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1.1 Introduction

The practices of scattering and absorbing electromagnetic radiation enjoy
wide use in various fields of science and technology that aim to study the
structure and properties of inhomogeneous media. The theory and practice of
light-scattering methods is now a fairly well-developed field, owing to the
methods’ profound importance for applications such as atmospheric and
oceanic optics,1–5 radio-wave propagation and radio communication,6
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physical chemistry of solutions and colloids,7 materials science and chemical
technology,8 biophysics, and laser biomedicine.9,10 The theoretical models,
experimental measurement procedures, and data interpretation methods have
been developed by experts in various disciplines (from astrophysics to laser
ophthalmology); therefore, there are certain traditions and terminological
barriers that hinder effective interactions among various research groups. To
illustrate, for experts in atmospheric optics and astrophysics, the ideology of
radiation transfer theory (RTT)2,3 is natural, and using language related to the
apparatus of correlation functions and structural scattering factor is more
habitual when interpreting data by small-angle x-ray scattering or neutron
scattering.7,8 Another example is the composite medium technology whose
basic concepts are effective dielectric permeability and effective refractive
index.11 In colloid optics, the model of scattering via an isolated particle is
most popular; this model is described either in terms of Maxwell’s rigorous
electromagnetic theory or on the basis of various approximations.1,7,12

Despite terminological and other differences, the basis of many methods
using the scattering of neutrons, x-radiation, light, or radio waves proves to be
sufficiently versatile. With respect to the scattering of electromagnetic waves of
various frequencies, this versatility is probably explained by the common
classical basis, Maxwell’s electromagnetic theory, which is applied with physical
models of scattering media. Even in the case of particle scattering due to
potentials associated with this or another inhomogeneity of the medium,13 the
general theoretical interpretation of the scattering (e.g., in terms of T-matrix
formalism) may be exactly the same as that in the case of electromagnetics.14

In view of the great diversity and structural complexity of biological
systems,9,10 the development of adequate optical models of the scattering and
absorption of light is often the most complex step of a study. These models
include virtually all sections of dispersion media optics: (1) simple single-
scattering approximation; (2) incoherent multiple scattering, described by the
radiation transfer equation (RTE); and (3) multiple-wave scattering in
condensed systems of electrodynamically interacting scatterers and inhomo-
geneities. Quite plainly, such a broad range of problems rules out the
possibility of a more or less detailed treatment of technical details. Therefore,
the material presented in this chapter includes only certain elements of the
theoretical apparatus used in the above-mentioned sections of scattering
media optics; otherwise, it includes references to the relevant literature.

1.2 Extinction and Scattering of Light in Disperse Systems:
Basic Theoretical Approaches

Three major directions can be distinguished in scattering media optics. The first
is associated with the solution of diffraction problems for individual scatterers
and with the determination of how absorption and scattering characteristics are
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linked to the optical, geometrical, and structural parameters of particles.12,15

Since the second half of the 1980s, a number of novel methods and algorithms
have been developed that allow, in principle, quantitative results to be obtained
for a very wide class of sizes, shapes, structures, and optical parameters of
particles.15 A brief survey of particle-scattering-theory methods is given in
Section 1.3; more detailed information can be found in Ref. 16.

The importance of this domain of the scattering theory for applications to
actual systems is determined by the following circumstances. First, for very
rarefied and optically thin media, the scattering characteristics of an ensemble
of particles (intensities, integral cross sections) are found by simple summation
with no regard to the interference of scattered waves. What is known as single-
scattering approximation consists therein. Of course, in some special cases, this
approximation should be used with caution. For example, scattering in the
forward direction is coherent at least when the time of the incident light
coherence is greater than the time of its propagation in the scattering layer and
is less than the characteristic time of particle configuration change. For small
angles, therefore, it is the scattered fields, not intensities, that should be
summed. However, for the typical sizes of the scattering sample, the domain of
such angles turns out to be very small and may be neglected.1,12 The single-
scattering approximation may also be applied when scattered fields are summed
with regard to geometrical phase shifts from different particles. However, the
scattered fields themselves are calculated on the basis of excitation of the
scatterer by the initial incident wave, i.e., with no regard to the radiation from
other particles (see Section 1.7). Conditions necessary to apply the single-
scattering approximation have been discussed by Mishchenko et al.17

Another important application of the theory of scattering by small
particles is the calculation of the characteristics of the elementary scattering
volume, which appears in the RTT.2,6 Finally, the electromagnetic theory for
an isolated particle determines the scattering operator, which is used in the
multiple wave scattering theory (MWST)18–20 and determines the particle’s
response to a specified exciting field. The RTT and MWST theories will be
considered below.

The second trend of the light-scattering theory is associated with the RTE.
The equation operates with photometric quantities and phenomenological
characteristics of the medium such as scattering and absorption coefficients
and the unit-volume-scattering indicatrix (also known as phase function or
form factor).2–4,6,21 In the RTT, multiple scattering is allowed, phenomeno-
logically, on the basis of the energy conversation law and the ray intensity (or
ray radiance) concept.6 By now the RTE theory has been elaborated in detail
(including formulas, tables,22 and public-domain computer codes for the
solution of various particular problems23).

The physical picture forming the basis of the RTT is based on the notion
of mutual multiple reradiation of inhomogeneities. In essence, the subject of
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the RTT is the kinetics of photon diffusion in an inhomogeneous medium.
Inclusion of the Stokes polarization parameters in the RTT leads to the matrix
formulation of the RTE;3,21 however, the physical basis of the matrix RTT
remains exactly the same as that in the scalar case. The elementary volume of
the scattering medium plays the role of a quadratic detector that splits the
field into incoherent beams (photons), and the scattering act itself is always
interpreted in the energy sense, with averaging over time and volume.24 The
notions of photon diffusion in an inhomogeneous medium naturally lead to a
statistical scheme of solving the RTE in the context of Monte Carlo (MC)
ideology. This method calls for considerable computer resources, but it may
be used for the realistic geometries of the experiment. This question is
examined at greater length in Section 1.8. The microphysical basis of RTE
and its derivation from Maxwell equations and statistical properties of
scattering media was discussed by Mischchenko.25

The third, and the most rigorous, trend of the scattering theory is in
essence the electrodynamics of statistically inhomogeneous media.20,24 This
approach considers multiple wave scattering by discrete or continuous
inhomogeneities, the correlation statistics of scatterers, and the vector
character of the electromagnetic field.18–20 The basic physical principles of
the theory of multiple wave scattering are the same for systems with
continuous and discrete inhomogeneities, but details of the formalism are
somewhat different. For definiteness, we will speak below of the case of
discrete scatterers.

The theory of propagation and multiple scattering of radiation in a
medium of interacting scatterers belong to a fairly complex class of many-
particle electrodynamic problems. For their solution, special diagram
methods have been developed that lead to the Dyson equation for Green’s
mean function or to the Bethe-Solpiter equation for Green’s function
correlation.20 Because of difficulties of a purely mathematical nature,
noticeable progress in this field, including the emergence of effective
numerical algorithms, has only recently been made.26–28

Being fairly complex mathematically, the theory of multiple wave
scattering is based on simple physical principles. First, it is assumed that
the spatial configuration of all particles and its statistical properties are
known. Second, it is assumed that the scattering operator of an isolated
particle that describes the scattered field for a given exciting field is known.
Since we are dealing with a system of electrodynamically interacting multipole
oscillators, the exciting field is formed from the incident field, and the multiple
scattered fields from all the other particles. Hence it is clear that the main
difficulty of the theory is just to find the exciting field with regard to all
possible orders of scattering from all the interacting particles. The different
versions of the theory differ primarily in the methods of calculation of the
exciting field with regard to the statistical properties of the ensemble
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describing the spatial configuration and the optical properties of scatterers.
Once the exciting fields have been found, further analysis consists in
calculating the scattered fields of isolated particles and in adding these fields
together with regard to phase shifts. Since we are dealing with random fields,
one has to use the appropriate correlation analysis in order to calculate the
observed photometric characteristics.

In the context of the rigorous MWST, the theory of coherent propagation
of radiation in a medium with densely packed scatterers has been fairly well
developed.18,19,21 The basic result of this theory is the deduction of a dispersion
equation for the effective wave number describing the coherent-field
propagation in a medium and differing from the wave number of free space.
This dispersion equation allows for the optical properties of scatterers and for
the statistical properties of their spatial arrangement. As a rule, when
deducing a dispersion equation, one makes certain simplifying assumptions.
For example, quasi-crystalline approximation is used to break the infinite
chain of multiple-scattering equations, and the Percus–Yevick approximation
is used to describe pair correlations in particle positions.29

Significantly, there is a close relation between the theory of coherent light
propagation in densely packed disperse systems and that in homogeneous
molecular or crystalline media. The relationship between the refractive index n
of such a medium, the concentration N, and the polarizability of molecules a
is given by the well-known Lorentz–Lorenz formula30

n2 � 1
n2 þ 2 ¼

4p
3

Na: (1.1)

It is important for our consideration that this relation can be obtained as a
result of derivation of the Ewald–Oseen extinction theorem.30 In this
derivation, the optical properties of a medium are treated on the basis of
representation of the total optical field as a sum of the incident wave and all
waves multiply scattered by molecules exited by an effective self-consisting
field. Elimination of the incident wave and the arising of a new wave,
propagating through the medium with velocity c/n, are due to the interference
of the incident wave and self-consisting fields scattered by molecular dipoles in
the forward direction. For other directions, the fields scattered from different,
spatially fixed and physically small volumes dV≪ l3 would be totally
suppressed because of the interference if no fluctuations were in the medium.
However, the fluctuations violate coherence and are responsible for molecular
scattering.

The problem with calculation of the effective propagation constant in a
condensed medium is closely linked to the theory of effective optical
constants.11,31 The main object of this theory is to formulate a mixing rule
where the actual dispersion medium could be replaced by a model
homogeneous medium with effective optical constants. In the electrostatic
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case, it is required that the calculated values of the effective dielectric
permeability be as close as possible to the experimental measurements of this
parameter for an inhomogeneous sample. In the optical case, the calculation
of absorption and scattering for a homogeneous particle with an effective εeff
should be as close as possible to the results of the numerical or natural
experiments for an actual inhomogeneous particle.

A fundamental peculiarity of the MWST is that the optical properties of
interacting particles differ from those characteristics that are obtained in
solving the scattering problem for an isolated particle. In Section 1.4, we
will see that the extinction cross sections of particles in a cluster do not
coincide with the usual Mie calculation. Even in the simplest case of two
absolutely identical contacting spheres, the scattering cross section of each
particle will depend on the the separation between particles and the bisphere
orientation with respect to the incident plane wave. This type of effect is
commonly called the collective scattering effect or cooperative scattering
effect.20,24

It should be emphasized that these cooperative effects may be of different
nature and hence have different experimental manifestations. First, as
indicated above, the exciting local field may differ substantially from the
incident-wave field and even from the mean field in a dispersion medium
because of the violent local fluctuations. In this case, each particle’s optical
response itself will differ substantially from the isolated-scatterer case. Even if
the positions of the interacting particles are absolutely random and are in no
way correlated, the optical properties of such a dispersion system will differ
from the case of single scattering of noninteracting particles. Another cause
for the emergence of cooperative effects in densely packed systems is
associated with the constructive interference of individual scattered fields,
which is due to the presence of a certain order in particle arrangement.
The physical mechanisms of emergence of this order are connected with the
competition from attraction (repulsion) forces and the entropy factor. The
correlations in particle positions may be either short range or long range,
depending on the nature of these forces. In the case of noncharged particles,
only the short-range order is usually observed, which may be described using
the solid-sphere model, the Lennard–Jones potential, and so on.29

In the general case, the cooperative effects of multiple scattering include
both components, and their accurate calculation is, as noted above, a
challenging task. However, for biological systems, the situation is simplified a
bit because the optical properties of interacting particles usually do not differ
widely from the properties of their environment. Therefore, even at multiple
reradiation of particles the differences of the exciting field from the incident-
wave field are not too notable. This means that the major influence on the
optical characteristics of the medium is exerted not by the change in the local
exciting fields, but by the scattered-fields interference, which is due to
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correlations of the short-range positions. To a first approximation, the
scattered fields themselves can be evaluated within the limits of a single
approximation, i.e., assuming that the exciting field is equal to the incident-
wave field. The development of that approach will be discussed below
(Section 1.7).

A rigorous analysis of conditions for the applicability of this or that
version of the light-scattering theory is a nontrivial problem,20 in which one
has to account for the coherence properties of the incident radiation; the size,
concentration, and optical properties of particles; the characteristic time of
stability of the medium microstructure (i.e., the characteristic times of the
fluctuation relaxation); the geometrical parameters of the scattering sample;
the photodetector characteristics; and so on.24 For example, if the coherence
time of the incident radiation is less than the time of the photon run between
two consecutive scattering acts, then these scattering acts will be statistically
independent. In this case—which is typical for neutron or x-ray scattering—
either the RTT or the single-scattering approximation (near-transparent
media) is applicable. Qualitatively, the possibility that each of the three
approaches mentioned can be applied for describing radiation propagation
and scattering in a dispersion medium is determined by five characteristic
parameters: the wavelength l; the size of particles (inhomogeneities) a; the
mean distance between them (correlation radius) R; the geometrical thickness
of the medium d; and the coherence length lc. For concentrated dispersion
media, R � a, so if the particle size is comparable to the wavelength, the
scattering particles are not independent, and allowance should be made for
multiple reradiation within the limits of the MWST. How the theory is
formulated specifically depends on the ratio among the particle size, the
wavelength, and the geometrical parameters of the scattering volume.

If the mean distance R≫ a, l, lc, (moderately concentrated and dilute
media of arbitrary optical thickness), the RTT theory is applicable, and,
again, its specific form will depend on the a/l and R/d ratios (small-angle
approximation, diffusion approximation, etc.6). From a physical standpoint, a
necessary condition of RTT applicability is the smallness of the wavelength
and particle size as compared with the characteristic length of the light-field
extinction.24 It should be noted, however, that sometimes the RTT is not
applicable in principle. In particular, it is not applicable for describing the
effect of enhanced back-scattering.32,33

In the case of dilute and optically thin dispersion media (when R≫ a,l,
and the optical thickness sed/R

3≪ 1, se being the extinction cross section
of the particle), the single-scattering approximation is applicable, in which
photometric quantities, quadratic in the scattered field, are just an additive
sum over the particles. It is important to keep in mind that the boundaries of
applicability of single scattering differ substantially in the suspension-particle
concentration (or in the optical thickness), depending on the type of effects
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being measured. For instance, when measuring the scattering indicatrix, one
sees that the contribution of multiple scattering is manifested at considerably
lower concentrations than those in the case of measurement of the extinction
of a collimated light beam. The physical causes for such different sensitivities
of different effects are obvious. In the case of measurement of the indicatrix,
the probability of multiple scattering in a specified direction increases with an
increase in particle concentration. However, when measuring the extinction of
a collimated beam, one sees that the probability of multiple noncoherent
scattering does not affect the result (if only the receiver’s aperture is small
enough). Otherwise stated, the multiplicity of noncoherent scattering does not
change the collimated transmission if the multiply scattered “photon” did not
get into the photodetector.

The question under discussion is intimately linked to the important
question of the boundaries of applicability of Bouguer’s law under conditions
of multiple scattering.34–36 As is known, Bouguer’s law (also known as the
Beer–Lambert law) describes the exponential extinction of the incident-light
intensity in a layer of thickness d

IðdÞ ¼ I0 expð��tdÞ ¼ I 0 expð�tÞ, (1.2)

where �t and t ¼ �td are the turbidity and the optical thickness of a sample,
which in the single-scattering approximation are proportional to the
extinction cross section se and to the number particle concentration N,

t ¼ seNd: (1.3)

Though the particle concentration and the geometrical thickness of the layer
enter into relationship (1.3) in the same way, it is important to emphasize the
fundamental difference between the optically dense, concentrated systems
(R� a,l) and the optically thick (t≫ 1), but dilute systems (R≫ a,l).

In the first case, the scattering characteristics of the elementary volume of
a suspension differ from the dilute-system parameters because of the
electrodynamic particle interaction, and the relationship between the wave
number in the medium and the particle concentration is nonlinear. More
specifically, Eq. (1.3) is no longer valid. Physically, this can be seen from a
simple qualitative example. Let an empty glass cuvette be filled up with a
water aerosol that consists of submicron-sized droplets. As the droplet
concentration (or the corresponding volume fraction f ) increases, the
imaginary part of the effective refractive index also increases from 0 to the
values determined by1

n ≈ 1þ 2pk�3NSð0Þ ≡ 1þ N½2pk�3ReSð0Þ þ ise∕2 k�, (1.4)

where S(0) is the forward-scattering amplitude [we define it as the van de
Hulst1 amplitude S(0) divided by the imaginary unit i ]. As the scattering

10 Chapter 1



becomes intensive enough, the coherent wave extinction gradually deviates
from the linear law (1.4), then reaches a maximum and eventually, at the
volume fraction f! 1 (cuvette with water!), decreases to very small values
corresponding to the transmittance of clear water.

A quantitative description of the above scenario is based on the theory of
multiple scattering and coherent electromagnetic wave propagation in a
densely packed disperse medium.18,19,26 For example, in the Rayleigh limit,
the concentration dependence n( f ) for spherical particles with radius a≪ l
can be described by a generalization of the Mossotti–Clausius or Maxwell
Garnett mixture formulas18

ε ≡ n2 ¼ 1þ 3fa1
1� fa1

�
1þ i

2
3
x3a1

ð1� f Þ4
ð1� fa1Þð1þ 2f Þ2

�
, (1.5)

a1 ¼ a∕a3 ¼
ε1 � 1
ε1 þ 2

: (1.6)

Here, x ¼ ka≪ 1, ε1 is the dielectric permittivity of spheres, the refractive
index of the surrounding medium is supposed to be equal to 1, and the Percus–
Yevick approximation was used to represent the pair distribution function. In
the dilute case f≪ 1, Eq. (1.5) is equivalent to Eq. (1.4) with S(0)� k3a(1 +
i2x3a1/3), whereas for the densely packed suspension with f¼ (4p/3)Na3! 1,
the extinction contribution due to light scattering vanishes and Eq. (1.5)
reduces exactly to the Lorentz–Lorenz relation (1.1). Thus, for concentrated
suspensions, the deviations from Bouguer’s law are determined by the
electrodynamic particle interaction and can be observed even at small
geometrical thicknesses of the layer.

In the case of dilute, albeit optically dense, systems, the situation is
entirely different. Here, the considerable optical thickness is ensured by the
corresponding geometrical thickness of the scattering sample. The optical
characteristics of the elementary volume are determined by the properties of
isolated particles and are proportional to their concentration. The extinction
of a direct (coherent) beam is determined by Bouguer’s exponential law with
optical thickness (1.3). As the geometrical path and the corresponding optical
thickness increase, there occurs transformation of the primary coherent beam
into multiply scattered noncoherent light. This transformation is described by
the RTE, which includes Bouguer’s extinction of the primary beam.2,3,6 Thus,
the difference from the single-scattering case is only that multiply scattered
noncoherent light, as well as the attenuated incident light beam, also gets into
the photodetector. This means that the effects of multiple light scattering
during the measurement of collimated transmittance are physically manifested
as effects of small-angle scattering or, more specifically, as effects of an
increase in transmittance at the expense of single- and multiple-scattering
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small-angle light flux. This situation is completely analogous to the well-
known influence of small-angle scattering on the measurements of transmit-
tance of dilute suspensions.37,38 The ratio between the attenuated incident
light and the small-angle flux depends not only on the layer thickness, but also
on the optical scheme of photometry.34,35,38 For example, if the primary beam
is well collimated, and the detector’s receiving aperture is small, the effects of
small-angle distortions due to multiple scattering will be small up to a very
large optical thickness.34–36

1.3 Theoretical Methods for Single-Particle Light-Scattering
Calculations

1.3.1 Basic parameters for single-particle light scattering

Consider the scattering by a certain particle of a monochromatic [exp(�ivt)]
plane electromagnetic wave,

E0 ¼ e0 expðik0Þ,je0j ¼ 1: (1.7)

By virtue of linearity of Maxwell’s equation, the scattered field Es (in the
direction s¼ ks/k) should be linearly related to the incident field via the
scattering affinor Sðks,k0Þ14,39

Es ¼
expðikrÞ

kr
�Sðks,k0Þe0, (1.8a)

the vector amplitude of scattering14

Sðks,k0Þ ¼ �Sðks,k0Þe0, (1.8b)

or the corresponding amplitude scattering matrix15

�
Es1
Es2

�
¼ expðikrÞ

kr

�
S11 S12
S21 S22

��
e01
e02

�
, (1.9)

where the indices 1¼ ∥ and 2¼⊥ stand for the transverse components (i.e.,
E||¼Eq, E⊥¼Ew) relative to the planes containing the z-axis and the incidence
direction s0¼ k0/k or the scattering direction s¼ ks/k. As a rule, the incidence
direction is chosen to be coincident with the z-axis,1,12 so the transverse
components of the fields are determined relative to the scattering plane (s, s0).
We note that different basis vectors for the transverse components of the field
and different normalization in Eq. (1.9) are chosen by different authors.1,12,15

As a consequence, the Sij elements may differ.
15 It is important to emphasize

that the amplitude scattering matrix relates the field components determined
in different coordinate systems and, therefore, is not a tensor.

