
Exact Spike Timing Computational Model
of Convolutional Associative Memories

Igor Peric, Felix Schneider, Cameron H. Price, Stefan Ulbrich, Arne Roennau,
Marius Zoellner, Ruediger Dillmann

FZI Forschungszentrum Informatik, Karlsruhe, Germany
Email: {peric, fschneid, price, sulbrich, roennau, zoellner, dillmann}@fzi.de

Abstract—In this paper we propose the use of exact spike timing
signalling for a spiking neural network model of associative memory
in the mammalian cortex. We extend the spike timing function engi-
neering framework STICK with a computational block for performing
addition with overflow (modulus). This computational block is used to
implement a Circular Holographic Reduced Representation, a specific
instance of Vector Symbolic Architectures, which is a candidate for
an associative memory framework described by holonomic brain
theory. We provide illustrations of spiking dynamics during vari-
ous computational stages contain elements of the stochastic spike
synchrony observed in cortical EEG recordings, as well as clearly
separable computational phases suitable for functional analysis. We
show that the framework is able to very accurately memorize and
recall associated symbolic identifiers under ideal conditions (with
no noise), maintaining very accurate and predictable spike timing.
Furthermore, we test the framework in the noisy environment which is
known to exist in cortical tissue. We do this by injecting Poisson spike
trains into each neuron, approximating presence of unpredictable,
stochastic environment in which actual compute module would reside
in biological system. Besides reporting accuracy analysis for this case,
we propose computational requirements (constraints) needed for the
exact spike timing framework to work in such noisy conditions.

Keywords—associative memory, neural computation, precise spike
timing, signal processing

I. INTRODUCTION

DESPITE investing numerous decades of effort, many sci-
entific disciplines still haven’t identified the underlying

mechanisms used by the brain to perform various compu-
tational tasks. These tasks include, but are not limited to,
memory representation, quick symbol manipulation, long-term
storage and recall.

Holonomic brain theory [1][2] suggest that representations
used by the brain are highly dispersed (ideally uniformly)
throughout the whole representational space. In other words,
each symbolic representation consists of current set of neu-
ron activation across the whole brain. Lead by this theory,
cognitive neuroscientists have created series of computational
models that rely on this theory. One of the most popular ones is
Holographic Reduced Representations (HRR) [3][4][5], briefly
explained in chapter III.

The Neural Engineering Framework (NEF) [6][7] is a
general-purpose function approximation framework that uses
spiking computational units and synaptic connections between
them to encode input-output transformations. Since every
function approximation block in NEF consist of two layers and
all-to-all connectivity between neurons in them, the number
of synapses grows exponentially with the number of neurons

Fig. 1: Spiking chronograph of a neural population performing
convolution with Gaussian kernel, effectively doing smoothing
of input signal. Color codes represent different stages of pro-
cessing, associating spikes with their computational function.
Top plot shows ordered spike trains, as constructed by our
framework. Middle plot shows same activity with randomly
shuffled neurons (vertical axis) for visualization purposes only,
resulting in a more confusing graph in which individual spikes’
function becomes hardly distinguishable. These kind of graphs
are a very common outcome of a cortical spiking activity
recording. Bottom plot shows total population activity over
time. Details of this network are given in sections II-B and
IV-A

used. It abstracts away underlying spiking dynamics and con-
siders only firing rates of individual neurons in the decoding
process, thus not fully utilizing the computational capabilities
(advantages) of discrete spiking signaling. This paper explores
the alternative approach, described in chapter I-A, which uses
neuron model dynamics as the computational substrate and
membrane voltages for storing values.

The authors of NEF have been able to approximate HRR
operations in spiking neural networks and named this approx-
imation Semantic Pointer Architecture (SPA) [8]. They used
SPA to build a large scale cognitive architecture Spaun [9],

a model capable of performing 10 cognitive, perceptual and
motor tasks. Their simulation had 2.5 million neurons, required
24 GB of RAM due to the large number of synapses and took
3 hours to simulate 1 second of activity.

Another popular function approximation framework for
spiking neural networks are Liquid State Machines (LSM)
[10]. This framework assumes random connectivity of a
reservoir of spiking computational units with input and
output subpopulations. Readout weights are trained with Lin-
ear Least Squares (LLS) optimization, producing the desired
input-output mappings. To the best of our knowledge, there
are no cognitive architecture models built using the LSM
framework yet.

