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INTRODUCTION
The potential of the genetic associa-
tion approach for the identification of
genetic variants that alter susceptibil-
ity to common complex disease is well
recognised.1 This potential equally
extends to the identification of genetic
variants in genes coding drug-metabo-
lising enzymes, transporters, receptors,
and other drug targets that may deter-
mine inter-individual differences in
drug responsiveness or the frequency
of adverse drug reactions. Technologi-
cal advances such as the availability of
single nucleotide polymorphism (SNP)
databases and affordable, very high
throughput genotyping are set to ex-
tend the potential and improve the
efficiency of association approaches.
However, the very large number of
genetic variants in the human gen-
ome2 and the lack of detailed knowl-
edge about the molecular and
biochemical processes involved in ae-
tiology of complex diseases or in drug
response suggest that it is very likely
that many spurious associations will
be found and reported. The great
majority of reported associations have
not led to new insights into complex
disease or drug response mechanisms.
Important exceptions include genetic
variants whose effects are large enough
to be identified by linkage analysis
(eg), variants in NOD2 in Crohn’s
disease,3 APOE in Alzheimer’s disease4

and factor V Leiden in deep venous

thrombosis5) and genetic variants in
the cytochrome P450 CYP3A5 gene,
which contribute to variation in bio-
availability and clearance of drugs
such as HIV protease inhibitors and
some cholesterol-lowering drugs, and
can result in drug toxicity.6

The primary aim of these studies is
to identify significant associations be-
tween genetic variants and disease
states, physiological or disease traits
or markers of drug response or toxicity
and then to judge whether these
associations are ‘causal’ (truly alter
susceptibility to disease or drug re-
sponse). However, deciding which sta-
tistically significant associations are
indeed causal is likely to represent a
major obstacle to successful ‘gene
discovery’, at least until the time when
molecular pathways from gene to dis-
ease become better understood. In this
review we discuss the correct use and
limitations of existing criteria for the
interpretation of association studies.

INTERPRETATION OF GENETIC
ASSOCIATION STUDIES
In the most commonly employed
(inductive) approach an assessment is
first made of the validity of the
observed association between the ge-
netic variant and the disease or trait
(statistical inference). This involves con-
sidering the likelihood that alternative
explanations of chance, bias and con-
founding could account for the find-
ings. Secondly, all available biological
and epidemiological evidence should
be assessed to decide if the association

is likely to be causal (causal inference).
This judgement is essential in order to
decide what action is merited based on
the results: guiding prioritisation of
investment in future research, clinical
management decisions or public health
policy choices. This approach is one of
inductive inference (which involves
judging whether there is support for
inferring a casual association based on
the observed data).

STATISTICAL INFERENCE
Chance, bias and confounding are all
alternative explanations for observed
associations (Table 1).

Chance
A statistically significant result does
not mean that chance cannot have
accounted for the result, only that this
is unlikely. It is a composite measure
that reflects both the size of the
difference and the sample size. Statis-
tical significance testing does not give
a yes/no answer but acts as a guide to
whether the hypothesis or reported
association is likely to be worthwhile
pursuing further.7

Multiple testing is a major reason for
published false positive reports. The
expected frequency of false positives is
given by 1�(1�k)m (where m is the
number of independent markers and k
is usually o0.05, the significance level
set for a single marker).8 Reporting
results of secondary and post hoc
subgroup analyses as if they related
to a priori hypotheses and selectively
reporting only analyses that reach
‘statistical significance’ lead to covert
multiple testing. New developments
such as massive candidate gene analy-
sis, genome screening by genetic asso-
ciation and adoption of pattern
recognition methods such as artificial
neural networks9 will exacerbate the
problem of multiple testing. Adopting
statistical significance levels appropri-
ate to the number of tests carried out
can be used to limit the reporting of
chance findings. In genetic linkage
analysis of Mendelian traits, the adop-
tion of the LOD score threshold of 3 or
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more has been effective in reducing
the number of false positive reports to
below 5%.11 Unfortunately, there is no
similar international consensus for the
interpretation of genetic association
studies.12–14 The Bonneferoni correc-
tion for multiple testing assumes that
all variants being tested have equal
prior probability and takes no account
of the dependence that exists between
adjacent variants. It thus leads to
overcorrection, risking rejection of
important findings. Schork has pro-
posed a method to estimate the prob-
ability distribution of genetic
association (case-control) test statistics
empirically so that significance of
genetic variants being studied can be
assessed against this distribution. This
method, however, is likely to be
population and genome region speci-
fic.15 An alternative strategy would
involve grouping the variants to be
tested into groups with differing prior
probabilities (eg, variants with known
effects on protein function would have
higher prior probability) and applying
empirical Bayes or semi-Bayes adjust-
ments.16,17 Greenland has noted that
such a Bayesian analysis leads to a
modest loss of power but a ‘dramatic
reduction in type 1 (false positive)

errory by the use of prior informa-
tion’.18 As the functional significance
of variants is better understood, so it
will be increasingly possible to adopt
an informed approach to adjustment
of significance levels.16 This principle
is similar to the practice in clinical
genetic risk counselling in which the
significance of genetic variants is in-
terpreted through the use of other
relevant genetic information.19