The amplitude scattering matrix gives a full description of the scattered
field, but in actual experiments photocurrents are usually measured that are
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proportional to quadratic field combinations. Therefore, to describe the
monochromatic transverse wave one introduces four Stokes parameters, I, Q,
U, V1,12 or the corresponding column vectors Î . The linear relationship
between the incident (Î0) and scattered (Î s) Stokes parameters is given by the
Mueller scattering matrix (or simply the scattering matrix)1,12

Î s ¼
1

k2r2
F̂ Î 0: (1.10)

The formulas expressing the 4� 4 scattering matrix F̂ in terms of the
amplitude 2� 2 matrix Ŝ can be found elsewhere.1,12 The F̂ matrix contains
complete information about the scattering properties of the particle, but in
practice one would measure only some scattered-light parameters, e.g., the
scattering intensity Is(u) and the degree of linear polarization.

Particle scattering and absorption of light withdraws energy from the
incident wave. This effect is consequently characterized by the extinction cross
section se having an area dimension. The product I0se determines the total
power of scattering and absorption. The scattering (ss) and absorption (sa)
cross sections are determined in a similar way. According to the optical
theorem,1,12,14 the extinction cross section of linearly polarized light is
proportional to the forward scattering amplitude

se ¼
4p
k2
Im½e�0�Sðk0,k0Þe0�, (1.11)

where the asterisk denotes complex conjugation. In the more general case of
the incident light with arbitrary polarization, the cross section se is determined
by way of the extinction matrix.3,21 The scattering cross section is calculated by
integration of the scattered intensity over all directions. For example, for the
incident light with Stokes parameters (I0, Q0, U0, V0), we have

ss ¼
1

k2I0
∫
4p
½I0F 11 þ F12Q0 þ F13U0 þ F14V0�dVðsÞ: (1.12)

In the case of unpolarized light and spherically symmetrical scatterer, the
relationship (1.12) is reduced to the usual integral of the indicatrix with respect
to the scattering angle

ss ¼
2p
k2
∫
p

0
F11ðuÞ sin udu: (1.13)

The asymmetry (anisotropy) parameter g is defined by equation

g ¼ hcos ui ¼ 2p
k2ss

∫
p

0
cos uF11ðuÞ sin udu, (1.14)

and its sign points to the preferential forward (g. 0), backward (g, 0), or
symmetrical isotropic scattering (g¼ 0).
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1.3.2 Exact analytical and numerical methods

The general statement of the single-particle scattering problem is rather simple
and can be described as follows. A field E0 is incident on a scattering particle
of volume V and excites the field Ei inside V. Outside V, an additional field,
the diffraction field Es, is generated. It is required to calculate, on the basis of
Maxwell’s equations, the complete field E, which equals Ei inside V, and E0 +
Es outside V, and that satisfies the boundary conditions at the particle surface
as well as the radiation conditions at infinity. The general scheme being
simple, a concrete solution to the problem depends essentially on the geometry
of the scatterer and on the properties and structure of its substance. For
example, the solution cannot be obtained in a general closed form even for a
spherical particle with an anisotropic refractive index of a general type.12

Therefore, in the theory of scattering by small particles various methods have
been developed whose scope and effectiveness depend on the particular
statement of a problem. From a current standpoint, an effective numerical
algorithm realized on a personal computer is equivalent to an analytical
solution, which as a rule also calls for nontrivial calculations. In this section,
we will look briefly only at those methods that are most intensively used in
biological applications. A more detailed discussion of the calculation methods
can be found in a recent review.16

1.3.2.1 Separation of variables and T-matrix methods (SVM and TM)

The most important analytical solution is the theory of scattering by a
homogeneous isotropic sphere, called the Mie theory1,12 (the pioneering work
on this problem is associated with a constellation of names40–44). To illustrate
the basic results of the Mie theory, we give formulas for the extinction cross
section, the scattering cross section, and the anisotropy parameter, following
the designations12

se ¼
2p
k2
¼
X̀
n¼1
ð2nþ 1ÞReðan þ bnÞ, (1.15)

ss ¼
2p
k2
X̀
n¼1
ð2nþ 1Þðjanj2 þ jbnj2Þ, (1.16)

g ¼ 4p
k2ss

�X̀
n¼1

2nþ 1
nðnþ 1ÞRe ðanb

�
nÞ þ
X̀
n¼1

nðnþ 2Þ
nþ 1 Re ðana�nþ1 þ bnb�nþ1Þ

�
,

(1.17)

where the coefficients an and bn are called Mie coefficients.
12 The Mie theory

is generalized for the case of concentrated spheres, particles with an
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inhomogeneous profile of refractive index or with the optical activity of the
substance, and also for the case of illumination by a focused laser beam. The
relevant literature citations and effective computer codes can be found in
Refs. 16 and 23.

For an infinite circular cylinder an exact solution at perpendicular
incidence was first obtained by Rayleigh,45 who addressed this problem once
again in his last work written shortly before his death.46 Though an infinite
cylinder is not a three-dimensional (3-D) scatterer, this model is helpful in
understanding light scattering and extinction by an anisotropic dispersion
medium (see Section 1.7 below). References to literature that generalizes a
simplest model can be found in Ref. 16. The Mie solution is also generalized
to an arbitrary collection of spheres, but this subject concerns the problem of
scattering by particle aggregates and will be treated separately in Section 1.4.

In Helmholtz’s scalar equation, the variables are separated into 11
physically interesting coordinate systems.47 But for a vector field containing
three scalar functions, a complete separation of variables is possible only in six
systems: (1) Cartesian, (2–4) three cylindrical, (5) conical, and (6) spherical.
Therefore, Möglich’s48 formal solution for spheroidal coordinates was useless
for all practical purposes until the method for separation of variables was
adapted by Asano and Yamamoto49 for numerical calculations via cutoff of
infinite coupled (i.e., not fully separated) equations. Farafonov50 improved
the method described in Ref. 49 by using an ingenuous scheme of splitting
fields into two types with an invariant angular part. By now, a large body of
factual material has been assembled on the application of SVM in the
calculation of scattering by spheroidal particles.15,51

The T-matrix method, which is well known in quantum theory,13 was
introduced into electromagnetic scattering by Waterman.14 Contrary to the
Green function method, the T-matrix relates not the fields themselves in a
coordinate representation, but the expansion coefficients of the incident and
scattered fields over some complete set of vector basis functions. For example,

if one expands all fields in vector spherical harmonics (VSH) YðtÞ
mnp

13,47,52

YðtÞ
mn1 ¼ NðtÞ

mnðkrÞ,YðtÞ
mn2 ¼ MðtÞ

mnðkrÞ, (1.18)

of the first and third kind (t¼ 1,3), then the expansion coefficients for
scattered (amnp) and incident (exciting, pmnq) fields are related by

amnp ¼
X̀
n¼1

Xn
m¼�n

X2
q¼1

Tmnp,mnqpmnq: (1.19)

After being published in Ref. 53, the T-matrix method began to be used
commonly in the scattering theory.54–56 An important strong point of the
method is the possibility that the problem on the orientational averaging of
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the observed scattering characteristics may be solved analytically.57,58 To
illustrate, the extinction and scattering cross sections averaged over random
particle orientations are expressed directly in terms of a T-matrix

hCei ¼ � 2p
k2
Re½SpðTÞ�, (1.20)

hCsi ¼ 2p
k2
X
ab

jTabj2, (1.21)

where the symbol Sp in Eq. (1.20) stands for a spur over all T-matrix
indices, and the symbol a or b in Eq. (1.21) signifies a combined multi-
index (nmp).

1.3.2.2 Integral equation method

The integral equation method (IEM) occupies a special place in the range of
theoretical methods, since it is a general approach in which, by using the
affinor Green function13

Gðr,r0Þ ¼ ð1þ k�2∇∇Þ exp½ikðr� r0Þ�
4pjr � r0j , (1.22)

a boundary problem is reduced to an integral equation that includes the
boundary condition and radiation condition at infinity13,59,60

EðrÞ ¼ E0ðrÞ þ k2∫Gðr,r0Þ½εðr0Þ � 1̂�Eðr0Þd3r0: (1.23)

Therefore, the IEM is not merely a numerical approach, but also an efficient
basis for the formulation of other methods [e.g., the method of moments,61 the
T-matrix method,53,62 or the Rayleigh–Debye–Gans (RDG) method6,13,59,63].
In Eq. (1.23), the scattered field is expressed by way of an unknown
distribution of bulk sources induced by an external field. In the electromag-
netic theory, another approach is also used,60,62 in which the scattered field is
calculated by way of a surface source distribution.

The presence of singularity in Green’s function (1.22) gives rise to a “self-
term” that accounts for the difference between the average Maxwell field and
the local (effective) Lorenz field.59 The various formulations of IEM are in
many ways different only in the methods for allowing for the self-term and in
the methods for replacing the integral equation by its discrete counter-
part.64–67 The singular equation (1.23) can be represented, by the Fourier
transform, as a nonsingular Fredholm integral equation (FIE) of the second
kind,68,69 which is solved numerically after the discrete-analogue substitution.
It is interesting that the FIE kernel coincides with the second Born
approximation for the integral equation obtained in Ref. 63. References to
papers on the application of various IEM versions in problems of single-
particle scattering are available for review.16
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1.3.2.3 Discrete dipole approximation

In the theory of scattering by small particles, this method began to be
employed intensively after the publication of a paper by Pursell and
Pennypacker,70 though undoubtedly its physical basis was known and applied
elsewhere previously.30 Yurkin et al. (see, e.g., Ref. 71, and references therein)
developed an alternative discrete dipole approximation code (ADA version)
with enhanced efficiency. A detailed consideration of discrete dipole
approximation (DDA) or ADDA capabilities and limitations can be found
in Ref. 71. The basic physical approximation is in substitution of the actual
scatterer for an ensemble of discrete elements with volume Vi, polarizability
ai, and dipole moments di¼ d(ri), i¼ 1 � N. All the other calculations, e.g.,
those of the dipole amplitudes, the scattered field, the integral cross sections,
and the scattering matrix may be done absolutely rigorously. The equations
for dipole moments are not hard to write from simple considerations based on
the concept of an exciting field equal to the sum of the incident wave and the
fields of other dipoles at a given point

diðriÞ ¼ ai
�
E0ðriÞ þ k3

X
j≠i

GijdjðrjÞ
�
: (1.24)

The tensor of dipolar scattering Gij is determined by the known formulas
30

Gij ¼ expðikrijÞ½G1ðkrijÞ þ G2ðkrijÞRij · Rij�, (1.25)

GnðzÞ ¼ ð�1Þn½�z�1 � ð2n� 1Þðiz�2 � z�3Þ�, n ¼ 1,2, (1.26)

where rij¼ ri � rj, Rij¼ rij/rij, and a·b is a dyadic. The solution of the system of
linear equations (1.24) allows the calculation of all basic optical characteristics
of an aggregate: the vector scattering-amplitude, S(k0, ks)

Sðk0,ksÞ ¼ k3
X
i

½di � sðsdiÞ� expð�iksriÞ, (1.27)

and the integral cross sections of extinction Ce, absorption Ca, and scattering
Cs¼Ce � Ca

Ce ¼ 4pkIm
X
i

ðe0diÞ expð�ikriÞ, (1.28)

Ce ¼ 4pk
X
i

hijdij2, hi ¼
4pImðεiÞ
Vijεi � 1j2

: (1.29)

The important question about the choice of model polarization is left beyond
the limits of the phenomenological scheme just described. It is well known1

that the simplest choice based on the Mossotti–Clausius formula does not satisfy
the optical theorem. Therefore, various approximations have been proposed in
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the literature64,70,72–75 that allow for the dipole-energy radiation losses and lead
to complex polarizability even for the nonabsorbing dipole particle.

At first glance, it seems that the bulk IEM and DDA methods are based on
different physical principles. Therefore, it is important to emphasize that the
solution of Eq. (1.23) by the method of moments and the DDA solution actually
lead to identical systems of linear equations for dipoles if equivalent assumptions
have been made for polarizability in the DDA and for the self-term in the IEM.66

If a basis lattice has been specified and the algorithm of finding polari-
zability found, it remains only to fill the lattice nodes by the corresponding
dipoles with regard to the inhomogeneity and shape of the scatterer. Essen-
tially no limitations are placed on the geometry and, to a degree, on the
properties of the material. This is the chief value of the method, particularly as
applied to structurally complex biological objects.76 The limitations of DDA
are associated with the provision of convergence and accuracy of the results,
which are impaired for optically rigid structures.

1.3.3 Approximate theories

With advances in computer facilities and new algorithms many approximate
methods of the scattering theory lost their initial value. Despite this, they often
give useful information for the qualitative understanding of the physics of
phenomena and quantitative tendencies. In this section, we look briefly at
only the basic physical principles of certain approximations. A closer look at
the approximate theories and abundant references are available in Refs. 16,
77, and 78.

1.3.3.1 Rayleigh approximation

The basic ideas of all approximate methods are associated with definite
regions of values of the most important diffraction parameters: the size
parameter ka and the relative refractive index m ¼ n/n0. For example, if
ka≪ 1 and ka|m|≪ 1, we are dealing with Rayleigh scattering, in which a
particle scatters like an infinitesimal dipole d ¼ ae0

EsR ¼ k3½di � sðsdiÞ�
expðikrÞ

kr
: (1.30)

The dipole moment and the corresponding polarizability tensor are estimated
from electrostatic equations.1,12 The possibility of using an electrostatic
approximation to calculate the dipole moment allows particles of virtually all
shapes to be considered in the Rayleigh scattering theory.79 The accuracy
of the Rayleigh approximation has received in-depth treatment in Refs. 80
and 81.

Stevenson82,83 generalized the Rayleigh theory by expanding the fields in
powers of ka. This approximation was used to calculate the Mueller matrix of
light scattering by random spheroids.84 This chapter refers to other
applications of the Stevenson approximation, as does Ref. 16.
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1.3.3.2 Rayleigh–Debye–Gans approximation

In a large number of practically important cases, the relative refractive index
of particles m is close to 1. In particular, for the overwhelming majority of
biological structures, m� 1.76 This condition is valid in an even greater
number of cases for x-radiation or neutron scattering. Such particles are called
“optically soft,” and the corresponding approximation can be called an
“approximation of optically soft particles.”

The condition |m � 1|≪ 1 itself is not sufficient for the development of
the theory, since the ratio between size and light wavelength and the
phase-shift magnitude r ¼ 2ka(m � 1) are of major importance. The
RDG approximation is applicable when two conditions are simultaneously
fulfilled

jm� 1j≪ 1, jrj ≪ 1: (1.31)

There are a number of names for the theory that is based on the assumptions in
Eq. (1.31). The best-known name is the Rayleigh–Gans (RG) approximation.1

We believe that the term RDG is best suited for the following reasons. The
fundamental ideas of the method (including the derivation of successive
approximations based on the integral relation for a scattered field) were
formulated by Rayleigh in his 1881 paper,45 and the formula for the sphere-
scattering cross section was obtained by him in 1914.85 In 1915, Debye86

derived a general formula for the intensity of x-rays scattered by a randomly
oriented particle ensemble. Later, Debye applied this approach to light
scattering by polymer solutions,87 which had a profound impact on the
development of this trend.7 In quantum mechanics, an analogue to Rayleigh
iterations was developed by Born;88 his name is rightly associated with this
approximation. Thus, retaining the name of Gans in the name of the theory
(RDG) makes sense only because the name RG approximation has received
wide acceptance thanks to van de Hulst.1

The RDG approximation can be obtained by various means. For
example, one may use general integral relation (1.23), assuming that the field
inside the particle is the incident-wave field.13 Another mean is based on the
physical interpretation of scattering as a result of interference from the
independent-dipole fields excited by an incident wave in particle volume V.1,7

In either case, the scattered field is represented as

Es ¼ EsRGðqÞ, (1.32)

where EsR is the Rayleigh scattered field (1.30), q ¼ ks � k0 is the scattering
vector, and G(q) is the interference function or the scattering form-factor

GðqÞ ¼ 1
V
∫ expð�iqrÞd3r: (1.33)
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Thus, in this approximation the polarization characteristics of scattered light
do not differ from the Rayleigh case, and the angular ones differ only in the
interference function. For particles of certain shapes the interference functions
can be obtained as simple analytical expressions.7 For example, for spherical
particles with radius a and scattering angle u

GðuÞ ¼ 3
u
j1ðuÞ, u ¼ qa ¼ 2ka sin

u

2
, (1.34)

where j1(x) is the Bessel spherical function. Equation (1.34) is also valid for
ellipsoids with semiaxes a, b, c, but in this case

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðqaÞ2 þ ðqbÞ2 þ ðqcÞ2
q

: (1.35)

An important and simple generalization of RDG theory is that the dipole
moment of a scatterer is calculated with regard to the possible anisotropy of
the substance7 or the shape anisotropy84,89 of the particle. In this case,
polarization effects arise that are absent in the standard version of the RDG.1

The usually measured quantity being the intensity of scattering from a
randomly oriented particle ensemble, of practical interest is the averaged
square of the interference function ,G2(q). ¼ P(q), also called the scattering
form factor.7 In the theory of light scattering by substance-structure
inhomogeneities, the analogous quantity is called the scattering structure
factor.8,90

In the RDG approximation, the absorption cross section is proportional
to volume and generally does not differ in form from the Rayleigh absorption
cross section.1 The scattering cross section should be found by integrating the
intensity over all angles, since the optical theorem in the RDG approximation
gives either absorption cross section or zero (nonabsorbing particles).

1.3.3.3 Anomalous diffraction and related approximations

Van de Hulst,1 using Huygens and Babinet’s principles, considered a problem
on the scattering and extinction of light by a particle with size a≫ l and
refractive index m� 1, i.e., under conditions of

jm � 1j ≪ 1, x≫ 1: (1.36)

The formula obtained for the small-angle scattering amplitude by van de
Hulst is a generalization of the Fraunhofer diffraction formula and allows the
extinction cross section to be found by a simple integration

Ce ¼ 2Re∫½1� expð�irðzÞÞ�dS, (1.37)

where r(z) ¼ 2ka(z)(m� 1) is the phase shift of the ray propagating along the
z axis, a(z) is the ray pathlength inside the particle, and the integration is
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performed over all rays that intersect the particle. It is not hard to see that in
the anomalous-diffraction (AD) approximation, the scattering particle is
treated as an ideal phase screen. In a similar way, the absorption cross section
can be found as the sum of absorptions of all the rays

Ca ¼ ∫½1� expð�2ImrðzÞÞ�dS. (1.38)

The applicability range of the AD theory for the scattering amplitude is
restricted by small angles, but the cross-section formulas proved a very ap-
propriate approximation for a wide range of particles. The general universal
views of the dependence of the homogeneous-sphere scattering cross section
on the parameter of the central-ray phase shift, r ¼ 2x(m � 1), is given by the
well-known formula of Van de Hulst1

ss ¼ pa2QðrÞ, QðrÞ ¼ 2� 4 sin r
r
þ 4 1� cos r

r2
. (1.39)

The AD approximation is easily applicable for nonspherical and inhomoge-
neous particles.16 Specifically, for spheroids with the semiaxes (a,b,b) the
formula for the effectiveness factor Q(r) retains its view, but now the central-
ray phase shift will depend on the symmetry-axis orientation a relative to light
(direction cosine, cosq)

r ¼ 2kbðm� 1Þ∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðb2∕a2 � 1Þcos2q
q

. (1.40)

The AD approximation is a version out of the wider family of high-
energy approximations, including the Wentzel–Kramers–Brillouin (WKB)
approximation, the eikonal approximation, etc.13,16,91,92 The main disad-
vantage of all versions of high-energy approximations is that they ignore
polarization effects. Meteen93 offered an anisotropic modification of AD, in
which phase shifts are allowed separately for ordinary and extraordinary
waves. However, for isotropic nonspherical particles this theory reduces to a
scalar version of AD.