The structure of this paper is as follows. Section I-A gives
a brief overview of the STICK framework, needed for the
comprehension of the following sections. Section II describes
our contributions to the STICK framework - design of a new
computational block for performing addition with overflow
(section II-A) and proposal for using the existing linear addi-
tion block for performing convolutions in time domain (section
II-B). Section III introduces basic properties of Holographic
Reduced Representations (HRR) and its variant (Circular
HRR), which are two candidates for symbolic processing in
cognitive architecture models. In sections III-D and III-E we
give the comparison of these two methods running the same
cognitive task in STICK framework. Lastly, section IV we
show results of three experiments: performing convolution on
1D signals, modelling associative visual scene memory using
CHRR and effects of adding noise on the inner computational
dynamics and accuracy.

A. The STICK Framework

All computations presented in this paper were performed
using the STICK framework using the NEST simulator[11].
STICK refers to ”Spike Timing Interval Computational Ker-
nel”, a framework for general purpose computation in neurons
utilizing, precise timings, delays, and synchrony [12]. A full
description of the framework can be found in [12], but a brief
overview is provided here. The basic computational unit is a
non-leaky integrate and fire neuron. The neuron dynamics can
be described by the following equations:

τm ·
dV

dt
= ge + gate · gf

dge
dt

= 0

τf ·
dgf
dt

= −gf

(1)

The state variables of the model are V (membrane voltage),
ge (constant input current), gf (exponential decaying post-
synaptic current) and gate (switch for postsynaptic current,
only changed by synaptic events). The parameters to the
model are τm (membrane time constant), τf (synaptic time
constant), Vt (threshold voltage) and Vreset (resting potential)1.
When the membrane voltage reaches the threshold voltage, the

1The values for these parameters are the same as in the original paper:
τm = 100ms, τf = 20ms, Vt = 10mV, Vreset = 0mV, Tsyn = 1ms, Tmin =
10ms, Tcod = 100ms. The exception is Tneu, which is 0ms in NEST.

neuron fires along all outgoing synapses, resets V to Vreset,
and all other state variables to 0.2 This corresponds to a
non-leaky integrate-and-fire neuron with exponential decaying
post-synaptic current.

STICK differentiates between four different synaptic con-
nections, each affecting one of the four state variables: V -
synapses directly modify the membrane voltage, ge-synapses
modify the constant input current, gf -synapses modify the ex-
ponential input current and gate-synapses set the gate variable
to turn exponential input current on and off.

For calculations with real numbers, values between 0 and
1 are encoded the time between two successive spikes via the
encoding function

∆t = f(x) = Tmin + xTcod (2)

where x is the value to be encoded and Tmin and Tcod are
the time intervals representing minimum and maximum delay
between encoding par of spikes, respectively. The choice of
Tcod is very important for the performance of the network.
Primarily it affects the resolution of the value representation.
Choosing a smaller value while keeping the time resolution
of the neural simulator constant results in a more coarse
representation. It also affects the speed of many operations
in STICK, as they are often tied to Tmax = Tmin + Tcod, the
longest possible duration of an encoded input. In most of
the experiments presented in this paper we used the coding
constants Tmin = 10ms & Tmax = 100ms, as in [12]. To
represent signed values we use pairs of two neurons, one to
represent positive (or zero) input and one to represent negative
input.

We note that unless otherwise noted the particular constants
used in this paper are exactly as in [12], with the exception of
the there mentioned Tneu (neuron delay), which by restriction
of the nest simulator was set to 0 for all experiments in this
paper.

The STICK framework includes the following operators,
realised by neurons: Many of the above capabilities are used

Block name Description
Memory Storing any representable value for

later recall
Signal Synchronisation Taking in a given number of inputs to

be fed forward only once all signals
have been received.

Minimum and Maximum Identifying and returning the mini-
mum/maximum of a number of in-
puts.

Subtraction Returning the difference between
two operands.

Logarithm A block with output is proportional
to the natural logarithm of the input.

Exponential A block with output proportional to
exp(input).

Multiplication Multiplies two operands.
Integration Performs integration of the input

over time.

TABLE I: List of blocks implemented in original STICK
framework.

2This is a defining factor of STICK and means that input current is not
preserved across

input
A

input
B

first

last

first

last acc

acc
of

sync of

delay

output

α0|w̄acc|

−α1|w̄acc|

−α0|w̄acc|

α1|w̄acc|

we
2

we
2

w̄acc

w̄acc

ge-synapse
excitatory
inhibitory

delay Tsyn

delay Tmin + Tsyn

delay 3Tsyn

V -synapse
excitatory
inhibitory

delay Tsyn

delay Tmin + Tsyn

delay 2Tsyn

unless otherwise noted,
synaptic weight of
V -synapses is we

we
2

we
2

−we

−we

−we

Fig. 2: Diagram illustrating overflow addition computational
block. This network performs a weighted addition which
overflows back to zero if the sum exceeds one. The neurons
drawn in bold have a threshold voltage of 2Vt, twice that of
the other neurons. The notable change to the regular linear
combination block is the acc_of neuron, which is used to
check for an overflow. The of neuron is used to make sure
the accumulator is reset at the end of the calculation, as well
as inverting the signal from acc_of (from spike on overflow
to spike on no overflow).

in the experiments presented in this paper. For details of these
networks we refer the reader to [12].