Statistical tests of association are not
strictly valid when there is depen-
dence between individuals due to
cryptic relatedness, which may or
may not be apparent in recently
collected pedigree data. This will lead
to false positive associations particu-
larly in inbred populations and in
studies of rare disorders unless statis-
tical methods that detect and account
for these relationships are used.20–22

Bias
Any systematic differences in allele
frequencies between cases and con-
trols can result in an apparent associa-
tion. Sources of bias (for example in
the selection of study population or
measurement of variables in cases and
controls) have been discussed in de-
tail.23–25 In general, study designs that

are prospective and in which case and
control ascertainment is truly popula-
tion based are more robust. The pre-
sence of artefacts leading to
information bias can be explored by
checking that genotype frequencies
among controls are in Hardy–Wein-
berg equilibrium. Failure to find this
draws attention to a problem with the
selection, storage or analysis of control
specimens and may suggest invalida-
tion of the results of the association
study.

Publication bias leads to the pub-
lication of relatively small initial stu-
dies selectively reporting large effects
since they do not have adequate power
to identify smaller effects. Studies
reporting smaller effects do not reach
statistical significance and so remain
unpublished.26 Subsequent more
powerful and often better designed
studies report more valid findings that
either fail to reproduce the initial
report (which then represent a false
positive report due to a combination
of chance and publication bias) or
support the initial findings but with a
more accurate (and modest) effect
size.27,28

Confounding
Confounding factors are those that are
associated with both the disease and
the factor under study. Thus an appar-
ent association between a genetic
variant and a disease or drug reaction
may be explained by confounding.24

The size of the effect of a confounding
factor is related jointly to its association
with the factor under study and to the
outcome. Multiple factors can contri-
bute small amounts of confounding
that together are substantial.29 Strate-
gies to control for confounding are
limited since they can only be applied
to factors that are currently known.

Most discussions of confounding in
genetic association studies have fo-
cussed on population stratification
although examples of its importance
are few.30 Biologically, plausible levels
of population stratification are likely
only to result in weak associations.31,32

Approaches to limit or control popula-
tion stratification include the use of
family-based controls. However, the
advantages of this approach have to

Table 1 Examples of ways in which chance, bias and confounding can lead to
false positive associations between genetic variants and disease states or traits or
drug response

Chance
* Due to multiple association studies performed with publication of only those that show

positive results (multiple testing together with publication bias)
* Due to testing of multiple markers (each with low prior probability of causing disease) and

failure to adjust significance levels accordingly or otherwise interpret results appropriately
* Multiple testing due to reporting secondary and post hoc (subgroup) analyses as if they

related to a priori hypotheses then selectively reporting only analyses that reach statistical

significance

Bias
* Due to artefact (differences between cases/controls unrelated to cause of disease) such as

differences in handling or storage between cases and controls
* Due to systematic error introduced in selection of cases and controls for study
* Due to systematic error introduced by differences in genotyping between cases and controls

Confounding

* Due to population stratification
* Due to differences in distribution of genetic and environmental risk factors for disease under

study between cases and controls (limited, in theory, by ‘‘Mendelian randomisation’’10)
* Due to linkage disequilibrium (LD) or ‘allelic association’ between marker under study and

true disease susceptibility variant
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be weighed against the difficulty in
recruiting parents (for diseases with
onset in middle age) and the loss of
power in comparison to case-control
approaches. ‘Genomic control’ ap-
proaches utilise data from unlinked
genetic markers to measure and adjust
for population substructure ef-
fects.21,33 These can be incorporated
readily into studies of multiple candi-
date variants and are likely to be
increasingly adopted.

Linkage disequilibrium (LD) between a
(marker) variant under study and the
true disease-susceptibility variant can
result in confounding. High levels of
LD within a population will increase
the potential for confounding. Thus,
although it has been proposed that
initial association (LD mapping) stu-
dies be undertaken in small founder-
pool populations with extended LD,
confounding will complicate interpre-
tation of findings. In addition to
concerns about the irregular fine struc-
ture of LD,2 frequent gene conversion
disrupting regions of LD and the
complex relationship between genetic
and physical distance,34,35 all positive
associations will need to be followed
by investigation of association in
nearby variants and in surrounding
haplotypes.36 Fine mapping, for exam-
ple by multiple candidate allele asso-
ciation analysis, will be more efficient
in populations with low levels of LD,
such as found in African popula-
tions.37 High levels of LD (and thus
confounding) within a population are
likely to be regarded increasingly as a
negative rather than a positive popula-
tion attribute for genetic association
studies.