For very large particles, the scattering can be considered as the result of
interference of the rays that experienced multiple reflections and refractions
in accordance with the laws of geometric optics (GO).12,59 The diffraction at
the edge of a particle, which gives a sharp peak in the small-angle region,
may be accounted for separately as required. In the past few years, the GO
method has been frequently applied in combination with MC simulations.16

In the work,94 a method called the physical optic approximation was
suggested, in which the scattered field is expressed by way of the field at the
particle surface according to the Huygens–Kirchhoff principle. To find the
surface field, one has to use the laws of reflection and refraction. The accuracy
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of the GO method for nonspherical particles was studied in a recent paper95

on the basis of a comparison with the exact T-matrix results.

1.3.4 Other methods and approximations

Apart from the rigorous methods mentioned in Section 1.3.2, other algorithms
and public domain codes23,96 have also been described in the literature.
Among such methods are the finite element method (FEM),97 the finite
difference time domain method (FDTDM),98 and the point matching method
(PM) (see the corresponding references in the overview16). The strong point of
these methods is their applicability in principle to particles of arbitrary shapes
and structures. FEM can be applied to solve the Helmholtz equation while
FDTDM is used for Maxwell’s equations immediately. Since in their nature
these methods deal with local fields, a transition to the far scattered field is a
special problem.16

Among other approximate methods are the perturbation method99 and
certain simple approximations. The perturbation method is based on
expansion of an unknown solution to the problem of scattering in terms of
a small parameter in the vicinity of an exact solution. Applied to nonspherical
particles, this means that the solution is sought in the form of small deviations
from the Mie solution, which are caused by the small deviations of the shape
from the ideal sphere.16,99 This approach is effective for a back-of-the-
envelope analysis of light scattering by particles with stochastic surface
properties100 or with a weak anisotropy of the substance.101,102

To describe the scattering and absorption of light by nonspherical
particles, Latimer103,104 proposed hybrid approximations based on some
combinations of RDG and AD theories for spheroids and the Mie theory for
spheres. In a sense, such an approach is analogous to a more pragmatic
strategy in which exact formulas or numerical data are approximated by
simple analytical expressions.105,106

1.4 Extinction and Scattering by Aggregated and Compounded
Structures

In this section, we discuss methods for calculating scattering and absorption
characteristics for two types of structures: (1) large clusters formed as a result
of small-particle aggregation and (2) composite structures, i.e., a “host” large
matrix-particle with foreign “guest” inclusions. In either case, the cluster
particles may be in direct contact with the immediate neighbors or be
separated by interparticle distances in accordance with the statistical
properties of the pair density–density correlation function. Such structures
are physical models for many biological objects or processes. More
specifically, immune precipitation,107–109 sol-particle immunoassay
(SPIA),110,111 or cell agglutination38,112,113 are well-known examples of the
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formation of biological aggregates. Bacterial or eukaryotic cells are typical
composite structures bounded by the cell wall and the membrane.38,76

Methods for computing and applying light scattering in the study of
aggregated and composite particles have been discussed in Refs. 114
to 116.

It should be emphasized that the cluster scattering theory can be applied
to calculate light scattering by aggregated simple-in-structure biological
particles or by individual complex particles. Depending on the size of cluster
monomers, one can use the DDA approach (small monomers such as globular
proteins, biospecific conjugates prepared from gold or silver nanoparti-
cles,111,113 etc.) or the more sophisticated superposition method (Section 1.4.2)
if aggregates are formed from large cells like erythrocytes, leukocytes, or
platelets. In spite of the fact that the present-day cluster scattering theory can
consider these large aggregated cells only as homogeneous Mie spheres
regardless of the complicated internal structure of actual cells, it is still very
useful for describing the general futures of light scattering by the aggregated
cells. In application of cluster scattering theory to complex nonspherical and
nonhomogeneous biological cells or other individual structures by using DDA
ideology, we can treat these complex light scattering targets as 3-D clusters
built from small monomers of various sizes and optical properties.76,115 This
seems to be a powerful and versatile strategy to simulate light scattering by
large, nonspherical, and nonhomogeneous individual biological particles.117

1.4.1 Approximate and discrete dipole approximation methods

In the case of optically soft particles, the interaction among monomers in an
aggregate or a composite can be described within the limits of the
approximate methods considered in the preceding sections. The simplest
approximation is that of a homogeneous spherical particle with a certain
effective refractive index, which is calculated using a certain mixing rule
[Maxwell Garnett, Bruggeman, extended effective medium approximation
(EEMA),11 etc.]. If the size of an optically soft aggregate does not exceed the
light wavelength, its scattering properties can be described within the limits of
the RDG approximation, by summing the scattered fields from the monomers
with regard to phase shifts. In a converse case, when the size of the aggregate
is much greater than the wavelength, its extinction can be calculated by
Eq. (1.37) of the AD approximation.118

The DDA method can be used in the optics of aggregates in two versions.
If the size of monomers is much less than the light wavelength, the method is
applied in its physical interpretation, when a monomer is considered as an
infinitesimal point dipole and its dipole moment is calculated by electrostatics
formulas.116,119 In a more general case, the aggregated or composite structure
is replaced by an ensemble of dummy dipoles on the basic lattice. In point of
fact, this means that the monomers may be considered as a set of dipole
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subdomains. Such a finer division increases the complexity of the calculations
considerably.

1.4.2 Superposition method

A rigorous method for calculating the optical characteristics using an
arbitrary configuration of N spherical particles115 can be formulated
simply enough, using the generalized Mie theory for an isolated spherical
particle120 and the superposition principle. The essence of the generalized
Mie theory is: an arbitrary electromagnetic field Ei

inc incident on the i-th
particle can be represented as an expansion in terms of VSH of the first
order115,120

Ei
inc ¼
X̀
n¼1

Xn
m¼�n

X2
p¼1

EmnpimnpY
ð1Þ
mnpðkriÞ, (1.41)

where the coefficients Emn depend on the choice of normalization. For a plane
wave, in which the incidence direction and polarization are specified by three
Euler angles (a,b,g) in the i-th coordinate system, expansion (1.41) with
coefficients

�pimnp ¼ expðikriÞ expð�imaÞ
1

nðnþ 1Þ ½tmnpðbÞ cos g� itmn3�pðbÞ sin g� (1.41a)

also holds. The functions tmnp(b) (p ¼ 1,2) correspond to the well-known
angular functions tmn(cos b), pmn(cos b).

115 The radial dependence of the first-
kind VSH is given by spherical Bessel functions jn(kri) (or Ricatti–Bessel
functions115). An expansion analogous to Eq. (1.41) but with other
coefficients also holds for the internal field of each particle in an aggregate.
To represent a scattered field, one has to use third-kind VSHs, based on
spherical Hankel functions. Use of the boundary conditions on the sphere
surface leads to the generalized Mie theory in the form of the following simple
expressions for scattered-field coefficients:120

aimnp ¼ �ainppimnp, p ¼ 1,2, (1.42)

where �ain1 ¼ ain, �ain2 ¼ bin are the usual Mie coefficients for an isolated i-th
sphere.12 The fundamental physical result of Eq. (1.42) is that the scattering
occurs without a coupling between electromagnetic modes. In the spirit of
Fresnel’s analogy,115 the Mie coefficients �ainp in Eq. (1.42) can be interpreted
as the reflection coefficients for partial modes in the plane wave decomposi-
tion. In the same way, the Mie coefficients for the internal field can be
interpreted as Fresnel coefficients of the transmitted partial waves.115
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Equation (1.42) is a key one in the theory of scattering by sphere
aggregates. To find the field scattered from each particle of the aggregate, all
one has to do is to find the coefficients of expansion of the exciting field,
which should then be multiplied by the usual Mie coefficients. The exciting
field is found by the superposition principle

Ei
inc ¼ Ei

0 þ
XN
j≠i

Ei
sðjÞ. (1.43)

For fields Ei
sðjÞ scattered by a j-th particle, the expansion (1.41) is also

applicable. However, they cannot be used directly for finding the coefficients
pimnp, included in Eq. (1.42). The point is that these expansions will be written
with respect to the coordinate systems not coincident with the center of the
j-th particle, whereas Eq. (1.42) is written just in the i-th basis set. This
problem is solved with the help of the addition (translation) theorem for
VSH.115 Performing this translation for the VSHs describing N � 1 scattered
fields, we can find the coefficients of expansion of the complete exciting field
for the i-th particle. It is easy to see that the procedure described leads not to
an explicit solution, but to a system of coupled linear equations for the
coefficients pimnp, which we will write

XN
j¼1

X̀
n¼1

Xn
m¼�n

X2
p¼1

Hij
mnp,mnqp

j
mnq ¼ �pimnp: (1.44)

The interaction matrix H in our formulation of the method is determined by
the relationship

Hij
mnp,mnq ¼

�
dijdmmdnn þ ð1� dijÞAji

mnmn�a
j
n ð1� dijÞBji

mnmn
�bjn

ð1� dijÞBji
mnmn�a

j
n dijdmmdnn þ ð1� dijÞAji

mnmn
�bjn

�
,

(1.45)

where Aji
mnmn and Bji

mnmn are the coefficients of VSH translation, based on the
spherical Hankel function of the first kind, hð1Þn ðkrÞ. If one multiplies
Eq. (1.44) by the usual Mie coefficients ainp and uses relationship (1.42), then
system (1.44) reduces to the known115,120 system of equations directly for the
scattered-field coefficients aimnp.

From the structure of the interaction matrix it follows that an
electrodynamic interaction leads to the excitement of partial modes, which
might be absent in the incident radiation and the amplitude scattering matrix
may become nondiagonal.

In practice, the infinite system (1.44) is cut off to a certain maximal order
of the multipole expansion M that ensures the convergence of calculations of
physical quantities. If Eq. (1.44) is solved and coefficients of multipole
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expansion (1.42) are found, one can calculate all characteristics of the cluster
scattering. For example, the extinction cross section is calculated by the
equation

Ce ¼
4p
k2
XN
i¼1

XM
n¼1

Xn
m¼�n

X2
p¼1

cmnRe½aimnpð�pimnpÞ��, (1.46)

where the coefficients cmn depend on particular normalization of VSH and
field expansions.

To calculate the amplitude scattering matrix, one has to translate the
coefficients of individual-particle decompositions to the expansion coefficients
amnp with respect to the common center of the cluster. The simplest way to do
this is to employ the far-field approximation121

amnp ¼
XN
j¼1

ajmnp expð�ikrjÞ. (1.47)

However, this scheme is ineffective for orientational averaging (see below).
In terms of the coefficients amnp, the amplitude-scattering matrix

1 Sij(u,w)
is calculated in a conventional way115,122

S11 ¼
X
m,n,p

smn expðimwÞtmnpðuÞa0mnp, (1.48a)

S12 ¼
X
m,n,p

smn expðimwÞtmnpðuÞa90mnp, (1.48b)

S21 ¼
X
m,n,p

ismn expðimwÞtmn3�pðuÞa0mnp, (1.48c)

S22 ¼
X
m,n,p

ismn expðimwÞtmn3�pðuÞa90mnp, (1.48d)

where the coefficients smn are determined by the normalization of VSHs and
field decompositions, and the superscripts 0 and 90 are related to the
transversal magnetic and electric modes of the incident light. We emphasize
that matrix (1.48) is written in a coordinate system associated with the
incident wave k ¼ z; therefore, for the averaging over cluster orientations to
be performed, one has to do repeated calculations for each cluster orientation.
A more effective T-matrix approach is discussed in Section 1.4.3.

Let us consider the composite structures. In order to appreciate the
essence of this method of solving the problem, it will suffice to consider the
simplest structure in the form of a “host” sphere with a nonconcentric
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spherical inclusion. We can interpret the process of scattering of such a
structure in terms of the following Fresnel analogy.115 An incident plane wave
is projected onto the VSH basis, so that we have a set of incident partial modes.
These modes induce in the host sphere transmitted and reflected partial waves
with the reflection and transmission coefficients in accordance with the Mie
theory. As has been said before, there is no mode coupling in this process. The
inhomogeneity being nonconcentric with respect to the “host,” each transmit-
ted mode induces a multitude of reflection and transmission modes in the
inhomogeneity. The amplitudes of the reflection and transmission are given by
the Mie theory. The reflected modes of inclusion are incident outgoing modes
with respect to the external sphere. If we reexpand these waves with respect to
the “host” center, a problem arises that resembles the Mie theory but is for the
outgoing waves crossing the inside spherical boundary between two media.
This problem has a solution of the type (1.42). This process itself does not lead
to mode coupling, but this coupling has occurred earlier, when we had to
perform reexpansions of partial waves. A mathematical description of this
physical picture is available in Ref. 115. If the expansion coefficients of the
scattered field are found, the further calculations of the optical characteristics
do not differ from the cluster case.

1.4.3 T-matrix formalism for cluster scattering

Usually, it is not just a calculation for an individual structure, but an averaged
result over the statistical ensemble and orientations that is required. Formally
such an averaging can be carried out by simple summation of the results
calculated for various orientations and polarizations of the incident light, but
this is a very ineffective way. The orientational averaging for clusters is more
convenient to perform by using the T-matrix formalism,122 as well as for
nonspherical particles. Since all of the incident light properties are determined
by expansion coefficients, and the T-matrix depends only on the properties of
the scattering structure, intuition suggests that for an ensemble of structures
with random orientations the observable physical quantities should somehow
be expressed directly by way of the T-matrix. Thus, we can apply this
approach to cluster structures as well; one needs only the recipe for calculating
the cluster T-matrix. If we formally invert Eq. (1.44), we will get the T-matrix
of an individual cluster particle122

aimnp ¼
X
j

X
mnq

Tij
mnp,mnqp

j
mnq. (1.49)

Using theorems of VSH addition, one can combine all of these single-particle
T-matrices into a common cluster T-matrix115,122

T0a,b ¼
X
i,j

X
c,d

Joi
acT

ij
cdJ

j0
db, (1.50)
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where for simplicity we use the multi-indices a, b, c, and d to denote the order,
degree, and mode (i.e., a ¼ mnp, etc.). The matrices Joi

ab describe the VSH
translation to the common cluster center and are based on the spherical Bessel
functions. The further calculations of the optical characteristics and their
orientational averaging are performed according to the same scheme as that
employed in the case of the usual nonspherical particles.122

1.4.4 Fractal aggregates

The structure of various biological aggregates may be described in terms of
statistical (irregular) fractal clusters,123 i.e., statistically self-similar objects
with the fractal dimension Df, 3 defined by power relations

gðrÞ � ðr∕RÞDf�3, N � ðR∕aÞDf , (1.51)

where g(r) is the binary density-density correlation function, N is the
aggregate particle number, R is the average size of aggregates (r.m.s. radius R,
gyration radius Rg, etc.), and a is the size of monomers. From Eq. (1.51), one
can see a main property of fractal aggregates: low average density and large
density fluctuations within short-range distances. A direct consequence of
such a property of binary density correlations of monomers inside a cluster is
the already well-known124 power law for the angular dependence of the static
structure factor (normalized intensity) of light, x-ray, or neutron scattering S
(q)� (qR)–Df.

The above-presented power laws for g(r) and S(q) are observed in the
asymptotic sense only, when the scattering vector values of the probing
irradiation satisfy the strong inequality a≪ q–1≪R.125 In real experiments
within the visible optical region the condition qR≫ 1 is usually not observed
rigorously, since the average size of aggregates does not, as a rule, exceed
1 mm. In these cases, the character of the decrease in density correlations while
approaching the cluster boundary becomes important. This decrease is
described by using the so-called cutoff function h(r/R), which is included in the
complete correlation function rDf–3h(r/R).126,127 Several forms of h(x),
including the single exponential model h(x) � exp(� bx), were proposed in
the literature (see the discussion and relevant citations in Ref. 127). Based on
experimental data127–130 and computer simulations,126 the following approxi-
mation seems to be most appropriate for fractal aggregates:

hðx ¼ r∕RÞ ≈ expð�bxnÞ, n ≈ Df ≈ 2, (1.52)

where b � 1 for reaction-limited aggregates (RLCA),123,124 and b � 1/2 for
diffusion-limited aggregates (DLCA).123,124

In fractal cluster optics, the aggregates built from small metal
nanoparticles are of special interest. Large density fluctuations and strong
electrodynamic interaction of metal monomers result in specific linear119 and
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nonlinear131 optical effects. The readers are referred to the relevant paper119

and books.116,131 Further, the monomers of an aggregate are assumed to be
the optically soft particles. In this case, the optical properties of fractal
aggregates can be understood in terms of the mean field theory (MFT).132 It is
assumed in MFT that all aggregate monomers have the same dipole moments
directed along an average exciting field. The monomer interaction results only
in renormalization of the average amplitude of dipole moments exciting by the
average (mean) field. The scattered fields are calculated with taking into
account the geometrical phase shifts. Therefore, the angular scattering
characteristics in the RDG and MFT theories coincide.

Let us consider a monodisperse ensemble of fractal clusters each
containing N small spherical particles of radius a. If N0 is the number of
primary particles per unit of suspension volume, then the scattering intensity
of nonpolarized light by an ensemble of clusters may be written in the
following form:127

IðqÞ ¼ I0N0NjBj2
�
3
16p

s1sð1þ cos2uÞ
�
G2ðqaÞSðqÞ, (1.53)

where s1s and G(qa) are the integral scattering cross section and the scattering
form factor of primary particles [Eq. (1.34)], respectively. The factor |B|2 gives
a mean field theory correction,132 independent from the scattering angle u, to
the scattering structure factor that describes in the RDG approximation the
effect of spatial correlations of primary particles in a cluster

SðqÞ ¼ 1
N

�
1þ ðN � 1Þ∫

`

0
x2pðxÞ sin qRx

qRx
dx

�
, (1.54)

where x ¼ r/R;

R2 ¼ 2R2g ¼
X
ij

jri � rjj2pðrijÞ (1.55)

is the r.m.s. radius of a cluster; and p(rij) is the probability density for finding a
randomly chosen pair of cluster particles separated by a vector rij ¼ ri � rj.
Note that p(rij) is closely related to the density–density correlation function
g(r).126

At small scattering angles, when qR≪ 1, the angular dependence of
scattering is represented by the universal Guinier’s expansion124

SðqÞ ≈ 1� ðqRgÞ2∕3, (1.56)

while the asymptotic transition to the fractal regime S(q) � (qR)–Df is
determined by polydispersity and the form of the cut-off function.125,126
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Detailed calculations of the scattering structure factor for various models of
fractal clusters, as well as the relevant references can be found in Ref. 125.