II. ADDITIONS TO STICK FRAMEWORK

A. Modulo Arithmetic

As discussed in sections III-C and III-E, to perform the
experiments presented in section III-F in a framework (such as
STICK), it is necessary to be able to perform modulo addition.
Intuitively, implementing an addition with modulo should be
something that neurons are inherently capable of, as a neu-
ron’s internal mechanics have a built-in ”overflow” when the
membrane potential exceeds the threshold voltage, it returns to
the resting potential. However, when this happens, information
about previous input currents is lost, so it proved infeasible to
use this property. We instead propose an arrangement that is
shown in Fig. 2. The arrangement shown here is limited to two
inputs, but can be trivially expanded to support more. More
importantly, it is limited to one overflow, i.e. the weighted sum
of the inputs does not exceed two.

B. Convolution with a Fixed Kernel: As a use case of linear
combination blocks

In the field of 1D signal processing an important operation
is the circular convolution of an arbitrary vector with a fixed

kernel. This operation is defined as follows: Let ~k be a vector
of odd length |k| called the kernel, the circular convolution
~v ∗ ~k of these two vectors is given by:

(~v ∗ ~k)i =

|~v|−1∑
j=0

xj−i~k′j−α (3)

where ~k′ is the kernel extended by appending 0s until it is of
length |~v|, all indices are taken modulo |~v|, and α = (|~k|−1)/2

Authors in [12] showed how the STICK framework can be
used to form a weighted linear combination of an arbitrary
number of inputs. Given kernel ~k we can consider a STICK
block which produces the weighted linear combination of its
inputs with weights being the values of the kernel. For a
diagram of this block refer to Lagorce 2015[12]. We consider
the block being applied to the neuron attached to the center
input of the block, that is input α = (|~k| − 1)/2. Given a
row of N neurons, each representing a number in the STICK
framework we can consider this row to be representing a
vector ~x and we can apply N kernel blocks to the N neurons.
The output of these N kernel blocks is then the circular
convolution of the vector ~x with the kernel ~k. Fig. 3 describes
this principle.

In 0

In 1

In 2

Kernel Block 1

N-2

N-1

Out 1

Kernel Block 0 Out 0

Kernel Block 3 Out 3

Kernel Block N-2 N-2

Kernel Block N-2 N-1

Plus-minus pair of neurons V-Synapse

Fig. 3: An example of the fixed kernel convolution block for a
kernel of length 3. We note that a connection between a plus-
minus pair of neurons is actually a pair of synapses, connecting
the plus neuron to the plus neuron and the minus neuron to
the minus neuron.

III. HOLOGRAPHIC REDUCED REPRESENTATIONS

A. Associative Memory Systems

Authors in [9] have shown that many common cognitive
tasks can be solved by an associative memory system. Suppose
we have some representation for memory, and we call the
space of memorable objects (or their representations) M. If
given a, b, c, d ∈ M we can perform operations of binding
⊗, dissociation ., and superposition ⊕, then we can use this
representation to form an associative memory system. The
association and dissociation operations are defined such that
a ⊗ b = x =⇒ a . x ≈ b & b . x ≈ a, which is to say,
two elements can be bound together to form a new element,
and either of the original elements can be recovered from the
new element by probing it with the other. The superposition
operation is defined such that given (a ⊗ b) ⊕ (c ⊗ d) = z,
we can probe z with any of a, b, c, d to recover the element
paired to it; for example, probing the above z with a results in
a . z ≈ b. Binding is commutative and associative so that an
arbitrary number of elements can be bound together, and then
probed by an element to recover all other elements. Similarly
superposition should also allow for storing an arbitrary number
of bindings in a single superposition state.