CAUSAL INFERENCE
If chance, bias and confounding are all
considered to be unlikely explanations
for an observed association (Table 2)
then it can be considered valid. A sys-
tematic approach to assessing whether
valid associations may be causal can
then be employed. Such approaches
cannot prove causality since infer-
ence of cause from empirical data has
no logical basis.38 In addition, the
aetiological heterogeneity and multi-
factorial nature of common complex

disease, in which most factors under
study will individually be neither
necessary nor sufficient to cause the
disease, complicates any approach to
assessment of cause and effect rela-
tionships. Nevertheless, a set of criteria
proposed by Bradford-Hill39 based on
the inductive canons of John Stuart
Mill have proven useful (Table 3) and
the utility of these are discussed below.

Consistency of Association
This approach parallels the successful
strategy in linkage analysis whereby
initial reports (with LOD score 43)
need to be corroborated by an inde-
pendent study to ensure a sound basis
for genetic risk calculations.40 In the

absence of a broader understanding of
genetic effects at the molecular level
and of biochemical and physiological
mechanisms, this criterion might
seem the most powerful evidence in
favour of causality currently available.

Replication of an association in the
same population either in a ‘split sam-
ple’ or repeat independent sample
gives evidence in favour of the variant
being a causal variant. However, re-
peatability (probability that a second
association study is also positive in the
same population) varies with sample
size and the proportion of trait var-
iance attributable to the variant under
study. Simulation has shown repeat-
ability to be low with sample sizes of

Table 2 Appraisal of published associations with genetic variants: list of
questions to consider in assessing validity of association

Chance
* Is it clear whether reported results relate to a priori hypotheses or post hoc subgroup analyses?
* Is the total number of analyses (number of tests) that were carried out stated?
* Has an adjustment of the statistical significance level to account for multiple tests (eg),

Bonneferoni or Bayes methods) been made or has interpretation of results otherwise
accounted for multiple testing?

* Does statistical analysis account for increased likelihood of chance association in inbred

populations or, where relevant, due to cryptic relatedness in apparently outbred populations?
* Where no statistically significant association was found, was the sample size large enough for

adequate (eg, 80%) power to detect important/plausible effect sizes?

Bias
* Were the genotype frequencies reported in the control specimens in Hardy–Weinberg

equilibrium? If this was not the case, were the reasons for this explored? Could this signal the

presence of bias or study artefacts?
* Are the procedures for the ascertainment of cases and controls carefully described; could they

have resulted in bias that could explain the results?
* Is the control group drawn from the same population as the cases?
* If ‘convenience’ controls were used (such as blood donors) is information presented on the

degree to which they are representative of the population from which the cases are drawn?
Could these differences explain the results?

* If published control allele frequencies were used to give control data, was their

appropriateness in this study population reviewed critically? Would adoption of alternative

allele frequencies alter the results?
* Are participation rates in cases and controls stated? If substantially different could this explain

the results?
* Are there sufficient details of the study procedures (handling and storage of blood and DNA

specimens or analysis; genotyping methods; other measurement methods) for both case and
control specimens? Were the methods valid and consistently applied? Were there any syste-

matic differences in procedures between cases and controls? Could any differences have

accounted for the results?

Confounding
* Were attempts made to limit any effects of confounding factors such as population

stratification by

– Restriction of the study population (eg, use of family-based control approaches)
– Matching on reported ethnicity or adjustment for factors in a stratified or multivariate

analysis (eg, genomic control methods)
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Table 3 Definition and utility of criteria for identification of ‘causal’ associations between genetic variants and a disease
state or trait

Criterion Definition Utility

Consistency

of association

* Consistent association with a genetic variant across studies

in the same population provides evidence in support of
causal association

* Replication of association in different populations is based

on assumption that the same genetic variant will be a

causal factor and will be detectable in other populations
and that other required (genetic or environmental)

component causes will also be present
* One good study (well designed in terms of limiting bias

and confounding and of large sample size) outweighs
several poor ones

* Replication in studies with different study designs provides

stronger evidence of causality (thus, consistent evidence
both from association studies with population- and family-

based controls improves evidence for causality)

Studies on independent data from the same population
* Replication good evidence of causal association
* Lack of replication against causal association only if sample

size is adequate (see discussion of repeatability in text)

Studies in different populations
* Replication good evidence of causal association
* Lack of replication difficult to interpret as different genetic

background, environmental exposure and LD patterns

may lead to different causal genetic variant in other
populations (do not reject initial findings on this basis

alone)