The mean field theory factor132 B is given by

B ¼
�
1� 3

2
ðN � 1Þ sin d expðidÞPðkRÞ

��1
, (1.57)

PðaÞ ¼ ∫
`

0
x2pðxÞP1ðkRxÞdx, (1.58)

P1ðzÞ ¼
expðizÞ

z2

�
sin z� z

3
GðzÞ þ 1� iz

z

�
GðzÞ � sin z

z

��
q, (1.59)

where d is the phase shift of the p wave for a small spherical particle.132

Analytical properties of function P(kR) are discussed in Refs. 127 and 132.
Let us now consider the integral functions that describe the spectral

dependence of light extinction for nonabsorbing systems. Turbidity of an
ensemble of fractal clusters may be represented in the following form:127

�t ¼ ðN0∕NÞss ¼ t1FsðkRÞ, (1.60)

where t1 ¼ N0s1s is the turbidity of an ensemble of primary particles, and
Fs(kR ) is the enhancement (coherence) factor equal to the scattering cross
section of a cluster ss normalized on s1sN

Fs ¼ ss∕Ns1s: (1.61)

For absorbing monomers, one has to introduce the extinction cross
section se as well as the corresponding extinction Fe and absorption Fa
factors. Then Eq. (1.60) can be rewritten as

�t ¼ N0

M
se ¼ N0s1eFe ¼ t1Fe, (1.62)

Fe ¼ se∕Ns1e ≡ FsÃþ ð1�ÃÞFs, Fa ¼ sa∕Ns1a, (1.63)

where Ã¼s1s/s1e is the monomer albedo. In MFT, the total cluster
absorption is simply equal to the sum of monomer absorptions, i.e.,

sa ¼ Ns1a, Fa ¼ 1: (1.64)

One should remember that Eq. (1.64) holds only for weakly absorbing
monomers, and it violates for metal119 or soot115 nanoparticles. Absorption of
small clusters gives a main contribution to their total extinction; therefore,
Eq. (1.64) can be used for the extinction coherence factor as well.
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For small kR or for small N � (R/a)Df

FsðkRÞ ≈ N
�
1� 1

3
ðkRÞ2

�
, (1.65)

so that the turbidity of an ensemble of clusters increases by the factor of N as
compared to t1. To calculate the enhancement factor for arbitrary argument
kR, the general relationship of the mean field theory can be used127

FsðkRÞ ¼ F1sðkRÞjBj2, (1.66)

where F1s(a) is the enhancement factor in the single intracluster scattering
approximation

F 1sðaÞ ¼
1
N
þ 3
2

�
1� 1

N

�
ImPðkRÞ: (1.67)

The behavior of the scattering enhancement factor at great N or kR values
is given by the following asymptotic expression:127

F ð1Þs ¼ A1ðDf Þ þ AðDf 2ÞðkRÞDf�2, kR ≫ 1, (1.68)

where the constants A1 and A2 are determined by the cutoff correlation
function (e.g., see explicit expressions in Refs. 126 and 127). The physical
meaning of Eq. (1.68) is as follows: the turbidity of a cluster suspension does
not depend on the cluster size R or cluster particle number N if Df, 2,
logarithmically depends on R if Df ¼ 2, and increases as (kR)Df–2 if Df. 2.
Note that asymptotic expression (1.67) is not applicable in the geometrical
optics limit. Transition to this limit for fractal aggregates has been discussed
in Ref. 133.

Aggregation of particles always leads to polydisperse systems of clusters.
The evolution processes of cluster-mass distribution f(N) have by now been
well investigated theoretically, experimentally, and by computer simula-
tion.123,134 The most important result of these studies is the proof of the
dynamic scaling, according to which the shape of the distribution curve is
described by the universal function c(N/Nn), which is not explicitly time
dependent. The time evolution of cluster-mass distribution is described only
by specific dependences of distribution moments Nn(t) for DLCA and RLCA
clusters.123 Detailed consideration of polydispersity effects in fractal cluster
optics can be found in Refs. 125 and 127.
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1.5 Extinction and Scattering by Plasmon-Resonant Particles

1.5.1 Localized plasmon resonance of small metal spheres

Over the recent decade, gold (and other metallic) nanoparticles (NPs)135 have
attracted significant interest as a novel platform for various applications to
nanobiotechnology and biomedicine136–138 because of convenient surface
bioconjugation with molecular probes139 and remarkable plasmon-resonant
optical properties.140,141 Recently published examples include applications of
NPs such as biosensorics,142 genomics,143 clinical chemistry,144 immunoas-
says,145 immune response enhancement,146 detection and control of micro-
organisms,147 optical imaging of biological cells (including cancer cell imaging
with resonance scattering,148 optical coherence tomography (OCT),149 two-
photon luminescence,150 and photoacoustic151 techniques), cancer cell
photothermolysis,152 and targeted delivery of drugs or genetic and immuno-
logical substances.153,154 In particular, there is great interest in the
development of nanoparticle-based vectors that decrease the toxicity of free
drugs and ensure targeted delivery directly to tumor cells.155–157 It should be
emphasized that almost simultaneously with the beginning of the use of GNPs
in biomedicine, acute questions were raised about the biodistribution and
circulation of NPs in the bloodstream, their pharmacokinetics and elimination
from the organism, and their possible toxicity to the organism as a whole or at
the level of cyto- and genotoxicity.158

The absorption and scattering spectra of metal nanoparticles exhibit
resonance UV–vis bands, which are absent in macroscopic samples. The
nature of these bands is determined by the collective behavior of conduction
electrons in the light wave field. In the electron gas of metals, collective
plasma oscillations can be excited at frequency vp in the visible region.

12 An
elementary quantum with energy ℏvp is called a plasmon.140 Because
plasmons are the result of quantization of classical plasma oscillations, their
properties can be derived from Maxwell’s equations.

Collective fluctuations of the electron density on the boundary of a usual
dielectric with the positive permittivity and a metal with the negative
permittivity are called surface plasmons.140 The excitation of surface
plasmons by light is called a surface plasmon resonance (SPR) for planar
structures with travelling waves and a localized surface plasmon resonance
(LSPR) for metal nanoparticles.159 These excitations are related to evanescent
surface electromagnetic waves, which are not necessarily localized on the
interface.

To describe the optical properties of plasmon-resonant nanostructures, one
can use various computational approaches,160 including the T-matrix
method.161 An elementary classical description of a plasmon resonance
(PR) in a small metal sphere is as follows.159 The electric field of an
electromagnetic light wave displaces the cloud of free electrons and produces
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uncompensated charges near a particle surface and corresponding returning
forces. As mentioned above, the optical resonance related to these oscillations
is called the LSPR. The term “surface” is used, first, because the returning force
is caused by the polarization of the particle surface. Second, the radial
component of the electric field inside the particle changes as rn–1, so that it is
stronger localized near the particle surface12 (for r! a) with increasing the
mode order n≫ 1. In the general case, the eigenfrequency of such a “collective”
oscillator does not coincide with the wave frequency and is determined by
many factors, including the concentration and effective mass of conductive
electrons, the shape, structure, and size of particles, interaction between
particles, and the influence of the environment. However, for the elementary
description, it is sufficient to use a combination of the usual dipole (Rayleigh)
approximation and the Drude theory.12 In this case, the absorption and
scattering of light by a small particle are determined by its electrostatic
polarizability a, which can be calculated by using the optical permittivity ε(v)
[or ε(l)], where v is the angular frequency and l is the wavelength of light in
vacuum. For a small sphere of volume V and radius a in a homogeneous
dielectric medium with the permittivity εm, we have the following expressions
for the extinction, absorption, and scattering cross sections:

Cext ¼ Cabs þ Csca ¼
12pk
a3

εmImðεÞ
jε� εmj2

jaj2 þ 8p
3

k4jaj2 ≃ 4pkImðaÞ, (1.69)

where k ¼ 2p ffiffiffiffiffiεm
p ∕l is the wave number in the surrounding medium, and the

polarizability a is given by162

a ¼ a0
1þ wðxÞa�3a0

, a0 ¼
3V
4p

ε� εm
εþ 2εm

¼ a3
ε� εm
εþ 2εm

. (1.70)

Here, x ¼ ka, the renormalization function w(x) is defined as163 w(x) ¼ 2þ
2(ix � 1)exp(ix)≃ � x2 � i(2/3)x3, and Eq. (1.70) reproduces Meier and
Wokaun’s formula,164 which has been generalized for spheroids by Moroz.165

Below, we will not distinguish the electrostatic polarizability from the
renormalized polarizability, which accounts for radiative damping effects. In
this approximation, the extinction of a small particle is determined by its
absorption Cabs ¼ Cext ¼ 4pkIm(a) and scattering contribution can be
neglected.

As the particle size is decreased to the value comparable with the electron
mean-free path (a � le), deviations of the phenomenological dielectric
function ε(v,a) of the particle from the bulk values ε(v) ¼ ε(v,a≫ le) can
be expected. A general recipe for the inclusion of macroscopic tabulated data
and size effects to the size-dependent dielectric function consists of the
following.140 Let εb(v) be the macroscopic dielectric function, which can be
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found in the literature from measurements with massive samples. Then the
size-dependent dielectric function of a particle may be written as

εðv,aÞ ¼ εbðvÞ þ Dεðv,aÞ, (1.71)

where the correction term Dε(v,a) takes into account the contribution of size-
dependent scattering of electrons to the Drude part of the dielectric function

Dεðv,aÞ ¼ εDrudeb ðvÞ � εDrudep ðv,aÞ ¼ v2p
vðvþ igbÞ

� v2p,a
vðvþ igpÞ

. (1.72)

Here, gb ¼ t�1b is the volume decay constant; tb is the electron-free path time
in a massive metal; vp,a is the plasma frequency for a particle of diameter a
(we assume below that vp,a≃vp);

gp ¼ t�1p ¼ gb þ gs ¼ gb þ A
vF
Leff

(1.73)

is the size-dependent decay constant equal to the inverse electron mean transit
time gp ¼ t�1p in a particle; Leff is the effective electron mean-free path; gs is
the size-dependent contribution to the decay constant; and A is a
dimensionless parameter determined by the details of scattering of electrons
by the particle surface. A particular value of the scattering constant A is
determined by the particle size, shape, structure, etc. For details, readers are
referred to papers by Coronado and Schatz166 and Moroz.167

One can see from the expressions presented above that the polarizability
and optical cross sections can have a strong resonance under the condition

εðvmax ≡ v0Þ ¼ εðlmaxÞ ¼ �2εm. (1.74)

The PR frequency can be estimated from the elementary Drude theory for the
permittivity of a bulk metal

εðvÞ ¼ εib � v2p
vðvþ igbÞ

, (1.75)

where εib is the contribution of interband electronic transitions; vp is the
frequency of volume plasma oscillations of free electrons; and gb is the volume
decay constant related to the electron mean-free path lb and the Fermi velocity vF
by the expression gb ¼ lb/vF. By combining the above equations, one can obtain
the following expressions for the resonance plasmon frequency and wavelength

vmax ≡ v0 ¼ vpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εib þ 2εm

p , lmax ≡ l0 ¼ lp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εib þ 2εm

p
. (1.76)

Here, lp ¼ 2pc/vp is the wavelength of volume oscillations of the metal
electron plasma.
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Equation (1.74) determines the very first (n ¼ 1) dipole resonance of a
spherical particle. Except this dipole resonance, higher multipoles and
corresponding multipole (quadrupole, etc.) resonances can be also excited.
For each multipole mode, the resonance condition exists, which is similar to
Eq. (1.74) and corresponds to the resonance of the quadrupole, octupole, and
so on, polarizability contributions. For spherical particles, these conditions
correspond to the resonance relations for the partial Mie coefficients12 vn ¼
vp(εib þ εm(n þ 1)/n)–1/2, where n is the mode (resonance) number. To
understand the physics of LSPRs, it is important to distinguish two possible
scenarios of excitation of multipole resonances. The first case corresponds to
small but nonspherical particles of irregular or uneven shape, when the
distribution of induced surface charges is strongly inhomogeneous and does
not correspond to the dipole distribution. This inhomogeneous distribution
generates high multipoles even in the case when the system size is certainly
much smaller than the wavelength of light. Prominent examples are cubic
particles168 or two contacting spheres.169 As mentioned earlier, the field
distribution near the contact point is so inhomogeneous that multipole
expansions converge very slowly or diverge at all. The second scenario of high
multipole excitation is realized with increasing the particle size, when the
transition from the quasi-stationary to radiative regime is realized, and the
contribution of higher spherical harmonics should be taken into account in the
Mie series (or another multipole expansion). For example, while the extinction
spectrum for a spherical silver particle with a 30-nm diameter is completely
determined by the dipole contribution and has one resonance, the spectrum of
a 60-nm sphere exhibits a distinct high-frequency quadrupole peak in addition
to the low-frequency dipole peak.

1.5.2 Metal nanorods

Gold nanorods (NRs) possess unique optical properties because of their
tunable VIS–NIR dipole plasmon resonances, as demonstrated in pioneering
experiments170 and simulations.171 Owing to the shape- and size-controlled
scattering and absorption properties, the gold NRs have found promising
applications in biomedical applications, cancer diagnostics, photothermal
destruction of cancer cells or murine macrophages in vitro (see also the
citations in Ref. 172), and in vivo flow cytometry of circulating cells.151 New
potential biomedical applications of metal NRs can be expected because
of their enhanced PR sensitivity to the dielectric environment173 and their
orientation with respect to polarized incident light,174 including laser
orientation alignment and trapping,175 strong light scattering oscillations
induced by Brownian rotation,176 unusual depolarization of scattered light,177

and anisotropic properties of NRs embedded in a solid matrix178 or deposited
on a substrate.179,180 Recent advances in synthesis181 and functionalization182

of gold NRs will stimulate fast progress in biomedical technologies using
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conjugates of gold NRs with biomolecules. For a comprehensive discussion of
the chemistry, optics, and biomedical applications of metal NRs, the readers
are referred to recent reviews.162,174

The optical properties of metal NRs can be understood in terms of an
approximation of the particle shape by an prolate spheroid with semiaxes (a,b,
b) and known analytic solution for the axial polarizability tensor

ak,⊥ ≡ aa,b ¼
V
4p

ε� εm
εm þ ðε� εmÞLk,⊥

, (1.77)

where the geometrical depolarization factors12 satisfy the relation L∥þ
2L⊥ ¼ 1, and L ¼ 1/3 for spheres. Unlike spherical particles, expressions of
type (1.76) now predict the appearance of two resonances corresponding to
oscillations of electrons across and along the symmetry axis of a particle. In
particular, the supersensitive tuning of the longitudinal resonance is explained
by the modification of expression (1.76)

lmax ,k ¼ lpðεib þ ð1∕Lk � 1ÞεmÞ1∕2. (1.78)

It follows from Eq. (1.78) that the dipole resonances of small gold or silver
spheres (5≤ 2a≤ 30 nm) in water are localized near 520 or 380 nm and do not
depend on the particle size. By contrast, the longitudinal LPR of silver and
gold nanorods can easily be tuned across the vis–NIR band by varying the
aspect ratio, as L�1

k ! ` for needles and L�1
k ! 0 for thin disks, which

predicts the strong red shift of the resonance with increasing the axial ratio of
particles (when L∥! 0).

Figure 1.1 shows the extinction and scattering spectra of randomly
oriented gold [Fig. 1.1(a) and (c)] and silver [Fig. 1.1(b) and (d)] NRs with the
equivolume diameter D ¼ dev ¼ 20 nm and the aspect ratios 1≤ e ¼ a/b≤ 6.
The single-particle extinction and scattering properties are expressed in
terms of the corresponding efficiency factors, i.e., the corresponding cross
sections normalized to the geometrical cross section of an equivolume sphere.
We see that the properties of particles depend very strongly on the metal
nature. First, as the aspect ratio for gold rods is increased, the resonance
extinction increases approximately by a factor of five, and the Q factor also
increases. For silver, vice versa: the highest Q factor is observed for spheres,
and the resonance extinction for rods is lower. Second, for the same volume
and axial ratio, the extinction and scattering of light by silver rods are
considerably more efficient. The resonance scattering factors for silver
particles are approximately five times larger than those for gold particles.
Third, the relative intensity of the transverse PR of silver particles with the
aspect ratio above 2 is noticeably larger than that for gold particles, where this
resonance can be simply neglected. Finally, principal differences are revealed
for particles with the shape factor smaller than 2 [Fig. 1.1(c) and (d)].
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The resonance for gold particles shifts to the red and gradually splits into two
bands with dominating absorption in the red region. The scattering band
shifts to the red, and its intensity increases. For silver rods, the situation is
different. The short-wavelength extinction resonance shifts to the blue, its
intensity decreases, and it splits into two distinct bands. In this case, the
intensity of the long-wavelength extinction band remains approximately
constant; it is comparable with the short-wavelength band intensity and shifts
to the red with increasing nonsphericity. The scattering and absorption
spectra approximately reproduce these features.

1.5.3 Metal nanoshells

Gold nanoshells183 are of great interest for biosensorics,184 immunoassay,
optical visualisation of biological objects, and laser photodestruction of
cancer cells.149 Note that the efficiency of nanoshells as photothermal labels
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Figure 1.1 Extinction (solid curves) and scattering (dashed curves) spectra of randomly
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can be related not only to their heating but to the formation of explosive
vapor bubbles.185 The existing protocols of synthesis of gold nanoshells with a
silica core183 allow the preparation of particles of diameter 80–400 nm with a
comparatively narrow size distribution. The resonance scattering of light by
such particles exceeds by more than an order of magnitude scattering from
usual colloidal gold particles of diameters 10–50 nm. Very strong scattering
allows one to observe individual nanoshells in the dark-field microscope and
opens up the way to the development of high-contrast labels for visualization
of biologically specific interactions of conjugates (particles with attached
probe macromolecules) with target molecules.

The optical properties of model nanoshells in the form of a bilayer sphere
with a dielectric core can be calculated easily by using various programs of the
Mie solution type. The PR wavelength is determined mainly by the ratio of the
shell thickness to the core diameter and by the dielectric functions of the core,
shell, and environment. Although numerical analysis can be performed quite
easily, it is desirable to have a simple analytic method for quantitative estimates
of the polarizability of nanoshells and their dipole optical properties. Such a
method has been developed in Ref. 186 to calculate an equivalent average
permittivity of a multilayered sphere. The main advantage of our approach is
that now we can apply usual expressions for resonances of spherical particles to
multilayer spheres with the equivalent average permittivity as well.

The resonance tuning of NRs and nanoshells is related to the shape and
structure of the particles, respectively. The idea of a combination of these two
particles in the form of an ellipsoidal nanoshell was proposed in Ref. 187.
Such a structure was later called nanorice.188 The principle of the dipole
equivalence can easily be modified for such particles as well.161

Consider an initial particle with known polarizability—e.g., a dielectric
spheroid with the symmetry semiaxes a1$ b1 and the dielectric permittivity ε1
(Fig. 1.2).

It does not matter whether the initial particle is homogeneous or layered.
The goal is to find the polarizability of the same particle, which is now
covered by a metallic shell with the dielectric function ε2. To this end, the
initial particle is placed in an auxiliary homogeneous dielectric medium with
the permittivity ε2 and is surrounded by an imaginary confocal spheroid (a2,
b2), where a22 ¼ a21 þ s2, b22 ¼ b21 þ s2, and s is the shell thickness. Then the
imaginary particle is replaced by an equivalent homogeneous particle with an
average permittivity εav, which gives an equivalent dipole moment. Therefore,
the following equation holds:161

V 1

L1

ε1 � ε2
ε1 þ w1ε2

¼ V 2

L2

εav � ε2
εav þ w2ε2

, wi ¼ L�1i � 1, i ¼ 1,2, (1.79)

where Vi are the volumes and Li are the geometrical depolarization factors of
inner (i ¼ 2) and outer (i ¼ 2) spheroids, respectively.
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In fact, Eq. (1.79) defines the equivalent averaged permittivity, which
gives identical dipoles in steps 1 and 2

εav ¼ ε2
1þ w2f 12a12
1� f 12a12

, a12 ¼
ε1 � ε2
ε1 þ w1ε2

, f 12 ¼
V 1L2
V 2L1

. (1.80)

In step 3, the equivalent particle of step 2 is placed in the surrounding
medium with the dielectric permittivity εm. Finally, note that the dipole
moment in step 3 equals that of step 4, thus giving the final analytical
solution for the polarizability of the layered particle embedded in the
surrounding medium

a
ð2Þ
av ¼ V2

4pL2

εav � εm
εav þ w2εm

. (1.81)

This solution has the same form as that for usual homogeneous spheroids. It is
evident that the outlined procedure can be continued iteratively for an
arbitrary number of confocal layers.