B. Classical HRRs

It can be shown [4][3] that given a vector space of di-
mension D over the real line R, the operations of circular
convolution, vector addition, and correlation (or involution
which is a good approximation in high dimensional spaces)
satisfy the relations for the binding, superposition, and disso-
ciation operations, required for associative memory systems.
The similarity of two vectors can be measured using the dot
product. This formalism is known as ”Holographic Reduced
Representations” (HRRs)[4]. In this case the number of mem-
orable objects that can be represented in a working memory
depends on the dimension of the real space considered; in
particular higher dimensional spaces can be used to form larger
working memories. Note that by ”working memory” we mean
that the processes of binding and superposition operations can
be done with a reasonable amount of vectors, and decoding
will produce a result that is closer to the target vector than
any other vector used to represent an object in this particular
memory representation.

HRRs compare favourably to many associative memory
models as the space of representations is closed under the
memory operations. In systems which are not closed under
these operations, performing multiple operations leads to di-
mensional explosion which is unsatisfactory from a computa-
tional standpoint.

C. Circular HRRs

A significant problem of HRRs is that given a vector space
of dimension D, convolution and involution require O(D2)
operations. According to the convolution theorem, the circular
convolution of two vectors x, y is equivalent to the inverse
Fourier transform of element-wise product of the Fourier
transforms of x and y. The use of fast Fourier transform

Object or
Operation

Representation
in HRRs

Representation in
CHRRs

Memory Element
Vector with
elements in
(0, 1)

Vector with elements
in (−π, π]

Binding Convolution Modulo 2π
element-wise sum

Dissociation Involution Modulo 2π
element-wise negation

Superposition Vector addition
Angle of vector sum
of complex
representation3

Similarity Dot Product
Mean of cosine of
element wise angle
differences

algorithms can then allow circular convolution calculations in
O(D logD) operations.

This suggests that working with a vector field over the
complex plane may allow one to avoid computationally ex-
pensive convolutions in favour of vector addition. Plate [5]
showed that by working in a vector field of unitary vectors over
the complex plane (where the methods of HRRs apply) and
representing the elements of the vectors (which are complex
numbers of absolute value 1), as angles Θ ∈ [−π, π], a
system of memory equivalent to HRRs can be constructed
using alternative operations. Plate also provided the following
table of equivalences between operations on the traditional
vector representation and the new ”Circular HRR” (CHRR)
representation.

The operations for CHRRs are much better suited to the
STICK framework that their equivalent in HRRs.

CHRRs are mathematically equivalent to HRRs and there-
fore all the properties of associative memory systems discussed
in sections III-A and III-B

D. Example Classical HRR Calculations in Neural Networks

Of the operations required for classical HRRs, convolution
is the most problematic for computation in STICK. Convolu-
tion of two arbitrary vectors requires O(n2) operations (mul-
tiplications and linear combinations) which can be performed
in STICK using the relevant blocks from Lagorce [12]. For
this reason in investigating the feasibility of implementing
HRRs in STICK we have focused on implementing the binding
operation.

We have constructed and run a network to compute the
convolution of two vectors of 10 dimensions. The network
consists of 2480 neurons and on our reference machine takes
284ms to simulate the 600ms of in-simulation time required to
perform the calculation, meaning it runs about twice as fast as
real-time. This calculation is exact, within the accuracy of our
representation. However, the amount of neurons required rises
quadratically with the number of dimensions of the inputs.
It is possible to reduce the number of required neurons by
increasing simulation time, reusing the blocks that perform the
calculations and feeding the input sequentially. Nevertheless,
as HRRs require a high-dimensional vector space represen-
tation the number of operations (and in the case of STICK,

Methdod Dim Neurons Time In-simulation
time

HRR Convolution 10 2480 290ms 600ms
HRR Convolution 20 9160 1597ms 600ms
HRR Convolution 40 35120 6923 600ms

CHRR Binding 10 160 22ms 600ms
CHRR Binding 150 2400 276 600ms
CHRR Binding 500 8000 1363 600ms

CHRR superposition 10 192 22ms 600ms
CHRR superposition 150 2852 360ms 600ms
CHRR superposition 500 9502 1335ms 600ms

TABLE II: Comparison of metrics between HRR and CHRR
with STICK

neurons) required for convolution is problematic.

E. Example Circular HRR Calculations in Neural Networks
As stated in table II the operations needed implement for

CHRRs are: Modulo-2π addition for binding and deriving the
angle of a sum of complex numbers that are themselves rep-
resented as an angle for superposition. In contrast to classical
HRRs, binding is the simpler operation in this case. For the
special case of exactly two operands, the angle of the sum of
two complex numbers is the average of the angles of the two
numbers. This requires can be realised with the existing linear
combination block. The implementation of modulo addition
has been described in section II-A.

For this first implementation of circular HRRs, we have
focused on implementing the necessary operations for exactly
two operands. Expanding the processing blocks to a more
general case is a possible avenue for future research.

