracy of the consensus model as a function of CONS-STD and CONS-STD-PROB. The solid lines (bin-based
averaging) show the averaged accuracy on a moving window with a size of 200 compounds. Although there is a trend that the accuracy of
prediction decreases with both DMs, the dependency is not smooth, and there are significant fluctuations. The dashed lines (cumulative
averaging) indicate the average prediction accuracy for a variable percentage of compounds. Cumulative averaging smooths the variations,
which makes it more suitable for the threshold-based comparison of DMs.
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of “1” and so on) and averaged the ranks over all models.
These averaged ranks were used to compare different DMs.

Under prediction accuracy, we understand

where true positives, true negatives, and the total number of
compounds are within a DM threshold. In addition to the
prediction accuracy, the sensitivity and the specificity are
frequently used in machine learning methods. These mea-
sures are particularly useful for nonbalanced data sets. The
Ames data set has a very small imbalance of active and
nonactive compounds; therefore, specificity and sensitivity
are to a large extent redundant and were not analyzed in
this study.

To verify whether there are significant differences between
analyzed DMs, we used the Wilcoxon signed-rank test54

applied to CTRAIN-90% and CTEST-90% values. This test is used
for two-sample designs involving repeated measures, matched
pairs, which is the case in our study.

As a graphical illustration of the DM performance, we
used cumulative accuracy-coverage plots (see, e.g., dashed
lines in Figure 3). On these charts, we plotted prediction
accuracy for a group of compounds, having a DM less than
some threshold (y axis), against a percentage of this group
of compounds in the whole set (x axis). The threshold for
DM is not directly present in the chart but is implicitly
represented by the x axis.

Additionally, we intended to confirm whether a particular
DM can not only separate high and low accuracy predictions
but also estimate the external accuracy of prediction. For
this purpose, we compare prediction accuracies for com-
pounds within the same DM threshold on training and test
sets.

There are two drawbacks to the aforementioned accuracy
coverage (CTRAIN-90% and CTEST-90%) as an estimator of the
DM performance. First, the coverage depends on the ac-
curacy threshold, and different thresholds could possibly
result in different rankings of the analyzed DMs. Second,
the accuracy coverage depends not only on the ability of
DM to separate highly accurate predictions but also on the
performance of the analyzed model. Indeed, the models
having higher prediction accuracies will probably have higher
accuracy coverages.

The AUC (Area under the CurVe) Criterion. Another
criterion for DM performance that does not have the
aforementioned drawbacks is the area under the curve (AUC)
parameter, calculated as the area of the square between the
bin-based averaging curve and the line of the average model
performance. In Figure 3, this is the area of the square
between one of the solid lines and the dashed horizontal line.
The AUC is higher for the DMs that provide better separation
of compounds with higher and lower accuracies compared
to the average accuracy of models. Similarly to the accuracy
coverage, the weighted accuracy spread can be calculated
for both the training set (AUCTRAIN) and the test set
(AUCTEST).

To rank the investigated DMs, we used both criteria: the
accuracy coverage (CTRAIN-90% and CTEST-90%) and the area
under the curve (AUCTRAIN and AUCTEST).

Comparison of Models. The most commonly used measure
of model performance is its accuracy on the test set. This
measure, however, does not reveal what is the maximum
possible performance of a particular model. For this reason,
a percentage of compounds that are predicted with a fixed
accuracy level (90% in our example) can be identified and
used for model ranking.

RESULTS AND DISCUSSION

Comparison of Distances to Model. The calculated
cTRAIN-90% and cTEST-90% values are summarized in Table 2,
where DMs are sorted accordingly to their rank on the basis
of cTEST-90% values (see Table S1 of the Supporting Informa-
tion for more details). The data demonstrate that the CONS-
STD-QUAL-PROB measure appeared to be the best one,
considering averaged ranks over all models on the test set.
Details for the calculation of averaged ranks can be found
in the Supporting Information in Table S1 (part B). Accord-
ing to the Wilcoxon test,54 the top three models (CONS-
STD-QUAL-PROB, CONDCORDANCE, and CONS-STD-
PROB) were not significantly different from each other, with
p > 0.05 for both analyzed sets, but were significantly better
(p < 0.05) than other investigated measures. The LEVER-
AGE distance could not separate 90% accuracy predictions
for any model (cTEST-90% ) cTRAIN-90% ) 0); therefore it was
not analyzed further.