The LPR resonance condition ReðεavÞ ≡ ε0av ¼ �w2εm can be recast as
Eq. (1.74)

Figure 1.2 Scheme of the dipole equivalence method.186 Step 1: The initial particle (ε1, a1,
b1) is embedded in an auxiliary medium with permittivity ε2 and is surrounded by an
imaginary confocal spheroid (a2, b2). Step 2: An equivalent particle (εav, a2, b2) is embedded
in the auxiliary medium with permittivity ε2. Step 3: The equivalent particle (εav, a2, b2) is
embedded in the surrounding medium with permittivity εm. Step 4: The initial particle (ε1, a1,
b1) is covered by an outer layer (ε2, a2) and is embedded in the surrounding medium with
permittivity εm. Steps 1 and 2 give identical dipoles in the auxiliary medium, whereas steps 3
and 4 give identical dipoles in the surrounding medium.
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ε0 ≡ ε0
2 ¼ �2εmw�. (1.82)

As the form of Eq. (1.82) is identical to that of Eq. (1.74), from Eq. (1.82), we
immediately get the final solution for LPR wavelengths

lmax ¼ lp½εib þ 2εmw��1∕2. (1.83)

In Eqs. (1.82) and (1.83), functions w± are defined by the following
expressions:

w� ¼ p
2

� 1
2

�
p2 � w2

ε1
εm

1� f 12
w1 � w2f 12

�
1∕2

(1.84)

p ¼ 1
w1 � w2f 12

�
ε1
2εm

ð1þ f 12w2Þ þ w2
2

ðw1 þ f 12Þ
�
. (1.85)

The positive and negative signs in Eq. (1.83) correspond to the LPRs of the
outer and inner boundary shells, respectively. For spherical gold nanoshells,
the short-wavelength inner resonance cannot be resolved in absorption or
scattering spectra, whereas for silver nanoshells it is clearly seen around
350 nm.189

It is instructive to show that the general solution [Eqs. (1.83) through
(1.85)] recovers all limiting cases of interest: metal spheroids, nanoshells, and
spheres. For homogeneous spheroids, we set f12 ¼ 0, so Eqs. (1.80) and (1.84)
reduce to εav ¼ ε2≡ ε, wþ ¼ w2∕2 ¼ ðL�1

k,⊥ � 1Þ∕2. This yields the usual

electrostatic polarizability tensor (1.77).
For spherical nanoshells, we have to set w1,2 ¼ 2 and f12 ¼ V1/V2 ¼ 1 �

fs, where fs is the volume fraction of the metal shell. Then Eqs. (1.84) and
(1.85) reduce to the previously published results

w� ¼ 1
2

�
p1 � ðp21 � ðε1∕εmÞÞ1∕2

�
, p1 ¼ ε1

εm

�
3
4f s

� 1
2

�
þ 3
2f s

� 1
2

: (1.86)

For thin shells, we get asymptotic solutions ε ¼ �2εmp1 and ε ¼ � ε1/2p1.
The first solution can be recast as Eq. (7.10) in Ref. 140, but the second
expression differs from Eq. (7.11) in Ref. 140, which seems to be erroneous.
The corresponding resonance wavelengths of a thin nanoshell are as follows:162

lmax ≡ lþ ¼ lp

�
εib þ 3

f s

�
εm þ ε1

2

��
1∕2
, (1.87)

lmin ≡ l� ¼ lp

�
εib þ 2ε1εmf s

3ðε1 þ 2εmÞ
�
1∕2
. (1.88)
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Again, the maximal LPR wavelength can be tuned by varying the core/shell
ratio 0, fs≤ 1 (fs ¼ 1 for a homogeneous sphere and fs! 0 for a thin shell). In
the limit fs! 0, the first resonance wavelength lmax! ` and lmin !
lpε

1∕2
ib . By contrast, Eq. (7.11) in Ref. 140 reduces to lmin! lp(εib+ ε1/2)1/2.
Finally, the properties of thick shells are close to those for homogeneous

spheres. Indeed, by setting fs! 1 in Eqs. (1.87) and (1.88), we arrive at the
following expressions:

lmax ¼ lpðεib þ 2εmÞ1∕2, lmin ¼ lp

�
εib þ

ε1
2

�
1∕2
. (1.89)

One additional important note is in order here. The above equations
determine the very first (n ¼ 1) dipole resonances of particles. With an
increase in the particle size, higher multipoles and corresponding multipole
resonances can also be excited in larger particles. For example, in the case of
spherical particles, these conditions correspond to the resonance relations for
the partial Mie coefficients161 ln ¼ lp(εibþ εm(n+1)/n)1/2, where n is the mode
(resonance) number. With an increase in the sphere size, the multipole
wavelength also increases.190 The multipole modes in thin spherical nanoshells
can be written as follows:161

ln, max ¼ lp½εib þ 2εmwn�1∕2, wn ¼
1
2

�
pn � ðp2n � ðε1∕εmÞÞ1∕2

�
, (1.90)

with the multipole parameter pn being defined by the following expression:

pn ¼
q2n þ ðε1∕εmÞ þ qnð1� f sÞ½1þ ðε1∕εmÞ�

2qnf s
, qn ¼

nþ 1
n

. (1.91)

At the lowest dipolar order n ¼ 1, Eq. (1.91) reduces to Eq. (1.86).

1.5.4 Coupled plasmon resonances: bisphere and linear
chain examples

Along with the optics of individual PR particles, the collective behavior of the
interacting PR particles is of great interest for nanobiotechnology.191 The
analysis of its features includes the study of various structures, beginning from
one-dimensional chains with unusual optical properties.192 Another example
is the optics of two-dimensional (2-D) arrays,193 in particular, clusters of
spherical particles on a substrate and 2-D planar ensembles formed by usual
gold or polymer-coated spheres.172 The unusual properties of monolayers of
silver nanoparticles in a polymer film194 and on a glass substrate195 have been
recently discovered. A review of 3-D cluster optics can be found in Refs. 140,
162, 169, and 191.
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In this chapter, we restrict our consideration of collective plasmons by
only one instructive example: gold and silver bispheres of a diameter d
separated by a variable distance s.

Figure 1.3 shows the absorption spectra calculated by the dipole and
multipole approaches for two particle diameters d ¼ 15 nm (silver) and 30 nm
(gold) (for data for 60 nm, see Ref. 169). The numbers on the curves
correspond to the relative interparticle separations s/d from 0.5 to 0.01. When
the interparticle separation satisfies the condition s/d$ 0.5, the absorption
efficiencies approach the single-particle quantities so that the dipole and
multipole calculations give identical results. However, the situation changes
dramatically when the relative separation s/d is about several percent. The
exact multipole approach predicts the well-known enormous theoretical191

and experimental196 red-shifting of spectra and their splitting197 into two
modes, whereas the dipole spectra show only a minor red shift.

In the case of silver bispheres [Fig. 1.3(a) and (b)], the resonance light
scattering of 60-nm clusters exceeds the resonance absorption so that any
comparison between the dipole and the multipole approaches becomes
incorrect unless both scattering and absorption are taken into account for the
total extinction. That is why we show only the calculated data for silver
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Figure 1.3 Absorption spectra at an incident light polarization parallel to the (a) and (b)
silver and (c) and (d) gold bisphere axis (x≡ ∥). Calculations by the (a) and (b) dipole
approximation and (c) and (d) GMM multipole codes for particle diameters d = 15 (silver) and
30 nm (gold) and the relative interparticle separations s/d = 0.5 (1), 0.2 (2), 0.1(3), 0.05 (4),
0.02 (5), and 0.01 (6).
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nanospheres with d≤ 60 nm. At moderate separations (s/d. 0.05), the
independent-particle spectrum splits into two modes; therefore, the data of
Fig. 1.3(a) and (b) are in great part analogous to those of Fig. 1.3(c) and (d)
and need no additional comment. However, at smaller separations s/d, 0.05,
we observe the appearance of four plasmon resonances related to the
quadrupole and the next high-order multipole excitations.

Strong binary coupling also is observed for linear chains of two-layer
conjugates. Figure 1.4 shows the dependence of extinction A(l) and scattering
I90(l) spectra of randomly oriented linear chains built from two-layer particles
with gold core and a dielectric shell. The number of particles is the variable
parameter of curves. It is worth noting a principal difference between the spectra
of densely packed [s ¼ 1 nm, strong binary coupling, Fig. 1.4(c) and (d)] and
rare chains [s ¼ 5 nm, weak binary coupling, Fig. 1.4(a) and (b)].

The scattering intensity in Fig. 1.4(b) and Fig. 1.4(d) is expressed in the
same scale and was calculated for the same gold concentration. In agreement
with our previous observations,191 the extinction spectra do not change
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Figure 1.4 Extinction and scattering spectra of randomly oriented linear chains of two-
layered gold (core)/dielectric shell particles with different particle number N¼1–10.
Calculations for the core diameter d¼ 30 nm, (a) and (b) shell thickness s¼ 5 and (c) and
(d) 1 nm, and separation distance Dd¼ 0.
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essentially for small and rare aggregates [Fig. 1.4(a)], while the PR peak in the
scattering spectra increases significantly due to constructive far-field interference.
However, the peak position does not shift significantly.

For a thin dielectric shell, the transformation of extinction and scattering
spectra are due to both the electrodynamic coupling and the far-field
interference. Again, we observe a rapid saturation of particle-number effect.
This can be interpreted as manifestation of an effective electrodynamic
interaction between monomers, which belong to a finite conjugate group.
Other examples of aggregated particles and their optical properties can be
found in our works.161,191

The dependence of the extinction spectra on the total multipole order NM

is shown in Fig. 1.5. Remember once again that NM means the maximal order
of VSH in the coupled equations rather than the number of multipoles
involved in the final calculations of optical characteristics. According to these
computer experiments, one has to include extra-high single-particle multipole
orders (up to 30–40) into coupled equations to calculate correctly the
extinction spectra of 15-nm gold spheres separated by a 0.5–1% relative
distance s/d. The extinction spectra were calculated by the exact T-matrix code
for randomly oriented gold bispheres in water. It is evident from Fig. 1.4 that
the convergence problems are related to calculations of the red-shifted
resonance peak, which can be reproduced correctly if we retain the VSH with
the order of about 30 in the case of 0.15 nm (1%) separation. For smaller
separations [e.g., s ¼ 0.075 nm, Fig. 1.5(b)], we note the appearance of a
quadrupole resonance near 600 nm that can also be reproduced accurately
only if we include multipoles of the 40th order into coupled equations.

The need to retain high multipoles for small spheres, which are themselves
well within the dipole approximation, seems to be somewhat counterintuitive.
It should be emphasized that the final calculations involve a rather small
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Figure 1.5 Extinction spectra of 15-nm randomly oriented gold bispheres in water,
calculated by the exact T-matrix method. The sphere diameter is 15 nm, the separation
distances between spheres are (a) 0.15 nm and (b) 0.075 nm, and the numbers near the
curves designate the multipole orders that have been included in the single-particle field
expansions of coupled equations.
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number of multipoles (as a rule, less than 6). However, to find these small-
order contributions correctly, one needs to include many more multipoles into
coupled equations such as given by Eq. (1.44). The physical origin of this
unusual electrodynamic coupling was first established by Mackowski198 for
small soot bispheres. He showed that the electric-field intensity can be highly
inhomogeneous in the vicinity of minimal separation points between the
spheres even if the external filed is homogeneous on the scale of bisphere size.
Evidently, the same physics holds in our case, as the imaginary part of the
dielectric permittivity is the main parameter that determines the spatial
electric-field distribution near the contact bisphere point.

1.6 Tissue Structure and Relevant Optical Models

Biological tissues are optically inhomogeneous and thus scattering processes
with light propagation play a substantial role. The scattered radiation
contains information about sizes and shapes of tissue structural elements, their
orientation, optical constants, and other parameters. To extract this
information and interpret experimental results on light scattering, one needs
to develop an appropriate optical model for a tissue and on its basis
to solve the inverse problem of radiation propagation and scattering in the
medium.

There is no rigorous theory describing light absorption and scattering by
tissues and cell structures. However, important information on their optical
properties may be obtained by studying the appropriate model objects. The
complicated structure of tissues, high concentration of scattering particles,
variability of their sizes, shapes, and optical constants makes the problem of
constructing an adequate optical model quite cumbersome. It may be assumed
that models, being the basis of the scattering equation, would be best matched
to real objects. The main peculiarities of scattering effects are essentially
controlled by simple factors. These factors for a single particle are35 the size
and shape of the particle, the internal structure of the particle, and the
inherent inhomogeneity of the particle.

1.6.1 Continuous and discrete models of tissues

Two approaches may be considered for tissue modeling, namely, tissue’s
representation as a medium with the continuous random spatial distribution
of optical parameters or as a discrete ensemble of scatterers. The choice of one
or another approach is dictated both by the features of the tissue under study
and, to a considerable extent, the kind of light scattering characteristics that
are to be obtained in the result of the modeling. The microstructure of
biological cells and tissues is complicated and difficult to be characterized
quantitatively. The microstructure of a cell or tissue is revealed in light or
electron micrographs as spatial density fluctuations that are the result of the
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stain density variations of different structural components.199 Most biological
tissues are composed of structures with sizes that span a wide range. In the
absence of a single dominant size, representation of a tissue as an ensemble of
isolated and independent particles fails. Light scattering in these systems is
possible to describe using the idea of a random continuum of index of
refraction inhomogeneities with a varying spatial scale.200 Similar problems
have been investigated for light propagation through atmospheric turbu-
lence201 and for reflection by rough surfaces.202

The tissue representation as inhomogeneous medium with continuous
spatial fluctuations of the index of refraction is, e.g., employed to examine the
speckle structure of scattered radiation. The interest for the scale fluctuation
properties of a speckle pattern appearing under the interaction of coherent
radiation with the optically inhomogeneous objects is due to a possibility of
extraction of information on the structure of scattering objects.203

Intriguing results for such a tissue model have been discussed by Schmitt
et al.200,204 In particular, the phase contrast microscopy was used to show the
structure of the refractive index inhomogeneous in the tissues of mammals to
be similar to the structure of frozen turbulence in a number of cases.6 This
result is of fundamental importance for understanding the peculiarities of
radiation transfer in the tissue, and it may be a key for the solution of the
inverse problem on tissue structure reconstruction. The above approach is
usually exploited for tissues where there are no pronounced boundaries
between elements and which are featured by significant heterogeneity.
Figure 1.6 is the electronic micrograph of a rat liver represented as an
example.205

The process of scattering at these structures may be described under
certain conditions using the model of a phase screen.206

The second approach to tissue modeling is its representation as a system of
discrete scattering particles. This chapter deals mainly with different aspects of
radiation propagation in the tissues on the basis of the model of discrete
scatterers. This model is to be advantageously used to describe the angular
dependence of the polarization characteristics of the scattered radiation.207

Figure 1.6 Electronic micrograph of a rat liver.205
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Blood is an example of the most important biological disperse system that
entirely corresponds to the model of discrete scatterers.

To properly choose a theoretical method and approximations for cal-
culating the scattering characteristics of a particle system it is necessary to
regard the main features of the tissue structure and namely, the shape and the
size range of particles, their index of refraction and concentration. Consider
some examples of discrete scatterer models for some tissue types.

1.6.2 Shape and sizes of particles in discrete tissue models

A biological medium is most often modeled by an ensemble of homogeneous
spherical particles. This has a certain meaning since many cells, microorgan-
isms and blood corpuscles are close in shape to spheres or ellipsoids. A system
of noninteracting particles is the simplest version of this model. The solution
of the problem of the diffraction of electromagnetic waves at a spherical
particle is well known; this is the Mie solution.12 The development of this
model involves a consideration of the spherical particles structure,15 namely,
that of multilayered spheres and spheres with radial nonhomogeneity,
anisotropy, and optical activity.

For tissues that have fiber structures, a system of long cylinders with
different concentration is the most appropriate model. Muscular tissue, the
cornea, and the sclera belong to these tissues formed essentially by collagen
fibrils. The solution of the problem of diffraction at a single homogeneous or
multilayered cylinder scatterer is also well known.12

The sizes of most biological cells and tissue structure elements are varied
in a range from a few tens of nanometers to hundreds of micrometers.9,208

Some examples are listed below. Bacteria usually have the size of a few
micrometers.208 The blood corpuscles (erythrocytes, leukocytes, and platelets)
exhibit the following parameters. A normal erythrocyte in plasma has the
shape of a concave–concave disc with a diameter varying from 7.1 to 9.2 mm,
its thickness in its center 0.9–1.2 mm and 1.7–2.4 mm, respectively.9 Leukocytes
are formed like spheres of 8–22 mm diameter,209 and platelets are thin discs
with diameters from 2 to 4 mm. Most other human cells are in the range of
5–20 mm in diameter.38

The retinal nerve fiber layer comprises bundles of unmyelinated axons
that run across the surface of the retina. The cylindrical organelles of the
retinal nerve fiber layer (axonal membranes, microtubules, neurofilaments,
and mitochondria210) as seen by electron microscopy were modeled as parallel
cylindrical arrays in order to gain insight into their optical properties.211

Axonal membranes, like all cell membranes, are thin (6–10 nm) phospholipid
bilayers that form cylindrical shells enclosing the axonal cytoplasm. Axonal
microtubules are long tubular polymers of the protein tubulin with an outer
diameter of �25 nm, an inner diameter of �15 nm, and a length of 10–25 mm.
Neurofilaments are stable protein polymers with a diameter of �10 nm.
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Mitochondria are ellipsoidal organelles containing densely involved membranes
of lipid and protein. They are 0.1–0.2 mm thick and 1–2 mm long. In the
epidermal layer, the cells are large (average cross-sectional area �80 mm2) and
quite uniform in size.200

Hence, for most tissues the size parameter of the particle x ¼ 2pr/l
(where r is the particle radius, l is the radiation wavelength) is varied in a
range of 1, x, 100 in the visible region.

The size distribution of scattering particles in biological objects may be
both essentially monodisperse as, e.g., in the optical eye tissues, and quite
broad. There is no universal distribution function in dimension that would
describe all tissues with equal adequacy. Gaussian, gamma, and power
distributions are used as a function of particle size distribution in the optics of
disperse systems.9 It was particularly stated that scatterers in the epidermal
layer of the skin exhibit a lognormal size distribution, whereas the spatial
fluctuations in the index of refraction of dense fibrous tissues, such as the
dermis, follow a power law.200

In cases where scattering at particles of complex shape is needed, different
procedures are applied to calculate scattering at nonspherical particles,
e.g., the method of T-matrices and others15 (see above). The modeling of
complexly shaped particles by spherical scatterers aggregates is possible. The
light scattering peculiarities for a cell modeled by a spherical particle with
inclusions are analyzed in Ref. 212. All of the above present a vast area of
research; the specific nature of tissues is, however, not exhausted by these
peculiarities.

1.6.3 Optical constants of tissues, heterogeneity, and optical softness

The measurement of the index of refraction for tissues and their components is
one of the actual problems of tissue optics. Such studies have been performed
for a comparatively long time,213 but there is not adequate information in the
literature even about an averaged index of refraction for different tissues.9

The matter surrounding the scatterers (intercellular liquid and cytoplasm),
the so-called ground substance is composed mainly of water with salts and
organic components solved in it. The ground matter index is usually taken as
n0 ¼ 1.35–1.37. Scattering particles themselves (organelles, protein fibrils,
membranes, protein globules) exhibit a higher density of proteins and lipids in
comparison with the ground substance and thus a greater index of refraction
n1 ¼ 1.43–1.47. This implies that structures with binary fluctuations of the
index of refraction are the simplest model of tissue.

Absorption for most tissues in the visible region is insignificant except the
absorption bands of blood hemoglobin and some other chromophores. The
absorption bands of protein molecules are mainly in the near-UV region.
Absorption in the IR region is essentially defined by water contained in
tissues.
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Many examples may be cited that confirm these regularities.15 Brunsting
and Mullaney214 measured the indexes of refraction for cytoplasm and
nucleous ovary cells of hamster and obtained the values ncytoplasm ¼ 1.37 and
nnucleus ¼ 1.39. Schmitt and Kumar215 obtained the indexes of refraction of
1.4–1.45 for the structural fibers of tissue and cell nuclei and that of 1.36 for
the cell cytoplasm of different tissues. The nuclei and cell membrane of
fibroblasts have an index of refraction of 1.48, the cytoplasm has an index of
refraction of 1.38, and the averaged index of a cell is 1.42.216 The index for
Bacillus subtilis spores has a value of about 1.5, and its imaginary part is
smaller than 0.01 in a wide spectral range.217 The collagenous fibrils of cornea
and sclera have a index of refraction of 1.47, and the refractive index of the
ground matter is 1.35.218

The real part of the erythrocyte index with respect to plasma m ¼ 1.041 –
1.067 (l ¼ 600 nm). Its imaginary part is varied within 10–2–10–5 (l ¼ 350–
1000 nm). The relative index for the human lymphocytes varies in the range
of 1.01,m, 1.08.219 The optical parameters of platelets have not been
studied thoroughly; they are, however, referred to weakly absorbing soft
particles (for the wavelengths bigger than 600 nm). Additional information on
the refractive index of biological cells may be found in Ref. 220. A great deal
of data on optical constants for various tissues is given in Ref. 9.

The above examples are evidence that tissue inhomogeneities have sizes
comparable with visible or NIR wavelengths and a small relative index of
refraction, hence they are to be considered as optically soft. This enables
different approximation methods described in Sections 1.1–1.5 to be used for
calculation.