Studies in special populations
* Replication of findings from special populations

problematic (risking important findings being rejected)

Strength of

association

* Strong association is better evidence for a causal
relationship than a weak one as it is less likely that bias and

confounding can explain a strong effect
* Strength of association depends on the particular study

population and the prevalence of other causal factors
(genetic and environmental)

* A strong association is better evidence for a causal
relationship than a weak one although utility limited by

over-estimation of effect size especially in initial reports
* Strong association may be reported for a marker in strong

LD with susceptibility variant of weak effect and vice versa
* Strong association in family-based studies does not imply

tight linkage
* Strong association does not equate to importance as a

cause of disease in the population as population
attributable fraction depends also on the allele frequency

of the variant

Biological

plausibility

* If a relationship is consistent with knowledge of

mechanisms of the disease then it is more likely to be

causal.
* Conversely, if there is no known biologically plausible

mechanism but epidemiological evidence is otherwise

strong then this probably reflects limitations of medical

knowledge

* Association generally consistent with known molecular

mechanism of the disease currently represents weak

support for causality as many plausible mechanisms can

be constructed post hoc
* Formulation of objective and quantifiable criteria should

provide more robust evidence favouring casuality; thus,

future adoption of rigorous criteria from bioinformatics

(biological sequence comparison and computational gene
and protein structure prediction) will lead to more critical

and evidence) based application
* Biological data can be used to direct genetic analysis, eg,

defining criteria for rational selection of candidate genes

for study thus reducing multiple testing and focusing on

variants with higher prior probability of pathological

role

Biological

gradient

(or dose–

response

relationship)

* Varying amounts of a factor related to varying amounts of

effect (eg, greater risk of disease, earlier disease onset or

more severe disease) with an observable gradient
strengthens evidence for causal association

* Good evidence of causality if the association is strong, but

does not exclude confounding when association is weak

* Presence dependent on underlying genetic model; may

be threshold effect with multiple susceptibility variants

interacting to disturb homeostatic mechanisms
* When present can give useful information about the

genetic model that is operating

Temporal

relationship

* Cause to precede effect * Not generally helpful in assessing cause
* May have some utility in instances in which epigenetic

mechanisms such as methylation and adduct formation
are known to be present

Analogy * Existence of well-known cause analogous to one under
study

* Known cause analogous to one under study not helpful in
assigning cause

Reversibility * Removal of factor results in decreased disease risk * Not generally applicable
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100–500 cases41 and empirical data
confirm this with studies of sample
size less than 150 followed much more
often by studies reporting discrepant
results.27

Seeking replication of an association
in another population is only valid if
it is likely that the two data sets share
the same measurement value (within
sampling variability).40 Substantial
between-study heterogeneity has been
clearly shown in a review of repeated
genetic association studies.27 Thus, the
prospects for replication are uncertain
when the validation sample differs
genetically and/or environmentally
from the original study population.42

Different proband ascertainment stra-
tegies, multiple disease alleles, out-
breeding and environmental modi-
fiers all act to make replication of
findings less likely.40 Where LD is the
basis of the observed association, this
is not likely to be consistent across
populations since LD depends on
population history. Even when the
‘causal’ disease susceptibility variant
is under investigation, a genetic var-
iant may be more or less important in
different populations depending, for
example, on population allele frequen-
cies. It may prove particularly proble-
matic to replicate associations re-
ported in ‘special’ populations (genetic
isolate, admixed or those with unusual
environmental exposure patterns)
especially if the variant studied has
low relative risk, variable penetrance
and very variable allele frequencies in

different populations. More generally,
rare variants (o5% population preva-
lence), which may be particularly
important in the aetiology of complex
disease,43,44 are more likely to be
population-specific. Replication in
another population of associations
with rare variants may not be possi-
ble.45 In these circumstances other
alternative (functional) variants in
the gene under investigation should
be studied. Positive associations with
these variants could represent evi-
dence in favour of a causal role. This
is similar to finding family specific
mutations in linkage studies of a
Mendelian disease. Risch has sug-
gested that such allelic heterogeneity
provides strong evidence of a causal
relationship.10

Replication studies must therefore
ensure they have a sufficiently large
sample size to give adequate power to
detect the association (see also ten-
dency to over-estimate effect sizes and
hence study power42 below). Due to
the problems with replication in other
populations, integrated study de-
signs46 that permit an internal check
in an independent sample of the same
population should be favoured. This
could include, for example, designs
that include cases and both popula-
tion- and family-based controls.
Repetition by a transmission disequili-
brium test (TDT) study following a
reported association in a case-control
study demonstrates both linkage and
association and would further

strengthen the evidence for a causal
association.

When an association is confirmed in
other populations then chance is a
highly unlikely explanation. However,
failure to confirm the association is
more problematic to interpret, as dis-
cussed above. Rejection of findings not
replicated in other populations may
discard genetic effects with important
effects specific to population sub-
groups.