The rankings based on the accuracy coverage (Table 2)
are not significantly different from those based on the AUC
(Table 3). Namely, the rankings changed for the four last
DMs (LEVERAGE, SCAvg, CORREL, and AD_MEAN2),
which were however not significantly different from each
other. One difference of the AUC rankings from the accuracy
coverage rankings is that, according to the AUC criterion,
CLASS-LAG outperformed the ASNN-STD-PROB. For all
further analysis, we used the accuracy coverage (cTRAIN-90%

and cTEST-90%) because of its simpler and more intuitive
interpretation.

According to the PCA plot in Figure 4, some of the models
were quite similar, since they were based on the same
descriptors and machine-learning methods, e.g., UNC_
Drag_RF and PCI_Drag_RF, PCI_SiRMS_RF, and UNC_
SiRMS RF. Combining these four models into two did not

accuracy ) true positives + true negatives
total number of compounds

× 100

(9)

Table 2. Average Ranks of the DMs Ranked by the Percentages of
Compounds with 90% Accuracya

distance to model
average rank

(cTRAIN 90%)
average rank
(cTEST 90%)

CONS-STD-QUAL-PROB 2.15 1.83
CONCORDANCE 1.65 2.15
CONS-STD-PROB 3.38 2.95
CONS-STD-QUAL 3.7 4.95
ASNN-STD-PROB 6.4 5.48
CONS-STD 4.88 5.75
CLASS-LAG 7.5 6.68
ASNN-STD 8.4 7.78
ELLIPS 9.15 8.98
AD_MEAN1 12.43 10.18
CORREL 10.35 11.65
SCAvg 11.08 11.85
AD_MEAN2 11.3 12.33
LEVERAGE 12.65 12.48

a The ranks for both the training and validation sets are shown.
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affect the sorting of compounds according to the DMs.
Therefore, the rankings of the DMs, given in Tables 2 and
3, were not affected.

The dependency of the model performances for the CONS-
STD-PROB DM is shown in the cumulative accuracy-
coverage plot (Figure 5). The plot indicates that 25-70%
of all compounds (depending on the model) are predicted
with 90% accuracy. The same kind of plot for the CLASS-
LAG DM (Figure 6) reveals poorer performance of the latter
measure when it is not used in combination with the STD
measure. The difference is visually apparent: for some of
the models, CLASS-LAG was not able to separate predic-
tions with 90% accuracy; in Figure 6, these models cor-
respond to curves under the 90% line.

The performance of the CLASS-LAG DM appeared to
be very dependent on the model, as can be observed in Figure
6 and in Table S1 (Supporting Information). This can be
explained by different distributions of quantitative values of
predictions, given by different models. Two histograms in
Figure 7 reveal that the prediction values of UNC_SiRMS_

SVM are similar to discrete values {-1,+1}; therefore, they
contain less information than the predictions by PCI_
SiRMS.Drag_RF, which are distributed more uniformly.
Indeed, the CLASS-LAG DM failed for the first model,
cTest-90% ) 0% coverage, and yielded excellent results for
the second one, cTest-90% ) 62% coverage.

As described in the Methods section, CLASS-LAG
punishes both negative and positive deviations from the class
labels {-1;+1}. Thus, predictions outside of the [-1,+1]
interval (referred to as “outer predictions”) are considered
less reliable than the exact -1 or +1. There were three
models with outer predictions: EPA_2D_FDA, LNU_
Drag_PLS, and OCHEM_ESTATE_ANN. When we rounded
the outer predictions to {-1;+1} labels, their performance
for CLASS-LAG did not change significantly from those for
LNU_Drag_PLS and OCHEM_ESTATE_ANN; however,
the performance significantly dropped for the EPA_2D_FDA
model (see Figure SF2 in the Supporting Information).