We have performed binding for a range of vector lengths.
Table II provides information about the amount of neurons
and simulation times required to perform these calculations.
We also performed superposition for a range of vector lengths
which are also included in Table II. We note that superposition
is marginally more computationally expensive than binding in
the CHRR scheme.

F. Comparison of Methods
Table II shows the number of neurons and the computation

time for the key operations in both the HRR and CHRR
schemes using the STICK framework. This also shows that
performing both super position and binding operations in the
CHRR framework, require far fewer neurons than performing
convolution in the HRR framework by more than an order of
magnitude for vectors of length 10. In fact, performing binding
in HRRs with vectors of length 40 requires 6 times as much
simulation time as performing binding of CHRR vectors of
length 500 demonstrating that for the high dimensional vectors
required for an effective memory system, CHRRs are the only
feasible option. For this reason we have chosen to use only the
CHRR to perform the more advanced experiments in section
IV of this paper.

IV. EXPERIMENTS

A. Signal Processing in Time Domain
Using the methods described in section II-B we have

performed the smoothing and discrete differentiation (or ”edge

detection”) of a signal using the kernels [0.09 0.24 0.33 0.24
0.09], and [-0.27, -0.45, 0, 0.45, 0.27] respectively. The results
of this are shown in figure 7. From this, we suggest that
signal processing with an arbitrary kernel can be successfully
performed within the STICK framework.

We have also included spike timing diagrams for these
networks. These diagrams include a scatter plot of spike times
with neurons labelled in an ordered manner (neuron with label
i is a pre-synaptic neuron to some neurons labelled by indices
slightly larger than i), and in an unordered manner close to as
would be observed in a real cortical spiking activity recording.
We note that in the diagrams with systematic neuron labels,
the signal being fed to the network can clearly be seen. This
is because in the stick framework the inter-spike timing for a
single neuron is larger when the value being represented by a
neuron is larger.

The output neuron inter-spike timings differ significantly
between the two networks. In the smoothing network, the
scatter plot retains the shape of the signal as expected. In
the edge detection network, the inter-spike timing for the
subtraction and output neurons is generally very small except
in the region where the signal changes rapidly, as one would
expected.

For both of these networks the signal processed was repre-
sented by 93 ample points, and the total number of neurons
was 5208. The number of neurons required scales linearly with
the number of sample points in the signal and linearly with
the length of the kernel. In fact the total number of neurons
n required for processing a signal of length x with a kernel
of length y is given by

n = (36 + 4y)x (4)

We note that restriction of the kernel or the signal can allow
for the use of fewer neurons (for example in cases where only
positive values can be represented, or some elements of the
kernel are 0).

As discussed in section I-A, by reducing the precision
over the range of representable values, networks in the
STICK frame work can perform operations in much less
time. In particular, we repeated the above experiments with
the originally proposed STICK parameters changed so that
τsyn = 5.0, Tmin = 2.0, Tcod = 2.0. The results of these
experiments are presented in figure ??. Under these parameters
the network is still able to correctly perform edge detection,
however, signal smoothing is significantly impacted. These
changes reduced the network run time by a factor of 10, from
≈ 500ms to ≈ 50ms. Rapid edge detection is highly significant
to real-time image processing and further research in this area
will be carried out.

B. Visual Scene Memory

In section III-E, we demonstrated that the STICk framework
could be used to perform the operations required to construct
a circular holographic reduced representation. We have also
performed somewhat complex experiments to test the perfor-
mance and accuracy of nested operations in CHRRs. For four
vectors a, b, c, d, we calculated (a×b)⊕(c×d), which is to say

Fig. 4: Spike time diagram of a 500-dimensional binding operation (association). The network consists of three populations:
The input spike generators, the modulo addition blocks and the memory blocks.

Methdod Dim Neurons Time In-simulation
time

CHRR memory 64 2698 886ms 1800ms
CHRR memory 128 5386 4635ms 1800ms
CHRR memory
(feed forward)

64 3330 918s 600ms

CHRR memory
(feed forward)

128 6658 2025ms 600ms

TABLE III: Comparison networks used for CHRR visual
memory experiment

the memory vector resulting from binding a and b as well as
c and d, respectively, then superposing the results. This is an
abstraction of a common experiment where a and c represent
objects in space and b and d the represent locations in space.
By binding them, we associate objects with their locations.
From this memory vector, we can now probe to find either an
object’s location (by probing with a or c), or finding an object
at a known location (by probing with b or d). We expect that,
if we probe the above memory vector with b, the result should
be significantly more similar to a than to any of the other three
vectors.