Strength of Association
In complex causal pathways with
multiple interacting causes (none of
which might be either necessary or
sufficient), associations tend to be of
modest strength and inferences based
on the relative strength of individual
estimates of relative risk are proble-
matic. Added to this, the application
of this criterion in judging whether an
association may be causal is compli-
cated by a number of factors which
bias reports of association strength. A
consistent upward bias in published
estimates of locus-specific effect sizes
has been noted. This is due to publica-
tion bias in initial reports27 and also
due to the ‘Beavis effect’, particularly
when maximum likelihood methods
are employed.42 In LD mapping stu-
dies the strength of association is
influenced by the extent of LD be-
tween and the relative frequencies of
marker and susceptibility variants.
Thus, strong associations may be re-
ported for a marker in strong LD with

specificity * A single cause leads to a single effect * Very unlikely to be valid for most genetic variants

underlying complex disease since most show substantial
pleiotropy (more than one phenotype determined by

same genotype)
* Known to hold only for infectious diseases and some

inborn metabolic errors

Experimental

evidence

* Experimental evidence is best considered as a test of a

hypothesis of causal association

* Supportive data from functional studies such as knock-out

animals, cell lines, and studies of gene expression and
enzyme activity are strong evidence in favour of causality

* Data showing genetic variant under study is expressed in

diseased tissue or alters enzyme or receptor activity in

relevant metabolic pathway strengthens evidence in
favour of causality

Table 3 (Continued)

Criterion Definition Utility
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susceptibility variant of weak effect
and vice versa.

It should be noted that in family-
based associations studies results are
based on recombinations occurring in
a single generation and so cannot
distinguish between tight and loose
linkage. Thus strong association in
these studies does not imply tight
linkage.47

Biological Plausibility
The molecular nature of the genetic
variant may guide interpretation of an
observed association with a disease,
disease trait or adverse drug reaction
(Table 4). Where appropriate, the
adoption of an underlying biological
model (for example, the multistep
model of carcinogenesis) may provide
a useful framework for interpretation.
As the function of specific genes and
their role in biological processes be-
come better understood, it will be
increasingly possible to direct ‘candi-
date gene’ studies based on this know-
ledge. This Bayesian approach would
favour investment in (persisting with)
investigation of variants in which
there are prior biological reasons to
suspect a role for a candidate gene
(Table 4). For example, genes that are
more highly expressed (high number

of mRNA copies) in tissues in which
disease pathology is known to occur
could be selected first for study.48 This
has been shown to result in a 30 to
100-fold reduction in the number of
genes to be screened.49

It is likely to be more efficient to
investigate SNPs in coding and pro-
moter regions or SNPs that define
‘haplotype tags’50 than random SNPs.
Typologies of SNPs similar to the
classification system in Table 4 have
been developed.10,51,52 Critical bio-
chemical processes that are well de-
fined and under the control of both
genes and environmental exposures
might prove to be good starting points
for the investigation of the role
of genetic factors in pathogenetic
mechanisms.

Current approaches to the assess-
ment of biological plausibility are
subjective and unsatisfactory. They
are typically based on prior beliefs or
involve post hoc biological hypotheses
being drawn up by investigators keen
to find support for an observed asso-
ciation. Emerging bioinformatics
methods in biological sequence com-
parison, computational gene predic-
tion, identification of functional
gene signals and prediction of protein
structure53 should allow Bayesian

methods to quantify ‘biological plau-
sibility’ on a probability scale. This will
permit biological plausibility to be
assessed objectively in a scientific
manner and will greatly improve
the utility of this criterion in causal
inference.

Biologic Gradient (Dose–Response
Relationship)
The presence of a gradient supports
the interpretation that the variant
truly alters susceptibility to disease,
although association due to confound-
ing factors can also show a gradient.
However, the presence of a gradient is
dependent on the underlying genetic
model. Thus, if there is a moderate risk
of disease in heterozygotes and (very)
high risk in homozygotes, this not
only favours causal association but
provides information on the under-
lying model (in this case recessive).
Conversely, interpretation of results is
complicated by lack of knowledge of
the particular underlying genetic
model that is operating and so lack of
a gradient is not necessarily evidence
against causal association. A threshold
effect may be seen in which no effect
is observed until there is a certain
level of ‘exposure’ F with genetic
factors this may be through multiple

Table 4 Examples of the synthesis of epidemiological and biological data in the design or interpretation of genetic
association studies

Study Design

Use of both epidemiological and biological data to define criteria for selection of candidate genes