The percentage of active (mutagenic) compounds within
the range of 90% prediction accuracy is 51-55% and is not
significantly different from the percentage of active com-
pounds in the whole test set (53%). Therefore, mutagenic
compounds are neither over-represented nor under-repre-
sented in the applicability domain of the models. Moreover,
the prediction accuracy, sensitivity, and specificity of all of
the models were not significantly different within the area
of 90% prediction accuracy. Thus, the analysis of specificity
and sensitivity is redundant; therefore, we used only predic-
tion accuracy, calculated according to eq 9.

Several distances to the model were investigated in our
study. A recently introduced probability-based measure of
distance to a binary classification model, CONS-STD-
PROB,45 as well as its qualitative analog, CONS-STD-
QUAL-PROB, provided a significantly better separation (p
< 0.05 using the Wilxocon test) of predictions with low and
high accuracy. Therefore, the quality of applicability domain
estimation, using these methods, is significantly better than

Table 3. Averaged Rankings of the DMs Ranked by the AUC
Criterion

distance to model
average rank

(AUC, training set)
average rank

(AUC, test set)

CONS-STD-QUAL-PROB 2.15 1.95
CONCORDANCE 1.4 2.1
CONS-STD-PROB 3.4 2.75
CONS-STD-QUAL 3.8 4.9
CLASS-LAG 6 4.95
ASNN-STD-PROB 6.4 5.65
CONS-STD 5.3 6.1
ASNN-STD 8.05 7.9
ELLIPS 12.1 9.6
AD_MEAN1 10.9 11.25
LEVERAGE 12.85 11.3
SCAvg 11.6 11.7
CORREL 9.95 11.85
AD_MEAN2 11.1 13

Figure 4. PCA plot of the Ames challenge models, based on the space of predictions for the test set. Four models (UI_Drag_LDA,
UBC_ID_IWNN, ULZ_3DDrag_SVM, and ULZ_3DDrag_KNN) are not shown, since they were outliers of this graph.
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that of the traditionally used CLASS-LAG method. It is
interesting that CONCORDANCE, i.e., the measure of an
agreement of predictions of a considered individual model
with other members of the ensemble, was also amid the top
three models and provided the best results for the training
set. Therefore, it may be reasonable to use this simple
measure along with the STD-PROB DMs.

The distances to the model, based on the space of
descriptors (LEVERAGE, DA Index, ELLIPS, SCAvg, and
AD_MEAN) identified only very small percentages of
molecules with >90% accuracy (see Table 2 and Table S1,
Supporting Information) and thus performed worse compared

to other DMs considered in this study. The measures on
which DA Index was based (namely, δ index and γ index)
did not outperform DA Index when used as stand-alone DMs;
therefore, they were not analyzed. Figure 8 (solid lines)
demonstrates AD_MEAN results, which are worse compared
to those of CONS-STD-PROB (dashed lines), which identi-
fied more than 40% of compounds as having this prediction
accuracy for analyzed models.

The PCA plot of the DMs (Figure 9) calculated using the
DM-based rankings of Ames challenge compounds reveals
high similarity of the five DMs, which are based on the
global consensus model. Indeed, these models explore

Figure 5. Cumulative accuracy-coverage plot for the CONS-STD-PROB DM based on the test set predictions. Only those 20 models are
shown which had numeric prediction values available. The curves show the accumulative accuracy for a particular (variable) percentage of
compounds. The curves clearly show that CONS-STD-PROB is highly correlated with the prediction accuracy. The models are ordered
according to their overall performance for the test set.

Figure 6. Cumulative accuracy-coverage plot for the CLASS-LAG DM. The plot is based on the test set predictions. The colors of the
models are the same as in Figure 5.
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slightly different aspects of the same data and are strongly
intercorrelated (see Table S5 in the Supporting Information).
The CONS-STD, CONS-STD-QUAL, and CONCOR-
DANCE DMs form one cluster within which the CONCOR-
DANCE DM provided the best discrimination of the highly
accurate predictions (Tables 2 and 3).