1.6.4 Anisotropy of tissues

Many biological structures are optically anisotropic. A number of tissues
contain single-axis birefringence structures.221 For bone, muscular, and skin
tissues, these are mineralized (hydroxylapatite crystals), myosinous and
collagenous bundles, respectively. For the muscular tissue, the packing density
of bundles in a multifractal is higher than that for the bone, and myosinous
fibers in them show a smaller birefringence (dn� 10–3). The predominant
orientation of collagenous fibers in different regions of the cornea results in
shape birefringence and dichroism.222 The orientation structure of collage-
nous bundles of the skin dermis is extremely varied even for a small thickness
of a microscopic section. Besides linear birefringence and dichroism, many
biological objects show optical activity.

1.6.5 Volume fraction of the particles

An important parameter for the model of discrete particles that defines its
optical properties is the packing density or, in other words, volume fraction of
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the particles. This characteristic may be experimentally found using electron
microscopy. This is one of the straightforward approaches based on
measurement of the area occupied by an element of a particular size. The
selected region is viewed as a slice through a 3-D surface that is divided into
subcubes for counting the number of elements with the same size. The volume
fraction occupied by the elements is proportional to the number of subcubes
counted. Employing this procedure and the electron microscopy data one
would calculate volume fraction fi occupied by the particles with size di.
Unfortunately, systematic errors may take place that may lead to different
values of the volume fraction evaluated for varying thicknesses of the section.
The Holmes effect to Delesse’s theorem has been used to eliminate these
errors.223 Estimations for a volume fraction occupied by scattering particles
may also be calculated by comparing the weights of a native tissue and dry
rest with the known density of separate tissue components.

As a rule, the volume fraction occupied by the scattering particles in such
tissues as muscle, cornea, sclera, and eye lens covers from 20% to 40%.
Conventionally the whole blood contains approximately 5� 106 erythrocytes
in 1 mm3. Erythrocytes make up to 40% of the blood volume. The volume
fraction f of erythrocytes in the blood is called the hematocrit Н. For
normal blood, Н ¼ 0.4. The remaining 60% of the blood volume is the
plasma–an essentially transparent water solution of salts. The concentration
of other scatterers would amount from percent fractions to a few dozens of
percents.

1.6.6 Effects of spatial ordering

A substantial role in tissues is played by the spatial organization of particles
forming them. As said above, with very small packing densities, we deal with
incoherent single or multiple scattering at independent particles. If the volume
fraction occupied by the particles is 0.1 or more, coherent concentration
effects appear. The concentration of scattering particles is sufficiently high for
most tissues, therefore spacing between individual scatterers is comparable
with their sizes. If the particle-size distribution is close to the monodisperse
one, then such dense packing entails a spatial degree of order on the
arrangement of the particle. The effects of spatial ordering should be taken
into account when constructing the adequate optical model of such tissues.

Spatial ordering is of utmost importance for optical eye tissues,
nevertheless, aspects considered below are more or less inherent in all tissues,
particularly in the skin or muscles. The spatial degree of order of densely
packed systems of scattering particles ensures a high transmission of cornea
and eye lens that is responsible for our seeing the surrounding world. The
cornea would scatter to 90% of light incident and we would see essentially
nothing if all its fibers were arranged randomly and scattered light
independently. The real situation is, however, different.
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The effect of multiple scattering does much to light propagation in dense
disperse systems. The propagation of light in densely packed disperse
biostructures shows a number of intriguing peculiarities that enable the optical
eye tissues to be considered as natural photon crystals. Like artificial photon
crystals presenting structures with periodical variations of the index of refraction
with characteristic scales on the order of light wavelength, statistically ordered
biostructures demonstrate high transmission spectral regions and a band of
frequencies for which the propagation of electromagnetic waves is forbidden.
Bandgaps are due to the effects of light scattering at a system of ordered
particles. The positions and depth of these suppression bands highly depends on
the size, refractive index, and spatial arrangement of scattering particles.

The importance of the spatial degree of order is conveniently illustrated by
comparing the optical properties of the cornea with that of sclera (Fig. 1.7).
Now let’s consider the structure of cornea and sclera in more detail.9,224–231

The cornea is the frontal section of the eye’s fibrous capsule, its diameter is
≈ 10 mm. The sclera is a turbid opaque tissue covering nearly 80% of the eye
and serving as a protective membrane providing for, along with the cornea,
counteraction against internal and external forces and thereby keeping the
shape of the eye.

Both tissues are composed of collagenous fibrils immersed in a
mucopolysaccharide ground substance. The collagenous fibrils have a shape

Figure 1.7 The human eye. The cornea is the transparent tissue of the anterior surface of
the eye. The sclera is the white of the eye, and it is opaque.9 National Eye Institute, NIH
(Figure NEA04). See color plates.
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close to that of a cylinder. They are packed in bundles like lamellae. All fibers
are aligned within every lamella nearly in parallel with each other, the lamella
plane and tissue surface. The indexes of refraction for the fibers and the
ground substance surrounding them differ markedly from others and amount
to 1.470 and 1.345, respectively.

The cornea fibril diameters varied from 20 to 31 nm for different species of
animals, but their variations are less than 10% for each concrete species of
animals or men, i.e., the fibrils are quite uniform in diameter (Fig. 1.8). The
spacing between the fibril axes is 50–60 nm.

The collagenous fibril diameters of the sclera are widely spread from 25 to
230 nm. Spacing between the centers of adjacent fibrils in the bundle is about
100–300 nm (Fig. 1.8).9,224,230 As has been mentioned, the collagenous fibrils
are packed in bundles and lie in them nearly parallel with each other, but not
so regularly as in the cornea. Furthermore, groups of fibrils in a certain bundle
are separated from each other by comparatively large regions that are
randomly distributed in space.

While both tissues are composed of similar molecular components, they have
different microstructures and thus very different physiological functions. The
sclera of the eye is opaque to light, scattering at almost all wavelengths of visible
light, thus appearing white. The cornea is transparent, allowing for more than
90% of the incident light to be transmitted. The collagen fibrils in the cornea have
a much more uniform size and spacing than those of the sclera,225 resulting in a
greater degree of spatial order (hexagonal quasi-crystal) in the organization of
fibrils in the cornea as compared with the sclera (Fig. 1.8).226,227

It is believed that the spatial order and small size and spacing of the
collagen fibrils are responsible for the transparency of the cornea, while the

Figure 1.8 The high-magnification electron micrographs of the human (a) cornea
(�32,000) and (b) sclera (�18,000) showing a cross section of the collagen fibrils [dark
circular areas embedded in a mucopolysaccharide ground substance (bright areas)]: for (a)
cornea collagen fibrils have a uniform diameter and are arranged in the same direction within
the lamellae and form a hexagonal quasi-crystal; (b) scleral collagen fibrils, which display
various diameters, and thus more randomly packed; however, they can be locally quasi
ordered.9,230
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lack of spatial order and large size and spacing of the fibrils are responsible for
the opacity of the sclera.

The transmittance of a densely packed disperse system can be calculated
using the radial distribution function g(r), which statistically describes the
spatial arrangement of particles in this system. The function of the radial
distribution of scattering centers g(r) may be calculated for some tissues on
evidence derived from electron microscopy.

The technique of experimental g(r) determination involves the counting of
the number of particles, placed at a specified spacing from an arbitrarily
chosen initial particle, followed by its statistical averaging over the whole
ensemble. In a 2-D case, the particle number DN at the spacing from r to r þ
Dr is related to function g(r) by the following equation:

DN ¼ 2prgðrÞrDr, (1.92)

where r is the mean number of particles for a unit area.
The radial distribution function g(r) was first found for the cornea by

Farrell et al.228 using experimental data. Figure 1.9(a) depicts the typical
result for one of the cornea regions, as obtained by determining the ratio of
local to mean density of centers as a function of radii taken about 700 fibril
centers. The results of similar studies for the eye sclera229 are illustrated in
Fig. 1.9(b); the data are calculated for several regions of sclera using electron
micrographs from Ref. 230, averaging about 100 fibril centers.

Function g(r) for the sclera was obtained on the basis of the spatial
distribution of fibril centers neglecting discrepancy in their diameters. A noisy

Figure 1.9 Histogram representation of the radial distribution functions g(r), as obtained
using the electron microscopy for (a) the rabbit cornea228 and (b) the human sclera229.
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curve is elucidated by a small volume of statistical averaging. In spite of
assumptions made earlier about a noncorrelated distribution of the sclera
fibers in space,231 the results obtained using electron microscopy attest to the
presence of near-order degree in the sclera; albeit this degree of order is less
pronounced as that in the cornea. The low value of interference interaction
contribution is due to both a smaller degree of order in the arrangement of the
sclera fibers and a strong discrepancy in the scattering amplitude at different-
sized fibers within the band inherent in the sclera.

Similar results of a comparative examination of the cornea and the sclera
were obtained using the method of spatial frequency analysis in Refs. 226 and
231. A linear log–log plot of the Fourier spectrum is an indication of the
power-law relationship between the amplitude and the frequency of Fourier
components. The 2-D Fourier spectrum is a plot of squared amplitude of the
Fourier components as a function of spatial frequency. In an isotropic
medium, the spatial frequency of the Fourier components is represented by
the reciprocal radial distance from the center of Fourier spectrum in mm–1.

The spatial density fluctuations representing the microstructure can be
resolved into Fourier components.226,231 The Fourier components of any
micrograph provide a complete basis for a detailed, quantitative, and unique
description of the microstructure.

The microstructural information obtained by the 2-D Fourier analysis is
related to transparency and opacity of the cornea and the sclera, respectively.
The distributions of the Fourier components can be determined from the
profiles of the Fourier spectra (Fig. 1.10). The abscissa represents the spatial
frequency of the Fourier components in units of nm–1. The ordinate represents
the normalized amplitude of the Fourier components in the upper-left
quadrant of 2-D Fourier spectra. The vertical dashed lines represent the
reference 200-nm dimension. The peaks in the profiles are due to rings in the
2-D Fourier spectra. Profile peaks represent Fourier components with higher

Figure 1.10 Profiles of the 2D Fourier spectra of (a) the cornea and (b) the sclera.226
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amplitude relative to the background. These Fourier components represent
the predominant spatial density fluctuations: the collagen fibril center-to-
center spacing. While peaks 1 and 3 represent the fundamental Fourier
components, peaks 2 and 4 represent the first harmonics. The curves in the
profiles are drawn by averaging the two nearest neighbors of the pixel. The
profiles showed that the major Fourier components of the cornea caused by
the fibril center-to-center spacing were smaller than 200 nm. The major
Fourier components of the sclera were larger than 200 nm. Also, the
microstructure of the cornea revealed greater spatial order than the sclera.

The eye lens is also an example of the tissue for which the spatial degree of
order is of crucial importance. Like a lens, it focuses light to form an image at
the retina because of its high index of refraction and transparency. The eye
lens exhibits a certain viscosity and is capable of altering its radius of
curvature under the action of accommodation muscles and thus its focal
length. It is gel, i.e., a cross-linked polymer plus low molecular liquid system
where the polymer forms a spatial cross-linked sewn structure.8 A similar
structure is inherent in traditional marmalades and gelatin.

Brewster was the first to demonstrate regularly repeating structures in the
lens tissue that is presently known as the lens fibers. The lens transparency is
limited by two physical phenomena, namely, the absorption and scattering of
visible light. The first phenomenon is negligible in a normal lens because the lens
components contain a small number of chromophores. Light scattering proceeds
at the protein conglomerates of the lens. The lens protein amounts to about 90%
of its dry weight and its concentration is about 0.2 to 0.4 g/mL, i.е., it is the
greatest one for tissues. The lens proteins are specific for the given tissue; they are
called crystallines. This is due to the fact that in the nineteenth century they
considered the lens as a crystal similar to ice. However, only the near-order
degree exists in the lens and it appears to be sufficient for ensuring transparency.

The idea of the near-order degree in the organization of the lens proteins
that provides for its transparency was first proposed by Benedek.213 The main
role among the ocular lens proteins is played by water-solved a crystallins
whose shape is close to the spherical one with a diameter of about 17 nm. The
studies of lens transparency, along with their major value, are of importance
in connection with a wide propagation of such phenomenon as turbidity; the
cataract. The structural bases of the cataract have remained an object of
intense research for many years.213,232,233

The method of x-ray small-angular scattering was used to examine the
tissues of the ocular lens for the bull and the frog.234 It was shown that
different structural states of crystallins may exist in the lens. A small-angular
diffraction maximum is inherent in the region for Bragg distances D ¼ 15–
20 nm for one of the states that is explained by the near order of
macromolecular complexes of crystallins (a-crystallin). No maxima were
observed for other states.
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The 2-D Fourier analysis has an immediate application in the study of the
microstructure of the ocular lens.235 The Fourier method can be applied to the
study of microstructural change as a function of differentiation, aging, or
pathogenesis in the cytoplasm or extracellular matrix.

1.6.7 Fractal properties of tissues

Almost all material, excluding monocrystals, are disordered in one or another
sense. Fractal geometry236 regards an accident quantitatively and thus it
enables one to describe such random systems as polymers, colloidal aggregates,
and porous materials. The qualitative feature of fractal objects is the invariance
of their main geometric peculiarities, such as the magnification variation in the
microscope with varying scale (see Section 1.4). The fractal properties of
scattering systems strongly affect their light scattering.124 The same mass of
particles may induce small scattering in a dense cluster and significantly greater
scattering in the fractal one. The fractal structure is most clearly pronounced
with scattering in the case of multiple scattering.116 The peculiarities of multiple
scattering at the fractals are caused by a slowly falling correlation of the particle
density. The fractal effects at the multiple scattering are observed even for
fractal clusters whose sizes are shorter than the wavelength.

Since the spatial distributions of the constituents of many types of tissues
appear to satisfy the conditions of statistical self-similarity,227,237 fractal analysis
may potentially provide a much simpler foundation for the analysis of tissue.
Statistical self-similarity implies that the object is composed of building blocks
with inherent statistical regularities that can be described by power law. The
correlations of a variety of tissues in the refractive indices exhibit characteristics
of a random fractal with a Hurst coefficient between 0.3 and 0.5.200

The tissue structure can be represented as a multifractal composed of
various fractal formation types.221,237 For the bone tissue the main fractal
elements are trabeculae (formations with flatly lying mineralized fibers), and
osteons (regions with the spiral-like orientation of fibers raised at an angle of
30–60 deg).221 The above fractal types form an architectonic multifractal
network. The geometric dimensions of biofractals are sufficiently great (100–
1000 mm). In many cases, the fractal geometry yields a key to understanding
the scattering peculiarities of these objects.

Quantitative models of the micro-optical properties of biological tissues
have potential applications in several areas of biomedical optics.

1.7 Light Scattering by Densely Packed Correlated Particles

Certain regularities exist in densely packed media with characteristic
dimensions on the order of the wavelength between the phases of waves
scattered by adjacent particles and it is necessary to sum the amplitudes of
scattered waves under the calculation of light scattered by the system with
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regard to phase relations. The interference interaction may result both in a
varied total amount of scattered energy and an altered angular dependence of
scattered light as compared with similar quantities for a system of
noninteracting particles. The alteration of angular dependences can be
particularly noticeable for biosystems since particle sizes are comparable with
the light wavelength. In concentrated optically thick disperse systems a
substantial role may also be played by the effects of multiple scattering.

The softness of the biotissue scattering particle makes it possible to restrict
oneself with the single-scattering approximation in a number of cases. To
correctly exploit this approximation, we need the optical thickness of the
object under study to be small enough, i.e., t , 0.1.1 For strongly scattering
structures this means a necessity to restrict oneself with thin histological
sections.

The theory of light scattering by densely packed correlated particles is
principal for such tissues as eye lens, cornea, and sclera. This theory explains
the transparency of the cornea and normal eye lens as well as their turbidity
by pathology and opacity of the sclera. It was noted in Section 1.6. Besides,
the theory of light scattering by densely packed correlated particles should
also be important for investigations of subepithelial tissues, whole blood, and
other bio-objects, which have been explored in other chapters in this book.

The characteristic relations between the scatterer sizes in tissues and the
wavelength of visible light are close to similar relations between the liquid
molecules and the x-ray radiation. Moreover, the near-order degree of order
in the arrangement of bioparticles resembles that of the molecule degree of
order in the liquid. Thus, the description of light propagation in tissues relies,
to a significant extent, on the methods for describing the x-ray radiation
diffraction in the liquid.238 The light scattering in the correlated disperse
systems operates with the statistical characteristics of these systems. The
function of radial distribution g(r) is just such a statistical characteristic of the
spatial arrangement of scatterers.

1.7.1 Pair distribution function g(r)

Consider N spherical particles in a finite volume. To statistically describe their
spatial arrangement a pair distribution function g(r) may be employed.239 The
pair distribution function gij(r) is proportional to the conditional probability
of finding a particle of type j at the distance r from the origin given that there
is a particle of type i at the origin (Fig. 1.11). For noninterpenetrable spheres,
the interparticle forces are zero except for the fact that two particles cannot
interpenetrate each other.

The arrangement of particles in a densely packed system is not entirely
random. The near-order degree of order is observed in their arrangement; they
are more ordered the greater the density of scattering centers and the narrower
their distribution in size; and g(r) ¼ 0 near the origin of coordinates in the
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region with a radius on the order of effective particle diameter that points to the
interimpenetrability of a particle. Function g(r) has a few maxima whose
positions correspond to distances from the chosen particle to its first, second, etc.
neighbors. Nonzero values of minima are indicative of a particle’s migration
between various coordination spheres. It is obvious that correlation between the
pairs of particles should be degraded with growing r, hence limr!` g(r) ¼ 1.
Function g(r) is the relation of the local density in the given sample, i.e., it is a
probability to reveal a scatterer at the specified distance from the center chosen.

The medium composed of N scatterers considered here is analogous to an
ensemble of mixture of L types of particles in the study of statistical
mechanics, by considering the dynamics and positions of the particles with
regard to the interparticle forces. Studies have been made in obtaining the pair
distribution functions using various approximate theories. One of the
important results is based on the Percus–Yevick (PY) approximation. As
applied to a model of hard spheres distributed in a 3-D space, there exists the
analytical solution of this equation. To find the function of radial distribution,
the MC method is also used.

The solution of the Ornstein–Zernice equation for the case of single
species has been solved by Wertheim.240 For the case of two species, the
solution can be found in the paper by Lebowitz.241 For the case of general
L species, the solution is obtained by Baxter based on a generalized

Figure 1.11 Diagram of radial distribution function g(r) that is proportional to the probability
of particle detection at a certain distance r from an arbitrarily fixed particle.239
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Wiener–Hopf technique.21,242 The polydispersity of the real system is
approximated by an L-step distribution function.

For monodisperse systems containing spherical particles with diameter d,
g(r) would be presented in the approximation of solid spheres, as follows:243

gðrÞ ¼ 1þ 1
4pf

∫
`

0

H2
3ðzÞ

1�H3ðzÞ
sin zx
zx

z2dz, for x . 1, (1.93)

where x ¼ r/d,

H3ðzÞ ¼ 24f · ∫
1

0
c3ðxÞ

sin zx
zx

x2dx, c3ðxÞ ¼ �a� bx � dx3, (1.94)

a ¼ ð1þ 2f Þ2
ð1� f Þ4 , b ¼ �6f ð1þ 1

2 f Þ2
ð1� f Þ4 , d ¼ 1

2
f ·

ð1þ 2f Þ2
ð1� f Þ4 , (1.95)

where f is the volume fraction occupied by particles.

1.7.2 Light scattering by a system of particles in the single-scattering
approximation

Let us consider the light scattering by a system of N spherical particles. In
general, the field affecting a particle in this system differs from the field of
incident wave Einc in that it also contains the total field of adjacent scatterers.
Within the single-scattering approximation (Born’s approximation), the field
affecting the particle does not essentially differ from that of the initial wave.
Regarding double scattering as a field affecting the particle, one needs to take
the sum of the initial field and the single-scattered field, and so on.20 In as much
as biological particles are optically soft, the use of the single-scattering
approximation often yields satisfactory results for the systems of these particles.