Strong justification:
* Genetic variant associated with familial forms of disease
* Genetic variant in exon or intronic promoter region of gene coding for proteins involved in molecular mechanisms of disease or for xenobiotic

enzymes thought to interact with environmental exposures known to mediate risk of disease
* High mRNA copy number in tissues affected by pathological process

Weak justification:
* Genetic variant found to be associated with disease risk in other published reports but no other supporting biological data

Use of data from genetic association studies to direct functional investigation of candidate genes (‘statistical functional genomics’)57

* Enumeration of all genetic variants in a genomic region
* Results of genetic epidemiological analysis direct and prioritise subsequent molecular and functional studies

Data analysis/interpretation

Use of biological criteria to classify genetic variants into categories with differing probabilities of having a true pathological role:

Probability of pathological role Variant (type of mutational event)
* Definitely pathogenic K Frameshift; nonsense; splice variant
* Probably pathogenic K Nonconservative amino acid change
* Probable polymorphism K Conservative change; variant in controls
* Definite polymorphism K Synonymous variant
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susceptibility variants interacting to
disturb homeostatic mechanisms and
thus alter a trait value.

Temporal Relationship
This criterion is apparently self-evi-
dent in genetic studies since the
genotype is fixed from conception
and thus always precedes disease or
drug response. However, consideration
of this criterion may be relevant in the
study of epigenetic changes such as
methylation of DNA or DNA adducts
(from carcinogens, which can occur in
response to environmental exposures
later in life) or in gene expression

studies (with genes up and down
regulated). Evidence that specific epi-
genetic changes occurred before the
earliest pathological changes would be
consistent with an interpretation that
they may have caused the changes.

Specificity
Genetic variants are likely to have
pleiotropic effects and thus would
not be expected to show highly
specific pathological effects. However,
this criterion may be helpful in a
broader sense, for example, if there is
a large pedigree or an unusual (isolate
or admixed) population in which a

specific subtype of a complex disease is
found. This may be represented as an
extreme incidence or prevalence of
disease or as very early onset disease
or very severe disease. If related patho-
physiological and biochemical evi-
dence confirms a specific subtype of
the complex disease then population-
or pedigree-specific variants may lead
to very specific forms of disease and
this may provide evidence in favour of
causality.

Analogy
This is the weakest criterion, as analo-
gies can be readily found everywhere.

Table 5 Interpretation of genetic association studies by deduction: use of deductive criteria to judge among competing
hypotheses to explain observed association

Competing hypotheses for interpretation of data

Criteria (based on observed data)

False positive

(chance)

Artefact

(bias)

Population stratifica-

tion (confounding)

LD with causal variant

(confounding)

Causal

variant

Consistencya

Replication in same population Present Against Againstb Againstc In favour In favour

Absent In favour In favour In favour Against Against

Replication in different population Present Against Against Against Against In favour

Absent F F F In favour —

Replication in different population Present Against Against Against Against In favour

with other variant at same locus Absent F F F In favour —

Strong associationd Present Against Against Against Against In favour

Absent F F F F F
Biological plausibilitye Present F F F F F

Absent F F F F F

Biological gradient Present F F F Against In favour

Absent F F F In favour F
Control alleles in Hardy-Weinberg Present F Against Against F F

equilibrium Absent F In favour In favour F F

Association persists after appropriate Present Against F F F In favour

correction made for any multiple testing Absent In favour F F F Against

Test for association in surrounding variants Present Against In favour In favour In favour Against

Absent F Against Against Against In favour

Experimental data (functional studies) Present Against Against Against Against In favour

Absent — — — — Against

Test of causal hypotheses. A list of competing explanations (or hypotheses) for the association is set out. These can be found in the columns (eg, chance, population

stratification, linkage disequilibrium with causal variant or causal association with the variant showing association). It is assumed by deduction that one of these is correct.

The competing explanations are then tested against the observed data by considering the criteria listed in the rows. If only one remains unrefuted then it is considered to

be correct. The comments in the table against/in favour represent evidence against/in favour of this interpretation; and against/in favour represent strong evidence

against/in favour of this interpretation. This is similar to an outbreak investigation in that possible exposures that may have caused the outbreak are eliminated one by

one (eliminative induction).38

aAssuming that there is a sufficient sample size to assure good probability of repeatability of true finding.
bEvidence against this interpretation if replication study used different study design (for example family-based controls in repeat study if original used population-based

controls).
cEvidence against this interpretation if replication study used family-based controls.
dDefinition of ‘strong’ association in a complex disease will vary: an unbiased odds ratio of greater than 2 is strongly against an interpretation of population stratification;