Analysis of the Qualitative Distances to Models. As
mentioned in the Methods section, several groups provided
qualitative AD measures for their respective models. The
performance of CONST-STD-PROB for these models binned
on several intervals is shown in Table 4 and is compared to
the aforementioned models in this section.

Trust LeVel. This AD-related information, provided by the
ULP group, is a generic estimation of the degree of trust for
the prediction of a particular compound, ranging from
optimal to poor, depending on how concordant individual
models were in the prediction of this compound and how
many of them had the compound in the applicability domain.
We grouped all compounds by trust level and computed
defacto prediction accuracy within each group. Results are
summarized in Table 4 for the test set.

Prediction accuracy apparently drops with a decrease in
trust level, excluding the poor trust level that has only 33
compounds in the corresponding group, which may not be
sufficient for an evaluation of prediction accuracy. This
measure provides worse results than the CONST-STD-PROB
measure, as demonstrated in Table 5.

The 681 molecules with the largest CONS-STD-PROB
values have an accuracy of about 52% only (Table 4), i.e.,
the same as the random guess. Of course, one should not
use predicted results for these molecules but rather experi-
mentally measure them. Once measured, such molecules will
be important in extending the applicability domain of models
and will allow for reliable predictions of new molecules,
which are similar to them.

One-Class Classification AD (SVM1 AD). This measure
was provided by the MSU group, and it distinguishes
compounds inside and outside of AD. Accuracies, grouped
by this flag, are summarized in Table 6.

A majority of compounds from the training and test sets
were predicted to be inside the applicability domain using
SVM1. The prediction accuracy for these compounds was
on average 5% higher than those outside of AD. The CONS-
STD-PROB method provided a much better separation of
molecules; it achieves differences up to 40% for reliable and
nonreliable predictions (Table 4).

DA Index. In addition to quantitative values analyzed in
the previous section, the TUB group provided qualitative
values for their DA_Index, summarized in Table 7.

Figure 7. Distribution of prediction values for the two selected
models. The prediction values of the model on the left chart
resemble rounded discretized “-1” and “+1” values, whereas the
values on the right chart have a continuous distribution and therefore
provide more information for the estimation of uncertainty. This
fact is confirmed in practice: CLASS-LAG of UNC_SiRMS_SVM
(left chart) has poor performance (0% coverage of 90% accuracy)
in contrast to PCI_SiRMS.Drag_RF (right chart), which separates
63% of compounds with 90% prediction accuracy.

Figure 8. Comparison of AD_MEAN distance to the model (solid
line) with CONS-STD-PROB (dashed line).

Figure 9. Principal component plot for the analyzed DMs. The PCA was based on the rankings that the DMs gave to the compounds from
the training and test sets. Apparently, the five consensus-based DMs form two clusters: CONS-STD, CONS-STD-QUAL, and
CONCORDANCE in the first cluster and CONS-STQ-QUAL-PROB and CONS-STD-PROB in the second one.
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Most compounds (1819, or 83% of the test set) had a DA-
Index value of 0, which corresponds to the highest expected
accuracy. However, the increase in accuracy of 2-6% was
not significant for both TUB models, TUB_3DDrag_SVM
and TUB_3DDrag_RF, as shown in Table 7. For the same
models, the 500 most accurately predicted compounds
identified using CONS-STD-PROB had 93% classification
accuracy for both models, as shown in Table 4.

Ability to Estimate Accuracies of Predictions. So far,
we investigated the abilities of DMs to separate accurate and
inaccurate predictions. The main criterion for such perfor-
mance was the percentage of compounds that were predicted
with 90% accuracy for the training and test sets (cTRAIN-90%

and cTEST-90%) with regard to a particular DM. However, it
is also important to estimate the expected accuracy of

predictions for new molecules. Under the assumption that a
model is correctly cross-validated and the investigated DM
is consistent, the prediction accuracy for compounds within
the same DM threshold should be not significantly different
for both 5-CV results and the test set. Thus, the DM selected
using 5-CV should cover the same percentage of molecules
having about the same accuracy of prediction for the test
set. In order to check this assumption, we selected a DM
threshold that provides 90% accuracy using 5-CV and
calculated accuracies of predictions for compounds within
the same threshold on the test set.