For this experiment, we opted to construct a network that
would reuse the computation blocks. This reduces the number
of neurons that are required, at the cost of longer in-simulation
time, as the inputs have to be provided sequentially. Fig 11
shows a schematic of the network. This simulation was done
on vectors with 64 dimensions, requiring 2698 neurons. The
simulation took 886ms to simulate 1800ms of in-simulation
time. In table III, we also report details of a network that
performed the same experiment without reusing blocks; we
refer to this as the ”feed forward” version of the network.

Performing computations in STICK networks introduces a
small error to the computation (due to the resolution of the
simulation compared to the range of the encoding function)
which is noticeable under composition of several operations.
However HRRs are resistant to such noise by design, as vectors
chosen to represent objects must be significantly dissimilar

from one another, and therefore small amounts of noise will
still allow for identification of the chosen memorable object.
We therefore find the effect of STICK introduced errors to
be negligibly small in the context of HRR calculations as
demonstrated in figure 12 which compares the results of
this experiment performed using STICK and a native python
implementation of the same experiment.

As expected, the error encountered in this experiment was
larger than the error in the single operation experiments run
in section III-D. Figure 12 shows the similarity measure for
the vector produced by probing the memory vector with b and
four base vectors. As expected this vector is significantly more
similar to a than to any other vector. This demonstrates that
the CHRR implementation in STICK is a feasible memory
system.

C. Effect of Noise
The STICK framework is designed to be valid in a determin-

istic, noiseless environment with precise spike timings. In the
previous experiments, we have provided such an environment.
However this environment is unlikely to exist in any biological
neural system. Therefore we have repeated the experiment
from section III-D of calculating a single superposition of two
CHRR vectors, with Poisson noise introduced to the network.
This was done by by connecting each neuron to a Poisson
spike source with an average firing rate of 0.1Hz, simulating
spontaneous activity. A spike from a source will cause the
target neuron to fire. Effectively, each neuron has a Poisson
firing process added to its normal dynamics. As expected,
STICK performance decreased notably. Random spiking activ-
ity disrupts the internal state of the STICK operators, causing
unexpected behaviour, often completely inhibiting meaningful
calculations. Further, for STICK networks to function for
sequential inputs the neurons within the network must be reset
to their initial state after the calculation; STICK blocks are all
designed such that after producing an output, all neurons will
have been reset to their initial state. As a result, errors in the
network accumulate, rather than normalise over time.

Fig. 5: With originally proposed STICK parameters.

Fig. 6: With reduced STICK parameters

Fig. 7: The above plots show the results of signal processing
performed in the STICK framework as discussed in section
IV-A, and compare the effects of the STICK parameter
changes discussed therein.

In our CHRR superposition experiment, the operation is
performed independently on each dimension of the input
vectors. It is therefore possible to view each dimension as
an independent process, with a final result obtained if we
have produced a valid output for each dimension. In order to
evaluate the results, we must first account for invalid readouts,
i. e. cases where the readout neuron only fires once (a valid
number representation requires two spikes) or the spiking
interval exceeds Tcod or is less than Tmin. We cannot interpret
the outputs from these neurons in any meaningful way, so they
are omitted in the following evaluation. In order to still receive
an output for each dimension, and to investigate the effect
of error on successive operations, we repeat the input to the
network, executing the calculation multiple times. Figure 13
shows the number of invalid results obtained in each iteration.

After several iterations, the number of invalid results stabilises
at around 100, or 20% of all dimensions.

While fig 13 already shows that invalid results become
more frequent after the first few iterations, this is not the
only type of error that occurs. In addition to producing
completely unusable results, the noisy calculation can also
produce valid, but incorrect results. Normally, CHRRs can,
by their design, compensate for such noise. However, as the
network is exposed to noise for longer and longer periods of
time, the results become too inaccurate for CHRRs to operate
as a functioning memory system. This is shown in figure 14.
In this experiment, we average between the (valid) results of
successive iterations. This does not lead to decreasing error,
however, as the results become increasingly inaccurate with
more iterations. The bottom plot shows the CHRR similarity
measure between the calculated and expected result. While it is
decreasing, even after 50 iterations, the result is not completely
unusable. It is still significantly more similar to the true result
than a random vector would be, and it is still dissimilar to
the two vectors that were superposed. Nevertheless, it can be
clearly seen that noise affects accuracy drastically.