an unbiased odds ratio of greater than 3–5 is strongly in favour of a causal variant.
eAssuming subjective assessment of biological plausibility; evidence in favour/against is stronger if objective quantified assessment of biological plausibility is made.
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EXPERIMENTAL EVIDENCE
Experimental evidence is best regarded
as a test of a causal hypothesis (see Table
5) than as a criterion for causal
inference. In the early genetic linkage
analysis studies, results were corrobo-
rated by cytogenetic or somatic cell
hybrid studies in order to yield robust
conclusions that could be used to
direct clinical genetics risk estima-
tions. The limitations of the utility of
epidemiological evidence alone in de-
termining causality are illustrated in
the above discussion. This highlights
the need to integrate epidemiological
and statistical data with biological
data in order to build a more robust
framework for interpretation. A gen-
eral framework for synthesising epide-
miological and experimental data is
illustrated in Figure 1. Genetic variants
showing positive associations with dis-
ease or disease traits that appear to be
causal should be examined further in
functional studies in knock-out ani-
mals or cell lines or in gene expression

or enzyme activity studies, as appro-
priate. The discovery of the role of the
mismatch repair genes in a subset of
early onset colorectal cancer followed
this model (Figure 2).

ALTERNATIVE APPROACHES TO
USE OF ABOVE CRITERIA IN
INTERPRETATION OF GENETIC
ASSOCIATION STUDIES
The traditional epidemiological ap-
proach described above is one of
assessing the validity of the associa-
tion (by considering chance, bias and
confounding;Table 2) and then apply-
ing inductive inference. This assesses the
extent to which the data support an
interpretation (or hypothesis) that the
exposure or genetic variant under
study is a cause of the disease (Table
3). An objective assessment is made of
each of the above criteria leading to a
judgement as to whether the weight of
the evidence is in favour with this
interpretation. This approach, how-
ever, is greatly compromised by the

problems in interpretation high-
lighted above.

An alternative and preferred ap-
proach is as a deductive test of causal
hypotheses. A list of competing expla-
nations (or hypotheses) for the asso-
ciation is set out. It is assumed by
deduction that one of these is correct.
The competing explanations are then
tested against the observed data. If
only one remains unrefuted then it is
considered to be correct. This is similar
to an outbreak investigation in which
possible exposures that may have
caused the outbreak are eliminated
one by one (eliminative induction).38

An illustration of this approach is
given in Table 5. This deductive ap-
proach has a more secure basis in
logic.38 It can also help identify what
kind of data or further analysis may be
useful to distinguish between compet-
ing explanations (hypotheses) and
thus help direct further research. The
design of biological experiments to test
key causal hypotheses has typically

GENOME
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PROJECT

HUMAN PROTEOMICS
PROJECT

HUMAN GENOME 
DIVERSITY PROJECT

GENE EXPRESSION 
STUDIES 

HUMAN TRANSLOCATION 
CATALOGUES 

SNP
DATABASES 
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RNA

PROCEDURES 
COMPARATIVE

GENOMICS ANIMAL MODELS
(transgenics, knockouts,
targeted mutagenesis)

BIOLOGICAL
RESEARCH 

BIOLOGICAL SEQUENCE 
COMPARISON

BIOINFOR-
MATICS
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GENETIC ASSOCIATION STUDIES
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ENVIRONMENTAL
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FOR DATA
ANALYSIS

EPIDEMIOLOGICAL
RESEARCH 

Figure 1 Synthesis of epidemiological, genomic, biological and bioinformatics data in the design of genetic epidemiological studies.
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not been feasible in past epidemiolo-
gical studies. This has placed severe
limits on the approach to interpreta-
tion based on inference. The design of
experimental studies (such as func-
tional studies of genetic variants) is
now increasingly possible in genetic
epidemiology (Figure 2). This should
be seen as an essential step in the
interpretation of genetic association
studies and should ideally be planned
by multidisciplinary teams including
epidemiologists and statisticians to-
gether with geneticists and bio-
logists. The expense of these studies
is likely to be offset by the
savings resulting from fewer research
groups pursuing false positive associa-
tions.

CONCLUSIONS
The failure of the majority of reported
genetic associations to lead to new
insights into complex disease or drug
response mechanisms challenges the
perceived utility of this approach for
the identification of genetic variants
underlying common complex disease
or responsiveness or adverse reaction
to drugs. Closer attention to study
design and use of bioinformatics data
to inform data analysis (through em-
pirical Bayes adjustments) has the
potential to limit the rate of false
positive reports. Suggestions that com-
parisons of groups of individuals de-
fined by genotype in a genetic asso-
ciation study are equivalent to rando-
mised comparison (due to ‘‘Mendelian

randomisation’’) and thus not be sus-
ceptible to bias and most confounding
effects are potentially important but
need to be demonstrated empiri-
cally.10 If the results of genetic associa-
tion studies are to provide a useful
guide to direct further research then
an appropriate framework is required
to assess whether genetic variants
showing an (apparently valid) associa-
tion with disease truly alter suscept-
ibility to disease or response to drugs.
Ideally, knowledge of genetic variabil-
ity should inform study design and
interpretation and this is likely to
evolve as the Human Genome Diver-
sity Project matures. Bioinformatics
strategies should improve our ability
to utilise biological knowledge to