We have compared accuracies for the training and test sets
on compounds, having a DM within the threshold that
provides 90% accuracy for the 5-CV result. The comparison
was performed for all of the models in combination with all
of the investigated DMs. There are 20 models tested against
12 DMs; therefore, there are 20 × 12 ) 240 comparison
cases. We found that the accuracies of predictions for 5-CV
and test sets are consistent with significance level p ) 0.01.
With significance level p ) 0.05, the estimated and observed
accuracies were significantly different for two cases (Table
S3, part C, Supporting Information), which does not exceed
the statistically expected number of failures (for 240
comparison cases, 12 failures at the 0.05 level of signifi-

Table 4. Accuracy of Predictions According to CONS-STD-PROBa

observed prediction accuracy

number of compounds ULP_ISIDA_SQS TUB_3DDrag_SVM TUB_3DDrag_RF MSU_FRAG_LR MSU_FRAG_SVM

500 96% 93% 93% 94% 95%
500 86% 89% 90% 89% 90%
500 76% 79% 81% 80% 83%
500 53% 64% 65% 66% 68%
181 48% 61% 55% 54% 54%
2181 75% 80% 80% 80% 81%

a For the first 500 compounds, it achieved an accuracy of 93-96%. This accuracy was higher than other qualitative ADs summarized in
Tables 3-5.

Table 5. De Facto Performance of ULP_ISIDA_SQS Model for
the Test Set with Regard to Trust Level and CONS-STD-PROB

number of
compounds

observed prediction accuracy

trust level trust level CONS-STD-PROB

optimal 1221 81% 89%
good 512 79% 69%
medium 415 53% 46%
poor (or less) 33 70% 45%
overall test set 2181 75%

Table 6. Performance of MSU_FRAG_LR and MSU_FRAG_SVM Models Depending on the SVM1 AD Factor and CONS-STD PROB (For
the Same Numbers of Compounds)

number of
compounds

observed prediction accuracy

MSU_FRAG_LR MSU_FRAG_SVM

SVM1 AD SVM1 AD CONS-STD-PROB SVM1 AD CONS-STD-PROB

training set
inside () 1) 4194 79% 80% 80% 81%
outside () -1) 167 75% 59% 79% 53%
overall training set 4361 79% 80%

test set
inside () 1) 2046 81% 82% 81% 83%
outside () -1) 135 73% 53% 79% 55%
overall test set 2181 80% 81%

Table 7. Performance of TUB Models for the Test Set Depending on DA Index and CONS-STD-PROB

observed prediction accuracy

TUB_3DDrag_SVM TUB_3DDrag_RF

DA Index number of compounds DA Index CONS-STD-PROB DA Index CONS-STD-PROB

0 1819 81% 83% 80% 84%
between 0 and 1 183 75% 62% 78% 61%
1 179 75% 60% 80% 60%
overall test set 2181 80% 80%

2106 J. Chem. Inf. Model., Vol. 50, No. 12, 2010 SUSHKO ET AL.



cance). Thus, the accuracies estimated a priori using the
training set are in agreement with observed accuracies for
the test set.

Substructural Analysis of the Applicability Domain. To
determine which types of molecules are predicted accurately
and which are not, we have analyzed molecular subfragments
for 400 predictions with the highest and lowest accuracies
according to the CONS-STD-PROB DM, respectively. We
will refer to these sets as “worst-400” and “best-400”. We
enumerated all of the fragments presented in these molecules
and counted the number of molecules containing each
fragment in each set.

If a fragment is equally distributed, the number of
molecules from the “best-400” (or the “worst-400”) contain-
ing this fragment should be distributed binomially with p
equal to 0.5 and N equal to the total number of the molecules
containing this fragment. If this assumption was invalidated
with at least a p < 0.05 level of significance, we then
considered the fragment as over-represented in one of the
sets.