We attempt an alternate approach by resetting the neurons
after each iteration, as if they had spiked (i.e. resetting V ,
ge, gf and gate). We can now consider each iteration an
independent evaluation of the experiment, as it is not affected
by the previous iterations. Averaging over the results of each
iteration does bring us closer to the true result in this case.
This is shown in figure 15. We also make two observations
about the error in this STICK network:
• Averaging over the iterations does not remove the error

completely. This means that the mean of the error that
is added to the output result is not zero; the error is
systematic or biased.

• We do not converge to a similarity of 1.0. This is a result
of the previous observation. Averaging the results of each
iteration at best gives us TrueResult +E[error], which is
not equal to the true result if the error is biased.

Resetting the neurons in between iterations is not a part of
the original (STICK) model. It could be seen as an extension to
the model, adding another synapse type to perform the reset
without causing the neuron to spike. Although we have not
implemented this functionality as an extension to the model
but rather performed the reset manually outside of it (in the
neural simulator), our experiment suggests that functionality
similar to this one is desirable for successful computation in
time domain for relatively high presence of noise.

V. DISCUSSION

A. Experiments
We have shown that this framework can be used to perform

1D signal processing in short times and with significant
accuracy. We have shown that this framework can be used
to implement a valid memory system of CHRRs and that this
memory system provides feasible results.

B. Noise Resistance
We have analysed the accuracy of the framework under

presence of external Poisson noise, expected to be present in

Fig. 8: Neuron spike time diagram for signal smoothing Fig. 9: Neuron spike time diagram for edge detection

Fig. 10: Neuron spike timing plots showing scatter plots of the neuron spike times in an ordered manner where the signal
being represented can be clearly seen, and in an unordered manner as would be seen in an cortical spiking activity recording.
Also shown is the spike rate for the network and different neuron populations in the network. For further understanding of the
role of each population, refer to section II-B and [12]

data
input

op
select

out
select

mem
A

mem
B

a⊕ b

a× b

not a
selector

selector

Fig. 11: Advanced STICK CHRR setup. Units in this graph
represent blocks of neurons.

a realistic environment. Our results show that recall accuracy
decreases, as expected, but it does not render the proposed
symbolic architecture useless. Furthermore, we propose a
model of noise compensation mechanism which allows recall
accuracy to improve over successive iterations. This suggests
a STICK framework extension with a fifth synapse type which
performs neuron reset without emitting a spike, which would
be a useful addition to the framework from a computational
standpoint.

C. Additions to the STICK framework

We have successfully extended the STICK framework with
a new type of computational block performing addition with

Fig. 12: CHRR similarity measure against the four starting
vectors. Exact reference in green, results of our implementa-
tion in yellow.

Fig. 13: When running the CHHR experiment in a noise envi-
ronment, several output neurons do not produce meaningful (in
the STICK framework) response. The above bar graph displays
the number of output neurons (out of 500) which failed to
produce meaningful result, and how this number increases as
the network is run for repeated simulations.

Fig. 14: Plot showing how the accuracy of the result from
the noisy experiment described in sections IV-B and IV-C
decreases with successive runs of the network

Fig. 15: Plot showing how the accuracy of the result from
the noisy experiment described in sections IV-B and IV-C
increases by averaging the result over independent trials of
the experiment

overflow (modulus operator) in time domain. Although this
extension in form of circular addition can be used in various
applications, we have tested it in a specific type of holographic
associative memories, called Circular Holographic Reduced
Representations (CHRR).

D. Comparison with Neural Engineering Framework

Direct comparisons with Neural Engineering Framework
cannot be made because of the fundamentally different ways
information is represented and manipulated in STICK. How-
ever it is safe to claim that this timing-based framework needs
on average 20x less neurons and 1500x less synapses per
operation than NEF equivalent (for example when performing
addition). The reasons for this drastic improvement lies in two
facts:
• NEF uses the firing rates of a population of neurons to

represent a single value, whereas STICK uses the inter-
spike timing of a single neuron

• NEF uses synaptic weights of all to all connections
between populations to encode a function, while STICK
uses neuron and synapse dynamics

When it comes to associative memories and cognitive archi-
tectures, NEF uses expensive convolution operation required
for Holographic Reduced Representations (HRR), whereas
we use less expensive equivalent CHRR. Circular addition,
required for CHHR to work, is highly nonlinear operation
which is hard to be approximated effectively using linear
approximation techniques used by NEF and this makes it
difficult to implement CHRR in NEF.

E. Functional Analysis

Having an engineered computational models of associative
memory and convolutional filtering enabled us various ways
of visualizing internal network dynamics underlying actual

operations. We were able to identify the spike times and popu-
lations of neurons that are in charge of a specific computation
sub-step. Simple random scrambling of neuron ordering in
spike plots resulted in spiking activity that a researcher would
usually expect to see in a typical cortical spiking activity
recordings. Our hope is that this framework will drive the
development of spike train analysis tools like Elephant [13],
used to discover patterns of synchrony in spike trains.