Linkage analysis in 
families with extreme 
phenotypes (HNPCC)

Positional
candidates 
(Chromosomes
2p and 3p21-23)

Gene function
/ expression 
analysis in
yeast 

Human
homologs: 
hMLH1
hMSH2

Mutation Analysis identifying
hMLH1 / hMSH2 alterations in
HNPCC cases 

Functional
Candidates:
mut L
mut S

Presence of
microsatellite 
instability

Epidemiological studies 
confirming strong and consistent
association with colorectal cancer 

Causal Role based on: 
Experimental data
Biological plausibility
Strength of association 
Consistency of association

Figure 2 Synthesis of epidemiological and biological data: discovery of the role of human mismatch repair gene mutations (hMLH1 and
hMSH2) in colorectal cancer.
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direct epidemiological studies and in-
form interpretation of results. This will
build a more scientific, evidence-based
approach to the consideration of bio-
logical plausibility than the current
unstructured and unhelpful approach
and will result in this criterion becom-
ing more useful in future. Consistency
of association across studies is a useful
indicator of causal association, when
present. However, problems in inter-

preting failure to replicate findings
limits the utility of this criterion and
argues in favour of investment in
large, integrated study designs that
can perform internal checks in a single
population. The difficulties in replicat-
ing associations in special populations
or with rare variants should be recog-
nised if important population-specific
effects (which may give unique in-
sights into molecular processes rele-

vant to disease in all populations) are
not to be discarded. Furthermore,
meta-analyses to determine a sum-
mary measure of association across
different populations may underesti-
mate the effect of variants in specific
populations. Strength of association re-
mains a useful indicator of causal
association but over-estimates due to
bias are frequent. A deductive frame-
work based on testing competing

Table 6 Linked epidemiological and bioinformatics approaches for correct interpretation of genetic association studies

Epidemiology Biology/Bioinformatics

Study Design Characterise phenotype and measure relevant
environmental exposures accurately and

precisely

Select appropriate study population to answer
study hypothesis (family-based study F
multiplex family or affected family members;

population-based study; special population F
isolate or admixed; twins)

Adopt appropriate study design and procedures
to limit bias and confounding

Recruit sufficiently large sample to ensure

adequate power to detect modest association
with genetic variant and to permit replication of

finding within an independent subset of the data

Select variants that are most likely to have functional
effects in important biological pathways for

investigation

Select variants identified as positional or functional
candidates from prior biological research (see Figure 1)

for investigation

Data analysis and

interpretation of

positive associations

Identify all adjacent genetic variants and check

for association with disease (if no association then

initial association more likely to be causal)

Identify all adjacent genetic variants and check

for association among variants in control

chromosomes (if significant allelic association,
comparison of haplotype frequencies may be

better)

Adopt appropriate statistical significance levels

or otherwise interpret findings according to the

number of tests performed

Check whether control genotype distribution is

in Hardy–Weinberg equilibrium to check for

study artefacts or biases.

Seek to replicate the finding in the same or

different study population

Quantify the size of effect associated with the

genetic variant and look for evidence of

biological gradient in effect

Quantify probability of variant having relevant

functional effects through formal bioinformatics

procedures such as biological sequence comparison
and gene and protein prediction programs (to provide

objective and quantified assessment of biological

plausibility)

Assess functional consequences of genetic variants

showing association with disease/trait under study

Investigate potential to check association through

experimental studies in animal models (such as

transgenics or knockouts to look for confirmatory
evidence of functional effect)

Look for confirmatory evidence from gene expression

studies (high levels of gene expression in tissues known to
be affected by disease supports role in disease

susceptibility)
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causal hypotheses and involving both
epidemiological and experimental
data (for example from animal models
or from gene expression or functional
studies) is proposed.

This review seeks to highlight the
need for improved strategies for the
interpretation of genetic association
studies. In particular, the development
and support of multidisciplinary
groups with expertise in bioinfor-
matics, (genetic) epidemiology/statis-
tics and experimental biology is
important for the future success of
this field. Moving towards this model
in which epidemiological and experi-
mental biological data are synthesised
together (Tables 4–6, Figure 1) will
require recognition in the policies of
research funding agencies and research
funding to be redirected.54

Current proposals to move away
from a hypothesis testing paradigm
of investigation to one of high-
throughput (functional) genomics55,56

in which very large numbers of var-
iants are related to a wide range of
phenotypes underlines the need for an
international consensus on a frame-
work for the interpretation of genetic
association studies and for the issues
raised in this review to inform the
design of these studies.
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