An overview of several significant fragments is presented
in Figure 10. Apparently, the molecules containing long
carbon chains, nitro groups, and thiophene groups were over-
represented in the “best-400” predictions. We found out that
long carbon chains were mostly presented in nonmutagenic
compounds, whereas nitro and thiophene groups are mostly
in mutagenic compounds. For the prediction of such com-
pounds, there was a high level of agreement between the
models. In contrast, the compounds containing chlorine,
bromine, sulfonate, and epoxide groups are not reliably
predicted by the models investigated in this study. We plan
to provide a more detailed analysis of these fragments to
detect “toxicophores”, i.e., structural elements responsible
for the mutagenicity of analyzed compounds.

Data Variability Analysis. Several studies analyzed the
variability of the Ames test experiments. Let us critically
review them for a better understanding of the results of our
modeling.

The first study by Benigni and Giuliani55 assessed the
Ames tests conducted for 42 compounds by 12 different
experimental laboratories. Using the same data, for every
pair of laboratories, we calculated the level of agreement as
the number of the concordant measurements divided by the
total number of measurements. The distribution of agree-
ments of 66 lab pairs is shown in Figure 11. The average
pairwise agreement is only 75%. At the same time, Figure
11 reveals that the agreement of results between some
laboratories can be sometimes higher than 90%. This result
was observed for 4 out of 66 pairs of laboratories (7% of all
data). However, it is possible to expect a higher agreement
if the data are measured within the same laboratory.

In the study by Piegorsch and Zeiger,56 the experimental
concordance between different laboratories was reported in
the range of 70-87%. Each molecule in this set was
measured in several experiments either in different labora-
tories or in the same lab but at different times. The outcomes
of experiments were positive (+), weak positive (+W),
negative, (-), and questionable (?). Let us consider, similar
to how it was done in the analysis by the original authors,
positive and weak positive as Ames mutagens and ignore
nondecisive experiments, which, of course, are usually
expected to be remeasured. Similar to the previous section,
let us define the accuracy of one compound as the maximum
number of positive or negative tests divided by the total
number of decisive experiments. Such accuracy could be
expected for our analysis, if we assume that molecules were
tested on average just once. The average accuracy of the
Ames test was 93% and 90% if we considered molecules
with at least two (209 molecules) or three (49 molecules)
decisive measurements, respectively.

We further explored this result using the variability of
measurements used in our study. For this analysis, we used
the Ames test data collected and publicly available at the

Figure 10. Molecular fragments, presented in the reliably and
nonreliably predicted compounds. Shown are the fragments,
significantly over-represented in the molecules with the highest
accuracy (A) and the lowest accuracy (B) according to CONS-
STD-PROB DM. Below the fragments are the numbers of relevant
molecules with accurate (left of the slash) and inaccurate predictions
(right of the slash).

Figure 11. Distribution of the pairwise agreements of the Ames
test measurements carried out by 12 laboratories. The data for the
plot were taken from a study by Benigni and Giuliani.55
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OCHEM website (http://ochem.eu). The database contains
results for 3205 of the 6542 Ames challenge compounds.
We used the same definition of accuracy as above and
calculated an average accuracy of 94% for compounds, which
had at least three measurements (1680 compounds selected
from 189 articles). The variation of the minimal number of
measurements from four to seven did not change this number
more than (0.3%. The 94% agreement is conformable with
the achievable prediction accuracies of the models investi-
gated in this study.

In this analysis, we mainly considered intralaboratory
variations, as compared to the interlaboratory and mixture
of the inter- and intralaboratory variations estimated in works
of Benigni and Giuliani55 and Piegorsch and Zeiger,56

respectively. Unfortunately, it was impossible to carry out
interlaboratory analysis in our study as there was an overlap
in molecules reported in different articles. Moreover, in some
cases, several authors, in particular Errol Zeiger, have
contributed to the majority of articles, thus invalidating the
goal of the interlaboratory comparison. Therefore, for the
comparison of the DMs, we selected the accuracy of 90%
obtained in work of Piegorsch and Zeiger56 as a conservative
threshold for interlaboratory comparison.