VI. CONCLUSIONS

We have successfully implemented the STICK function
engineering framework [12] in the NEST neural simulator
[11]. Using existing computational blocks of STICK we have
built convolution circuit and have shown that it can be used
to perform signal processing in time domain (smoothing with
Gaussian kernel and edge detection with derivative kernel).
We used this implementation of convolution circuit as a base
operation to implement HRR model of associative memories.

Furthermore, we have implemented another model of asso-
ciative memories - Circular HRRs (CHRR). In order to this,
we had to extend STICK framework by proposing design of a
new computational block for performing modulo arithmetics.

We have tested and compared these two models of as-
sociative memories and shown that CHRRs require smaller
amount of neurons and scale better than equivalent HRR
architectures of the same dimensionality, which makes them
computationally less expensive and faster to simulate. Lastly,
we have exposed these associative memory models to a small
amount of background noise, modeling stochastic nature of
cortical environment known to exist in mammalian cortices.
Even though underlying computations are relying heavily on
relative spike timing and each spike is expected to destroy
the computation completely, we have found that recalling
symbolic items from memory is still possible with slightly re-
duced accuracy. Furthermore, we have proposed computational

requirement for mitigating the effect of noisy environment,
leading to increased accuracy of recall.

All of the work presented exploits advantages of using
neural and synaptic dynamics as computational substrates.
Models presented in this paper are one of, if not the very first
ones, with this property in functional cognitive neuroscience.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 604102 (Human
Brain Project).

REFERENCES

[1] K. H. Pribram., “Holonomic brain theory,” Scholarpedia, vol. 2, no. 5,
p. 2735, 2007.

[2] Karl H. Pribram, Brain and Perception: Holonomy and Structure in
Figural Processing (Distinguished Lecture Series). Psychology Press,
2013.

[3] Tony A. Plate, Holographic Reduced Representation: Distributed Rep-
resentation for Cognitive Structures (Lecture Notes). Center for the
Study of Language and Inf, 2015.

[4] Tony A Plate, “Holographic reduced representations,” IEEE Transactions
on Neural Networks, vol. 6, no. 3, pp. 623–641, 1995.

[5] T. A. Plate, “Distributed representations and nested compositional struc-
ture,” Ph.D. dissertation, University of Toronto, 1994.

[6] Eliasmith C. and Anderson C.H., Neural engineering: Computation,
representation, and dynamics in neurobiological systems. Cambridge,
MA: MIT Press, 2003.

[7] Eliasmith C., “A unified approach to building and controlling spiking
attractor networks,” Neural computation, vol. 7, pp. 1276–1314, 2005.

[8] Blouw, Peter and Solodkin, Eugene and Thagard, Paul and Eliasmith,
Chris, “Concepts as semantic pointers: A framework and computational
model,” Cognitive Science, vol. 40, no. 5, pp. 1128–1162, 2016.
[Online]. Available: http://dx.doi.org/10.1111/cogs.12265

[9] Eliasmith, Chris and Stewart, Terrence C. and Choo, Xuan and
Bekolay, Trevor and DeWolf, Travis and Tang, Yichuan and
Rasmussen, Daniel, “A large-scale model of the functioning brain,”
Science, vol. 338, no. 6111, pp. 1202–1205, 2012. [Online]. Available:
http://science.sciencemag.org/content/338/6111/1202

[10] W. Maass, “Liquid state machines: Motivation, theory, and applications,”
World Scientific Review, 2010.

[11] H. Bos, A. Morrison, A. Peyser, J. Hahne, M. Helias, S. Kunkel,
T. Ippen, J. M. Eppler, M. Schmidt, A. Seeholzer, M. Djurfeldt,
S. Diaz, J. Morn, R. Deepu, T. Stocco, M. Deger, F. Michler,
and H. E. Plesser, “Nest 2.10.0,” Dec. 2015. [Online]. Available:
http://dx.doi.org/10.5281/zenodo.44222

[12] X. Lagorce and R. Benosman, “Stick: Spike time interval computational
kernel, a framework for general purpose computation using neurons,
precise timing, delays, and synchrony,” Neural Computation, vol. 27,
no. 11, pp. 2261–2317, Sep 2015.

[13] . The NeuralEnsemble Initiative. (2016) Elaphant. [Online]. Available:
http://neuralensemble.org/elephant/