The field scattered by a particle with the center defined by radius-vector rj
differs from that scattered by a particle, which is placed at the origin of
coordinates by a phase multiplier characterizing the phase shift of waves. This
phase difference is 2pl ðs0 � sÞrj, where s0 and s are the unit vectors of the
directions of incident and scattered waves. The difference of these vectors is
called the scattering vector q, and

q ¼ 2p
l

ðs0 � sÞ. (1.96)

Taking into account that the wave vector module is invariable with elastic
scattering, the value of the scattering vector is found as follows:

q ¼ 2
2p
l
sinðu∕2Þ, (1.97)
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where u is the angle between directions s0 and s, i.e., it is the scattering angle.
The amplitude of a wave scattered by the system of N particles will be

Es ¼
XN
j¼1

Esj ¼
XN
j¼1

E0jeiqrj , (1.98)

where E0j is the amplitude of scattering by an isolated particle. The intensity
of single scattering for the given spatial realization of the N particle
arrangement is

I ¼ jEsj2 ¼
XN
j¼1

Eoj

XN
i¼1

E�0ie
iqðrj�riÞ. (1.99)

For real systems, the mean scattering intensity by an ensemble of particles
is measured due to thermal particle motion, finite measuring time, and finite
area of a photodetector, as

,I.¼,
XN
j¼1

XN
i¼1

EojE�0ie
iqðrj�riÞ. . (1.100)

The French brackets show the averaging over all possible arrangement
configurations for the particles of the system. This equation presents a sum of
two contributions for a noncoherent scattered intensity. One of them defines
the light distribution on the assumption that there is no interference of light
scattered at various particles. Another term regards the interference effect on
the light field structure and depends on the degree of order in the arrangement
of particles that is characterized by the radial distribution function g(r). For
an isotropic system of identical particles, we may write

,I.¼ NjE0j2S3ðuÞ, (1.101)

S3ðuÞ ¼
�
1þ 4pr∫

R

0
½gðrÞ � 1�r2 sin qr

qr
dr
�
, (1.102)

where q ¼ 4p
l sin

u
2. Quantity S3(u) is the so-called structure factor. This

structure factor describes the variation of the angular scattering intensity
distribution which appears with a higher particle concentration. Within the
approximation of hard spheres the structure factor is represented in the form

S3ðuÞ ¼ 1∕½1�H3ðqÞ�; (1.103)

where H3(q) is defined by Eq. (1.94).
With small concentrations, we may make use of the approximation of

excluded volume where g(r) ¼ 0 with r being shorter than the particle
diameter and having a unit value over long distances. In this approximation,
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the structure factor for a system of spherical particles takes the form that was
first found by Dirac:

S3ðuÞ ¼ 1� fFðqaÞ, (1.104)

where a is the particle radius, and F(qa) is the function defined by

FðqaÞ ¼ 3ðsin qa� qa cos qaÞ
ðqaÞ3 . (1.105)

Quantities a and l can be on the same order for tissues, thus the first
maximum of this function would be observed at angles achieving tens of
degrees. Function F(qa) modulates the angular dependence of scattering
intensity by diminishing its values at small angles and generating a diffusion
ring at angles u corresponding to the function F(qa) maximum.

Within a very small concentration of inhomogeneities, the structure factor
is nearly a unit and the intensity of scattering by a disperse medium is
essentially a sum of the contributions of independent inhomogeneities.

The structure factor changes slightly as a function of scattering angle for
particles whose dimensions are much smaller than the wavelength, and the
interference interaction in the systems of soft particles reveals itself mainly in a
uniform decrease of scattering intensity in all directions (Fig. 1.12). For
systems of large particles, the structure factor differs noticeably from a unit
only in the region of small scattering angles where it is of an oscillating nature.
The interference interaction of scatterers in one angular band reduces the
scattering intensity and in the other band, the scattering intensity is raised as
compared with that for a system of the equivalent number of independent
particles (Fig. 1.13).
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Figure 1.12 Angular scattering intensity dependences for a system of small interacting
spherical particles of 50 nm in radius; m¼ 1.105, l¼633 nm, and the volume fractions
f¼ 0.04 (a) and f¼ 0.1 (b). The dotted lines indicate independent particles.
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For the case where light is incident normally to the axes of infinitely long
identically aligned cylinders with radius a, the structure factor is defined
within the approximation of single scattering, as follows:

S2ðuÞ ¼
�
1þ 8f ∫

R

0
½gðrÞ � 1�J0

�
2pa
l

r sin u
�
dr
�
. (1.106)

As the light is incident perpendicular to the cylinder axis, the scattered light
propagates only in the direction perpendicular to the axis.

1.7.3 Angular characteristics for polarized light scattering

The angular dependence of the light scattering intensity of the systems of
spherical and cylinder particles within the single-scattering approximation is
described by Eqs. (1.101), (1.102), and (1.106). The structure factor altering
the angular dependence of scattered light is defined by the statistical
characteristics of the spatial particle arrangement, and it is independent of
the state of light polarization. The angular dependences of all scattering
matrix elements of identical particles are multiplied by the same quantity as
the result of interference interaction within the single-scattering approxima-
tion. Consequently, the light scattering matrix (LSM) for this system coincides
with that of an isolated particle under the commonly used normalization for
the magnitude of its first element.

Unlike monodisperse systems, the normalization of matrix elements byM11

does not eliminate the influence of the structure factor on the angular
dependences of matrix elements for differently sized densely packed particle
systems.244 As a practical matter, of particular interest are binary systems formed
by a great number of small particles and a small number of coarse particles. This
problem arises with the diagnostics of initial stages of protein coagulation, in
particular, with the early diagnostics of the ocular lens turbidity.244
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Figure 1.13 Angular scattering intensity dependences for a system of large interacting
spherical particles of 500 nm in radius; m¼1.105, l¼633 nm, and the volume fractions (a)
f¼ 0.04 and (b) f¼ 0.4. The dotted lines indicate particles.
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Figure 1.14 depicts the calculated results for the LSM of a mixture of
spherical particles of diameters d1 ¼ 60 nm and d2 ¼ 500 nm for the volume
fractions (spatial volume to total scattering system volume ratio) f1 ¼ 0.3 and
f2 ¼ 0.02. For comparison, the LSM angular dependences of the same binary
mixture—shown in Fig. 1.14 by a dashed line—have been calculated
neglecting cooperative effects (within the assumption of an entirely arbitrary
arrangement of scattering particles). The relative index of refraction m ¼
1.07, and the light wavelength is 633 nm.

It is seen from Fig. 1.14 that the normalized LSM of a dense binary mixture
is substantially altered due to the interference interaction. The high concentration
of small particles is responsible for the degree of order in their arrangement
followed by a lower intensity of scattering in all directions except the direction of
straightforwardly propagating light. As a consequence, the results of the solution
of the inverse problem for the experimental LSM of dense particle mixture that
were obtained at neglecting the cooperative effects should yield an overestimated
value for the relative fraction of large particles. The LSM variations due to the
cooperative effects are of a more complicated nature for a binary system whose
two components are sized on the order of the wavelength of incident light and
they could not be interpreted so uniquely, as in the preceding case. Numerical
estimates for binary systems of different compositions show244 the considered
effects to be of the most crucial importance for the LSM in the visible region for
the mixtures of particles with d1, 200 nm and d2. 250 nm.

1.7.4 Spectral characteristics of scattering systems

The scattering strongly deforms the spectral biotissue characteristics since the
extinction of transmitted light is defined not only by the absorption coefficient
as a function of the wavelength, but also by a light fraction taken from the

Figure 1.14 The calculated normalized LSM angular dependences of binary mixture of
small and large spherical particles (d1 = 60 nm, d2 = 500 nm; f1 = 0.3, f2 = 0.02; m = 1.107;
and l = 633 nm): (a) interacting and (b) independent particles.
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beam because of the scattering. The latter process complexly depends on the
wavelength, structure, and size of particles.

The spectrum of collimated transmission of a disperse layer is interpreted
as a spectral dependence of a weaker coherent component of light. Finding the
coherent component of light, scattered at a system of inhomogeneities
correlated in the space, is a complicated physical task exhibiting all of the
difficulties inherent in the problem of light propagation through a system of
many bodies.243 Assuming that the intensity of the coherent light component
is reduced with a longer distance by the exponent law due to scattering and
absorption, the transmission of a disperse layer of thickness x would be
described using the Bouguer–Beer–Lambert law

T ¼ expð�rsexÞ, (1.107)

where r is the particle density, and se is the extinction cross section for a single
particle of the layer. For low particle concentrations, it is equivalent to the
extinction cross section of an independent particle. For greater f values, the
quantity se is determined not only by the properties of a single inhomogeneity
but also by their volume concentration. Within the assumption that the
absorption cross section is independent of the packing density, se may be
calculated as a sum of the absorption cross section of the independent particle
and the scattering cross section obtained by taking into account correlation of
the scatterers.

With the knowledge of the angular scattering intensity distribution of the
system of particles, one would calculate the scattering cross section for a single
particle in the system. Having integrated the scattering intensity over all
directions in the space, the total amount of energy scattered by the system can
be found. The scattering cross section for the system of spherical particles is
obtained similar to Eq. (1.13), however, the intensity must be calculated by
using the structure factor.

The scattering cross section for the system of cylinder particles,
illuminated by a plane wave incident in the direction normal to the cylinder
axis, is defined by numerically integrating over all possible scattering
directions in a plane perpendicular to the cylinder axis

ss ∝ ∫
2p

0
IðuÞdu. (1.108)

Dividing ss by the particle number N, one may find the scattering cross
section for a single particle of the system. The result obtained may differ
substantially from the scattering cross section of an independent particle.

Even the scattering cross-section for an independent particle sized on the
order of a wavelength has a very strong nonmonotonous dependence on the
wavelength. Effects associated with dense packing also have a substantial
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dependence on the wavelength. As a result, the transmission spectra for a
system of identical particles can differ highly depending on the packing
density and the degree of order. A clear example of such a dependence is
presented by the transmission spectra of the cornea in the norm and with its
turbidity caused by a disrupted spatial degree of order and by appearing
regions denuded of fibrils, the so-called lakes.245

The extinction of a collimated incident beam due to complex angular/
wavelength dependence of the scattered light in the dense systems, even for
nonabsorbing ones, would result in substantial differences in the transmit-
tance in different spectral regions. The values of the real and imaginary part of
the indices of refraction depend weakly on the wavelength far from the
absorption bands and may be assumed to be constant at calculations. In
systems of small nonabsorbing particles, the interference interaction causes
the shift of the short-wavelength transmission spectrum boundary to a smaller
wavelength and a slightly greater steepness of the spectrum (Fig. 1.15). If a
scattering system is formed by particles whose sizes are comparable with the
wavelength, then the spectrum of this system would be nonmonotonous even
with no absorption.

For particle systems with absorption, in the vicinity of the absorption
bands, the real and imaginary parts of the complex index of refraction of the
particles demonstrate pronounced spectral dependences. Figure 1.16 illus-
trates the transmission spectra calculated for two systems of differently sized
particles with the refractive index described by the Lorentz contour.12 The
scattering deforms the symmetric contour of the absorption line and the
spectrum appears different for systems of differently sized particles with
varying packing density.

Figure 1.15 Calculated transmission spectra for the systems of nonabsorbing interacting
particles (solid lines) and at approximation of noninteracting particles (dashed lines);
m¼ 1.1, f¼0.01 (1, 2), f¼ 0.1 (3, 4), and f¼ 0.2 (5,6).
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For example, the transmission spectrum for whole blood differs substantially
from that for the hemolyzed blood because in whole blood, hemoglobin is
localized in erythrocytes, which are strong light scatterers.6 Therefore, it is much
easy to estimate blood saturation with oxygen by using the absorption spectra
for the hemolyzed blood.246 A detailed review of spectral characteristics for
various tissues and blood is given in Ref. 9.

For the densely packed system of large optically soft particles within the
approximation of hard spheres and at neglecting of mutual particle
reradiation, the following equation was obtained for the transmission of a
layer with thickness L that accounts for coherent effects:247

Tc ¼
�
1� 2b

ð1þ bÞ ·
se
p · a2

þ b2

ð1þ bÞ2 ·
2l
p · a3

ssI1ð0Þ
�
L∕2a

, (1.109)

where b ¼ 1.5f� exp(1.5f), and I1(0) is the intensity of forward scattering at a
single particle of diameter 2a. This formula is transformed into the Bouguer–
Beer–Lambert law for the scattering systems of noninteracting particles under
the rarefaction of the scattering layer.

Not only coherent weakened light but also a portion of noncoherently
scattered light is usually recorded in real experiments because of the finite
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Figure 1.16 Spectral dependence of real and imaginary part of the relative complex index
of refraction for (a) particles with the Lorentz contour center at l = 500 nm; transmission
spectra for the slab of thickness (b) L = 3 mm and (c) 0.1 mm of the disperse systems of
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angular aperture of the receiving unit. For this reason, a transmittance called
the instrumental transparency found experimentally is somewhat different
from the coherent transmission Tc.

For the first time, the approximation regarding the near-order degree of
order has been used to describe the propagation of light in a tissue in
Refs. 224, 228, and 245, with calculating the transmission spectra of the
cornea. The near order in the arrangement of scattering particles and the
related interference interaction of scattered light are the cause of the high
transparency of the human eye optical tissues in their normal state.248,249

The spectral characteristics vary most strongly with high packing
densities, as the volume fraction occupied by particles exceeds 50%. For
these dense systems, the considered approximation of single scattering is
incorrect and it is necessary to account for the effects of the reradiation of
particles.

Unlike the transmission spectra, the spectral dependences of the intensity
of light scattered in different directions are poorly studied. This is related, on
the one hand, to experimental difficulties due to the need for standard spectral
devices to be rearranged. On the other hand, a comparison of different
experimental results is difficult because the form of the scattering spectrum
depends substantially on the geometry of the system under study. Neverthe-
less, the scattering spectra are of great interest. The authors of Ref. 250
measured the absorption and scattering spectra of the chest muscle of a
chicken in the visible range. The scattering spectra visually define the observed
tissue color, and they can be employed for express estimating of tissue
condition.

One traditional method for eye ocular lens diagnostics assumes the
observation of varying color characteristics for light scattered at an angle. The
qualitative analysis of composition alteration for the scattering particles of
the eye lens with age by measuring the scattering spectra251 is given in
Ref. 252. The analysis of spectral scattering characteristics lies in the basis of
the method for measuring the skin erythema.253 Reference 254 describes some
applications of the “scattering spectral method” along with viscosimetry and
sedimentation data to the study of Yersinia pestis capsular protein.

1.7.5 Consideration of multiple-scattering effects in a system
of densely packed particles

In real disperse systems containing a great number of particles, multiple
scattering takes place. The spatial correlation of single inhomogeneities results
in a necessity to consider the interference of multiple scattered waves.20,247 In
a case when effects of particle reradiation in the densely packed disperse
system are not negligible, the distinction of an effective field in a medium from
the incident wave field is induced. Under this condition, the approach based
on the statistical theory of multiple wave scattering seems to be most
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promising for describing the collective interaction between an ensemble of
particles and electromagnetic radiation.20,247

The rigorous theory of multiple wave scattering is constructed on the basis
of fundamental differential equations for the fields combined with a statistical
approach.20 The resulting field in any point of the space is displayed as the
sum of the incident wave fields and all possible multiple scattered waves with
regard to their phases. The total field E(r) at the point r is the sum of the
incident field and scattered fields from all particles [Eq. (1.43)]

Twersky has derived a closed system of integral equations describing the
processes of multiple scattering.255 A rigorous solution in a general form has
not been found yet for this problem. For its solution, various approximations
whose efficiency is determined for every particular case should be exploited.
One of the most efficient approximations to describe tissue optics is a so-called
quasi-crystalline approximation proposed for densely packed systems.256

Averaging in Eq. (1.43) over different configurations of the system yields
an infinite set of equations. The quasi-crystalline approximation corresponds
to the condition when this set is limited to the second step. The obtained
closed system of equations for the effective field is reduced to a system of
linear equations by expanding in terms of vector spherical or cylindrical
harmonics. The explicit form of coefficients is quite cumbersome for the
obtained system.21,257 Coefficients involve the radial distribution function,
taking into account correlation of the particle arrangement, and the
coefficients of Mie row expansion for a single particle. The equality to zero
for the determinant of the system of linear equations yields the dispersion
relation for the effective propagation constant keff in this medium.

258 For the
systems of particles whose sizes are small compared to the wavelength, the
expression for keff has the view

21

k2eff ¼ k2 þ 3f y
D

k2
�
1þ i

2
3
k2a2y
D

Sðu ¼ 0Þ
�
, (1.110)

where

y ¼ n21 � n20
n21 þ 2n20

, D ¼ 1� f y, Sðu ¼ 0Þ ¼ 1
1�H3

,

H3 ¼ �24f
�
a

3
þ b
4
þ d
6

�
,

f is the volume fraction of particles with the refractive index n1 embedded into
ground medium with n ¼ n0, and a, b, and d are defined from the
approximation of the hard spheres [Eq. (1.95)]. The calculated effective index
of refraction neff ¼ n0eff þ in00eff is complex, even if particles and ground
medium surrounding them exhibit no intrinsic absorption. The imaginary part
of the effective index of refraction n00eff describes the energy loss of the incident
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plane wave due to scattering in all directions. The transmittance of the
scattering layer with thickness x is defined as

T ¼ exp
�
� 4p
l

n00effx
�
, (1.111)

where ð4p∕lÞn00eff is the extinction coefficient, and n00eff decreases with a higher
wavelength and nonmonotonously depends on the particle concentration. For
small particle concentration, the transmittance of the layer decreases with
particle concentration increase (increase of their volume fraction f); however,
due to particle pair correlation starting from f� 0.1, a so-called clearing effect
takes place. The real part of the effective index of refraction in this
approximation is essentially independent of the wavelength and alters
monotonously with growing particle concentration to approach the refractive
index of the particle material. The near order appearing in the scatterers’
arrangement with their greater concentration not only provides for conditions
for the manifestation of the secondary scattered wave interference,259 it also
affects the character of propagation of noncoherent multiple scattered light.
This may be accompanied by the so-called concentration effects of darkening
and clearing.259

The optical softness of tissues enables calculations to employ an expansion
by scattering multiplicities with restricting to low orders. In Ref. 260, an
expression for the effective index of refraction of the eye cornea modeled by
the system of cylinder scatterers was obtained in the framework of expansion
by scattering multiplicities. The effects of polarization anisotropy were
analyzed with respect to the double scattering contributions.

The problem of scattering and absorption of electromagnetic radiation by
the composite medium is so complicated that the exact solution of Maxwell’s
equations under the appropriate boundary conditions is unpractical.6 For this
reason, it seems to be attractive to have a way to determine some averaged
optical properties of heterogeneous materials that would enable us to treat the
heterogeneous material in the same way that we consider homogeneous
media. Based on the theory of multiple wave scattering, various expressions
were derived for the effective parameters of a disperse medium.18,261

Using a definite set of assumptions concerning the shapes of inclusions
and the topology of a mixture, one can obtain the appropriate analytical
expression for an effective dielectric constant as a function of volume fraction
f and dielectric constants ε1 and ε0 of individual components (see Section 1.2)
or corresponding indices of refraction, n1 ¼ ffiffiffiffiε1p

and n0 ¼ ffiffiffiffiε0p
. The simple

mixing rules often used in various applications include volume averages of the
dielectric constants or indices of refraction11

neff ¼ f n1 þ ð1� f Þn0. (1.112)

69Introduction to Light Scattering by Biological Objects



Using the theory of multiple scattering, Twersky262 succeeded in deriving
the approximate expressions for absorption ma and scattering ms coefficients
with describing the light scattering in the blood. The blood hematocrit H is
related to the erythrocytes concentration r and to the volume of one
erythrocyte Ve by the following ratio:

6

r ¼ H∕Ve. (1.113)

Thus, the absorption coefficient ma is

ma ¼ ðH∕VeÞsa. (1.114)

For sufficiently small values of H (H, 0.2), the scattering coefficient is given
by a similar equation

ms ¼ ðH∕VeÞss. (1.115)

For H. 0.5, the particles become densely packed, and the medium is almost
homogeneous. In this case, the blood may be considered as a homogeneous
medium containing hemoglobin in which scattering particles are included
from plasma surrounding red blood cells (RBCs). Within the limits of H! 1,
“plasma particles” disappear, and the scattering coefficient should tend to
zero. This results in the following approximate equation for ms:

ms ¼
Hð1�HÞ

Ve
ss, (1.116)

where coefficient (1�H) regards the scattering termination with H! 1.
Dense packing (H ¼ 1) is unattainable, and the packing influence should not
be described by the simple function (1 –H). For example, if the particles are
the hard spheres, H may not exceed 0.64. Then we should take262

ms ¼ ðH∕VÞssFðHÞ, (1.117)

where function F(H) must monotonously decrease from a unit with H ¼ 0 to
zero with a certain limit value of H. Reference 263 presents the following
dependence of scattering coefficient ms on the hematocrit H for thin blood
layers

ms ≈ Hð1�HÞð1.4�HÞ. (1.118)

1.7.6 Birefringence of a system of anisotropic particles

Besides the crystal birefringence caused by the anisotropic properties of
molecules they contain, there also exists a so-called birefringence of the
form.30 The latter phenomenon may be observed in an ordered system of
particles made from an optically isotropic material whose sizes are great
compared to those of molecules but are small with respect to the wavelength.
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The difference of refractive indices for two orthogonal states of linear
polarization of an incident plane wave at light propagation in a system of thin
dielectric plates is described by30

n2e � n2o ¼ �
f ð1� f Þðn1 � nmÞ
ð1� f Þn2m þ f · n21

, (1.119)

where f is the volume fraction of plates, and n1 and nm are the refractive
indices of plates and the surrounding medium, respectively. This implies that
this system behaves like a negative single-axis crystal with its optical axis
being normal to the plate surface. Wiener30 succeeded in obtaining the
following expression for a system of thin cylinder rods with f≪ 1

n2e � n2o ¼
f ð1� f Þðn21 � n2mÞ2
ð1þ f Þn2m þ ð1� f Þn21

, (1.120)

where f is the volume fraction of rods, and n1 and nm are the refractive indices
of rods and the surrounding medium, respectively. This difference is always
positive and, thus, the system formed by thin cylinders constitutes a positive
single-axis crystal. This means that the rod system behaves like the positive
single-axis crystal with its optical axis being in parallel with the rod axes.
Equation (1.120) is consistent with the results obtained by Rayleigh264 for a
system of parallel cylinders, even if f is not very small compared with a unit,
provided that the difference between the refractive indices n1 and nm is small
(optically soft particles).