Confidence of Predictions vs Variability of Experimental
Measurements. Different subsets of molecules may behave
differently in experiments: some of them may have easily
reproducible results (either mutagenic or nonmutagenic),
while the other molecules may show higher variability, e.g.,
because of difficulties in experimental measurements such
as metabolic stability, low solubility, etc. It would be
interesting to know whether the methods described in the
article can differentiate such chemicals.

We have analyzed the variability of measurements for
molecules from the Piegorsch and Zeiger data set.56 The total
set contained 239 molecules, but three of them did not have
structures defined and were excluded from our analysis. We
developed a new ASNN model using all of the Ames
challenge molecules with an exception of these 236 mol-
ecules, which formed the test set. The confidence of
predictions was determined using the ASNN-STD-PROB
DM. Amid 50 compounds with the highest and the lowest
calculated confidences, we selected molecules that had at
least three decisive measurements. There were 14 and 9 such
molecules for the top and lower ranges with an agreement
of experimental measurements of 96% and 89%, respectively.
Moreover, there were also 13 and 21 compounds with
questionable measurements within the same intervals.

We applied a similar analysis to the 1680 Ames challenge
compounds having at least three measurements. We found
that 150 molecules with the highest and the lowest confidence
of predictions had an agreement of experimental measure-
ments of 97% and 91%, respectively. Thus, the confidence
of predictions determined by the DM correlated with the
variability of experimental measurements: the molecules with
a higher confidence of predictions have better agreements
of experimental measurements and vice versa.

The Prediction Accuracy for EINECS, ENAMINE,
and HPV Data Sets. In order to estimate the applicability
of the QSAR Ames models to diverse chemical compounds,
the OCHEM_ESTATE_ANN model was applied to the
ENAMINE, EINECS, and HPV databases, described in the
Methods section. The prediction accuracy for these data sets

was estimated using bin-based accuracy averaging based on
the ASNN-STD-PROB DM.

In Figure 12, the black curve corresponds to the average
prediction accuracy as a function of ASNN-STD-PROB,
while four colored curves illustrate the percentages of
compounds from the four data sets having DM values less
than corresponding thresholds. The plot in Figure 13 shows
the percentages of compounds from the four data sets
depending on the required prediction accuracy. Apparently,
for the HPV and EINECS data sets, the percentages of
reliable predictions (with at least 90% estimated prediction
accuracy) were 30% and 16%, respectively, which is close
to the percentage in the original data set, used for training
and validation (25%). However, the percentage of reliable
predictions in the ENAMINE data set was only 4%, probably
due to a higher chemical diversity of compounds in
comparison to the training set.

CONCLUSIONS

In this study, we have analyzed the AD problem for binary
classification models. We investigated the relevance of

Figure 12. Estimated prediction accuracy for the original Ames
challenge data set and the HPV, EINECS, and ENAMINE data
sets. The black curve, based on bin-based averaging, plots the
prediction accuracy (left y axis) against the ASNN-STD-PROB DM.
Colored curves show percentages of compounds (right y axis) from
the four data sets, having ASNN-STD-PROB not more than a
particular threshold (x axis).

Figure 13. Percentages of compounds (y axis) having a required
prediction accuracy (x axis). This plot is built for four data sets
and uses the same data as Figure 12.
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classical approaches to AD estimation for predictions of
quantitative properties. The analysis was based on the Ames
mutagenicity data set and involved 30 independent clas-
sification models.11 The model developed by the HMGU
group has been made publicly available in OCHEM, Online
Chemical Modeling Environment,57 at http://ochem.eu/
models/1.

The analysis in this study was based on abstract measures
of prediction uncertainty, referred to as “distances to models”
(DMs). While the fact that measures such as CLASS-LAG,
which can be used to discriminate accurate and inaccurate
predictions, have been known for years, not many researches
utilize them to assess the performance of their QSAR
methods (frequently, only average model characteristics are
reported).

The important message of this study was to demonstrate
practical advantages of using DM and AD approaches. The
most reliable predictions of the Ames test achieved experi-
mental accuracy (ca. 90%), while unreliable predictions had
an accuracy of random guessing (50%). The predictions of
the later compounds are useless; one should measure such
compounds experimentally rather than rely on predictions.

Several DMs were investigated and benchmarked. The
DMs, based on the global consensus model provided
significantly better separation (p < 0.05 using the Wilxocon
test) of low and high accuracy predictions. The top-ranked
DMs included a recently introduced probability-based mea-
sure of distance to a binary classification model, CONS-STD-
PROB,45 its qualitative analog CONS-STD-QUAL-PROB,
as well as another very simple measure, CONCORDANCE,
i.e., the agreement of a model’s predictions with the global
consensus model. Moreover, as shown in Figure 9, these
three DMs were strongly correlated. The quality of the AD
estimation using these methods was significantly better than
tthat of the traditionally used CLASS-LAG method. None-
theless, while CLASS-LAG did not work for the majority
of the analyzed individual models, its performance for the
global consensus model was not significantly different from
the three aforementioned top-ranked DMs (see Table 2). It
is important to mention that all three measures (CONS-STD-
QUAL-PROB, CONS-STD-PROB, and CONCORDANCE)
implicitly use the predictions given by the consensus model.
As the consensus model is the best of all 31 models, these
DMs may have performed best because they incorporate
information from the best (consensus) model. If we do not
consider the consensus-based DMs, the best measures were
CLASS-LAG and ASNN-STD-PROB. Importantly, the DMs
based on the output of the models outperformed the DMs
solely on the basis of molecular structures (e.g., LEVERAGE
and AD_MEAN).

Similar to our previous analysis of quantitative QSAR
models,8 we found that the best separation of the reliable
and nonreliable predictions was provided by the same DMs.
In other words, the compounds having the best prediction
accuracy were the same for all of the models, regardless of
the descriptors or the machine-learning technique used to
develop them. This conclusion is in agreement with the work
of Sheridan et al.58 as well as with our own conclusions that
the performance of models is dominated by the size and
quality of the training set rather than by the method or the
descriptors.59

Another important result of this study is the discovery of
a correlation between the prediction uncertainty and the
variability of experimental measurements of molecules.
Namely, we have demonstrated that molecules with more
accurate predictions had a higher agreement of experimental
measurements and, vice versa, molecules with less accurate
predictions showed higher disagreement with experimental
measurements. Indeed, molecules from the first group
contributed cleaner training sets and thus allowed models to
achieve a higher accuracy of predictions for their analogs.

The discrimination of accurate and nonaccurate predictions
is important from the practical point of view. If a compound
is predicted with the accuracy, which is close to the accuracy
of experimental measurements, one can use in silico values
instead of measuring the activity for this compound. We have
shown that the developed models predicted Ames mutage-
nicity for 35-65% of Ames challenge molecules with an
accuracy similar to that of interlaboratory variation. Similar
results were also achieved for quantitative models: the
octanol/water partition coefficient (log P) was calculated for
more than 60% of molecules with experimental accuracy.60

An accuracy of 90% was achieved for 35% and 20% of
the HPV and EINECS databases of compounds using the
ASNN model. However, for a larger and more diverse
Enamine data set, only 6% of the compounds were predicted
with such accuracy, presumably because of the higher
chemical diversity of the Enamine collection. Thus, to
increase the accuracy of predictions for such compounds,
new experimental measurements are required.

In summary, the differentiation of reliable and nonreliable
predictions of in silico approaches can decrease experimental
costs by delivering accurate predictions for up to 2/3 of the
molecules. At the same time, those compounds, which cannot
be reliably predicted, should be measured. This additional
data will extend the applicability domain of models and will
allow reliable prediction of an even larger number of
molecules. The combination of in silico approaches and
experimental measurements can help to avoid redundant
measurements, to screen large amounts of molecules even
before they are synthesized, and, thereby, to provide sig-
nificant savings of time and cost for the industry.
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