The author of Ref. 265 has derived a more general expression that
describes the birefringence within the limit of thin cylinders for an arbitrary
value of f:

ne � no ¼
f ð1� f Þðn1 � nmÞ2
ð1� f Þnm þ f n1

. (1.121)

This equation corresponds to the Wiener equation (1.120) with |n1 � n2|≪ 1.
The form birefringence is used in biological microscopy. The sign of the

observed difference points to the particle shape being close to that of the rod
or the plate and, if n1 and nm are known, one can assess the volume fraction of
the particles. To distinguish between the form birefringence and the
birefringence of the particle material, one is able to change the refractive
index of the base material. The form birefringence vanishes at n1 ¼ nm. Linear
dichroism, i.e., different wave attenuation for two orthogonal polarizations, is
defined by the difference between the imaginary parts of effective indices of
refraction of particles and surrounding medium. Depending on the relation
between the size and the optical constants of the scatterers, this difference
could be positive or negative.
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1.8 Application of Radiative Transfer Theory to Tissue Optics

The classical radiative transfer theory (RTT) is found on energy consideration
and serves as a basis for photometry. The initial development of the RTT is
usually associated with the names of Bouguer and Lambert. Photometry
operates with energy characteristics that describe the light detection capabilities
by using quadratic detectors. The classical phenomenological theory of light
transfer makes use of the pictorial concept of ray optics supplemented by a
statistical assumption of fields being entirely mutually incoherent for rays
propagating in different directions. This assumption allows one to summarize
the average intensities of rays coming from the different directions ignoring the
phase relations. This formulation is widely used in atmosphere optics,266 the
optics of photographic layers, and tissue optics.

In the classical theory of light transfer that considers the wave field as
an ensemble of incoherent rays, the main notion is the radiation intensity (or
brightness) I(r,s) defining the mean energy flow dP through an area da which
is concentrated in a solid angle dV near direction s in the frequency interval
(n,n þ dn),

dP ¼ Iðr,sÞ cos udadVdn. (1.122)

This theory is valid for an ensemble of scatterers located far from one another
and has been successfully used to work out some practical aspects of tissue
optics. The governing differential equation of this theory is called the
Boltzmann equation used in the kinetic theory of gases and in the theory of
neutron transfer.267 The main stationary equation of the RTT for
monochromatic light has the form6,9

Ið�r,�sÞ
�s

¼ �mtIð�r,�sÞ þ
ms

4p
∫
4p
Ið�r,�s0Þpð�s,�s0ÞdV0, (1.123)

where Ið�r,�sÞ is the radiation intensity at point �r in direction s, (W m–2sr–1);
pð�s,�s0Þ is the scattering phase function; and dV0 is the unit solid angle in
direction s0. It is assumed that there are no radiation sources inside the
medium. Equation (1.123) with the appropriate initial and boundary
conditions defines the behavior of the radiation intensity. Equation (1.123)
refers to the energy balance in an infinitely small medium volume: the rate of
variation for the radiation intensity along the beam is found by scattering in
the given direction s from all other directions s0 (integral term) and by
attenuation due to scattering and absorption [term �mtI(r,s)].

The phase function pð�s,�s0Þ describes the scattering properties of the
medium and is in fact the probability density function for scattering in the
direction s0 of a photon traveling in the direction s; in other words, it
characterizes an elementary scattering act. If scattering is symmetric relative

72 Chapter 1



to the direction of an incident wave, then the phase function depends only on
the angle u between directions s and s0.

The scattering indicatrix pð�s,�s0Þ may be specified either as a table obtained
by measuring or calculating, or as an analytical expression.

A portion of the radiation intensity that decreases due to scattering and
absorption while passing through volume V containing scattering particles is
called the attenuated incident intensity and satisfies the following equation:

I rið�r,�sÞ
�s

¼ �mtI rið�r,�sÞ : (1.124)

Another portion, appearing in the medium due to scattering, is called the
diffusion intensity. Since the total intensity

Ið�r,�sÞ ¼ I rið�r,�sÞ þ Idð�r,�sÞ (1.125)

satisfies Eq. (1.123), the diffusion intensity can be found from the equation

Idð�r,�sÞ
�s

¼ �mtI dð�r,�sÞ þ ms

4p
∫
4p
Idð�r,�s0Þpð�s,�s0ÞdV0 þ εrið�r,�sÞ, (1.126)

where εrið~r,~sÞ is the equivalent source function given rise by the attenuated
incident intensity.6 Equation (1.124) is the differential form of the Beer–
Lambert–Bouguer law for the scattering medium with absorption. This means
that the Beer–Lambert–Bouguer law is valid for any optical thickness for the
attenuated incident intensity within the framework of the transfer theory.
Deviations from this law, e.g., caused by dense particle packing and mani-
fested as optical clearing or darkening at concentration change, are ignored by
the RTT.

As the vector nature of the electromagnetic field is accounted for the
radiation intensity should be replaced by an intensity matrix that describes not
only the intensity, but also the polarization properties of radiation with mt and
ms being matrix quantities as well. The order in which matrices are
incorporated into the equations should be taken into account. The scalar
equation (1.123) is exploited in optics to describe light radiation in cases where
the polarization effects may be neglected.

The integro-differential equation (1.123) is too complex to be employed
for the analysis of light propagation in scattering media directly. There are
two approaches to the problem under study. With one of them, one proceeds
to obtain a general solution with unknown coefficients, and then to find these
coefficients by means of the appropriate boundary conditions. Another
approach is in passing from the differential equations with specified boundary
conditions to integral equations for the certain unknown functions. For simple
geometries, the approach based on the integro-differential equation is widely
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used. For complex geometries, it is often more convenient to proceed with the
integral equations and to obtain their approximate solutions.

The exact solutions of the radiative transfer equation (RTE) (1.123) and
of the integral equation for the beam intensity were obtained only for a small
number of particular cases. Planar parallel geometry and isotropic scattering
are the examples for which the solutions have been found and are written in
the form acceptable for calculations. In practice, one would be forced to apply
to approximate solutions in most cases.

We do not aim to describe all or most methods to solve the RTE; this is
referred to the literature.6,9,20,266,267 Instead, we will consider a few approxima-
tions that are often used in tissue optics and have a clear physical meaning.

1.8.1 Approximation methods for solution of the radiation
transfer equation

1.8.1.1 The first-order approximation

For weak scattering, as the scattering medium is rarefied and the scattering
volume is small, iteration may be used to solve the RTE. In the first
approximation, the iterative solution yields the result known as the first-order
approximation of the RTT.6 In this approximation, it is assumed that the total
intensity incident on the particles is approximately equal to the attenuated
incident intensity that is known. Thus, the solution within the first-order
approximation is6

Ið�r,�sÞ ¼ I rið�r,�sÞ þ Idð�r,�sÞ, (1.127)

Idð�r,�sÞ ¼ ∫
s

0
exp½�ðt� t1Þ� ·

�
ms

4p
∫4pI rið�r1,�s0Þpð�s,�s0ÞdV0

�
d�s0, (1.128)

where Iri is the attenuated incident intensity, Id is the diffuse intensity, and
t ¼ ∫s0 rseds, t1 ¼ ∫s10 rseds are the optical pathlengths.

The so-called first-order solution is realized for optically thin and weakly
scattering media (t , 1 and single-scattering albedo L ¼ ss∕se, 0.5) when
the intensity of the transmitting (coherent) wave is described by Bouguer’s law
[Eq. (1.2)]. Given a narrow beam (e.g., a laser), this approximation may be
applied to optically denser tissues (t . 1, L, 0.9).

1.8.1.2 Diffusion approximation

With a longer optical path, the directional diagram of scattered light is
broadened and at last it becomes almost isotropic: the scattered light “forgets”
the direction of initial wave propagation in the depth regime. To describe this
almost isotropic radiation, a diffusion approximation would be used that
would appear to be significantly simpler than the original integro-differential
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equation, since it is reduced to the solution of differential equations. Because
of this, the diffusion approximation is widely used as an effective approach to
account for multiple scattering.

As one derives the diffusion equation, one should pass from the RTE to
an infinite system of equations for the coefficients of expansion of beam
intensity I into a series over spherical harmonics. The reduction of this system
results in the so-called PL approximation, the simplest of which is a system of
equations for four functions that are equivalent to the diffusion approxima-
tion. There exist also other means to derive the diffusion equations for the
diffusion coefficient. All distinctions disappear, however, with passing to the
limit of weak absorption, as it is valid for many tissues. This is easy to
understand from the physics of the diffusion approximation.20 Actually, the
description of scattering as a certain diffusion process only becomes adequate
if the scattering effects dominate upon the absorption ones. Also, the diffusion
approximation does not allow one to describe boundary effects manifesting
themselves near the boundaries where the radiation “has not yet forgotten”
the boundary and initial conditions.

The diffusion theory provides a good approximation in the case of small
scattering anisotropy factor g≤ 0.1 and large albedo L! 1. For many tissues,
g≈ 0.6 to 0.9 and can be as large as 0.990–0.999 for blood.9,218 This
significantly restricts the applicability of the diffusion approximation. It is
argued that this approximation can be used at g, 0.9 when the optical
thickness t of an object is of the order 10–20. However, the diffusion
approximation is inapplicable for an input beam near the object’s surface
where single- or low-step scattering prevails.

The first-order approximation is valid only when the volume density,
equal to the relation between a volume occupied by the particle and the entire
volume of the medium, is substantially less than 1%. If the volume density is
much greater than 1%, the diffusion approximation provides for good results.
For volume density on the order of 1%, neither the near-order approximation
nor the diffusion approximation can be valid, and we need to solve the RTE.

1.8.1.3 Small-angular approximation

The incident wave may be represented as a narrow collimated beam in many
cases of laser diagnostics of tissues. Examples are the determination of
bacteria concentration in liquids using a laser beam,268 and detection of blood
oxygen saturation by means of an optical fiber catheter.246

For the case of large scattering particles whose diameters are comparable
or greater than the wavelength, the scattering intensity in a narrow sector of
angles in the forward scattering direction is high. This enables the description
of collimated beams to be simplified significantly by using a small-angular
approximation, which is applicable for short propagation routes where the
beam remains sufficiently strongly collimated. The RTE in the small-angular
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approximation allows for an exact solution, however, the solution looks quite
cumbersome and not friendly for numerical calculations. A simpler approxi-
mation corresponds to the consideration of the scattered light diffusion in
angular variables.

1.8.1.4 Flux theory

The radiation intensity I itself is not often of interest but instead its integrals
yielding the energy characteristics of the radiation field is used. If illumination
is diffuse and the medium is sufficiently turbid providing the light diffusion
scattering, experimental results are well described by the two-flux Kubelka–
Munk theory.9 This theory relies on a model of two light fluxes propagating in
the forward and backward directions. The extension of two-flux Kubelka–
Munk theory to a four-flux theory makes it possible to describe a collimated
beam incidence onto the medium. The four-flux model6,269 is actually two
diffuse fluxes traveling to meet each other (Kubelka–Munk model) and two
collimated laser beams, the incident beam and the beam reflected from the
rear boundary of the sample.

A seven-flux model is the simplest 3-D representation of scattered
radiation and an incident laser beam in a semi-infinite medium.270 Of course,
the simplicity and the possibility of expeditious calculations of the radiation
dose or rapid determination of tissue optical parameters (solution of the
inverse scattering problem) are achieved at the expense of accuracy.

There exist various numerical procedures to solve the RTE. A more exact
solution of the RTE is possible using the discrete ordinates method (multiflux
theory) in which Eq. (1.123) is converted into a matrix differential equation
for illumination along many discrete directions (angles).6 The solution
approximates an exact one as the number of angles increases. Many computer
programs are available to solve the RTE under different conditions.23

1.8.1.5 Vector radiative transfer equation

As it was already shown, the majority of tissues are turbid media showing a
strong scattering and much less absorption (up to two orders of magnitude
fewer than scattering in the red and NIR). Moreover, in their natural state
(nonsliced), tissues are rather thick. Therefore, multiple scattering is a specific
feature of a wide class of tissues.9,271–275

Polarization effects at light propagation through various multiple-
scattering media, including tissues, are fully described by the vector RTE
(VRTE).9,268,276–291 The RTT originated as a phenomenological approach
based on considering the transport of energy through a medium filled with a
large number of particles and ensuring energy conservation. This medium,
composed of discrete, sparsely, and randomly distributed particles, is treated
as continuous and locally homogeneous. In the framework of the RTT, the
scattering and absorption of the small volume element follow from the
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Maxwell equations and are given by the incoherent sums of the respective
characteristics of the constituent particles; the result of scattering is not the
transformation of a plane incident wave into a spherical scattered wave but,
rather, the transformation of the specific intensity vector (Stokes) of the
incident light into the specific intensity vector of the scattered light.56

For macroscopically isotropic and symmetric plane-parallel scattering
media, the VRTE can be substantially simplified as56

dSð�r,q,wÞ
dtð�rÞ ¼ �Sð�r,q,wÞ þ Lð�rÞ

4p
∫
þ1

�1
dðcosq0Þ ∫

2p

0
dw0 �Zð�r,q,q0,w� w0ÞSð�r,q0,w0Þ,

(1.129)

where S is the Stokes vector; �r is the position vector; q and w are the angles
characterizing the incident direction and the polar (zenith) and azimuth
angles, respectively;

dtð�rÞ ¼ rð�rÞhseð�rÞids (1.130)

is the optical pathlength element; r is the local particle number density; ,se.
is the local ensemble-averaged extinction coefficient; ds is the pathlength
element measured along the unit vector of the direction of light propagation;
L is the single-scattering albedo; q0 and w0 are the angles characterizing
scattering direction, the polar (zenith) and the azimuth angles, respectively;
�Z is the normalized phase matrix

�Zð�r,q,q0,w� w0Þ ¼ RðFÞMðuÞRðCÞ, (1.131)

where M(u) is the single-scattering Mueller matrix; u is the scattering angle;
and R(f) is the Stokes rotation matrix for an angle f:

RðfÞ ¼

2
64
1 0 0 0
0 cos 2f � sin2f 0
0 sin 2f cos 2f 0
0 0 0 1

3
75. (1.132)

This phase matrix links the Stokes vectors of the incident and scattered
beams, specified relative to their respective meridional planes. To compute the
Stokes vector of the scattered beam with respect to its meridional plane, one
must calculate the Stokes vector of the incident beam with respect to the
scattering plane, multiply it by the scattering matrix (to obtain the Stokes
vector of the scattered beam with respect to the scattering plane), and then
compute the Stokes vector of the scattered beam with respect to its meridional
plane. Such a procedure involves two rotations of the reference plane: F ¼
�f; C¼p � f and F¼p þ f; and C¼f. The scattering angle u and the
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angles F and C are expressed via the polar and the azimuth incident (q, w)
and scattering angles (q0, w0).9,56

1.8.2 Monte Carlo simulation

1.8.2.1 Introduction

The MC method, being widely used for the numerical solution of the RTT
equation9,290–296 in different fields (astrophysics, atmosphere and ocean
optics, etc.) appears to be especially promising for the solution of direct and
inverse radiation transfer problems for media with arbitrary configurations
and boundary conditions, in particular for the purposes of the medical
polarization optical tomography and spectroscopy.9,269,273,286–289,293–301 The
method is based on the numerical simulation of photon transport in scattering
media. Random migrations of photons inside a sample can be traced from
their input until absorption or output occur.

The straightforward simulation using the MC method has the following
advantages: (1) one can employ any scattering matrix, (2) there are no
obstacles for the use of strongly forward-directed phase functions or
experimental single-scattering matrices, (3) the polarization calculation takes
only a twofold increase in computation time over that needed for the
evaluation of intensity, (4) any reasonable number of detectors can be
accounted for without noticeable increase of the computation time, (5) there
are no difficulties in determining the radiation parameters inside the medium,
and (6) it is possible to model media with complex geometry where radiance
depends not only on the optical depth but also on the transverse coordinates.

The liability of the obtained results to statistical variations on the order of
a few percent at an acceptable computation time is the main disadvantage of
the MC technique. For a twofold increase of the accuracy, one needs a
fourfold increase in the computation time. The MC method is also impractical
for great optical depths (t . 100).

1.8.2.2 Simulation algorithm

A few MC codes for modeling of polarized light propagation through a
scattering layer are available in the literature (see, e.g., Refs. 9, 281, and 286–
301). To illustrate the MC simulation technique, the algorithm described in
Ref. 300 and applied to model the angular dependencies of the scattering
matrix elements is discussed. Let a flux of photons within an infinitely narrow
beam be incident exactly upon the center of the spherical volume filled up by
the scattering particles.300 The path of a single photon migration in the
medium is accounted for in a process of computer simulation. The photons
are considered in this case as ballistic particles. Different events possible in the
course of the photon migration are estimated by the appropriate probability
distributions. In the model under study, the photons would either be
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elastically scattered or absorbed under their collisions with the medium
particles. A certain outcome of every event is found by a set of uniformly
distributed random numbers. The probability of scattering in the given
direction is determined in accordance with scattering by a single particle. One
is able to specify the cross section of scattering and values of the scattering
matrix elements for every photon interaction with a scatterer.

When an incident photon enters a scattering layer, it is allowed to travel a
free pathlength, l. The l value depends on the particle concentration r, and
extinction cross section se. The free pathlength l is a random quantity that
takes any positive values with the probability density p(l):

pðlÞ ¼ rsee�rsel. (1.133)

The particular realization of the free pathlength l is dictated by the value of a
random number j that is uniformly distributed over the interval [0, 1]:

∫
l

0
pðlÞdl ¼ j. (1.134)

Substituting Eq. (1.133) into Eq. (1.134) yields the value l of the certain
realization in the form

l ¼ � 1
rse

ln j. (1.135)

If the distance l is larger than the thickness of the scattering system, then this
photon is detected as transmitted without any scattering. If, having passed the
distance l, the photon remains within the scattering volume, then the possible
events of photon–particle interaction (scattering or absorption) are randomly
selected.

Within the spherical system of coordinates, the probability density of
photon scattering along the direction specified by the angle of scattering u
between the directions of the incident and scattered photons and by the angle
f between the previous and new scattering planes is given as

pðu,fÞ ¼ I sðu,fÞ sin u
∫2p0 ∫

p

0 I sðu,fÞ sin ududf
, (1.136)

where Is(u, f) is the intensity of the light scattered in the direction (u, f) with
respect to the previous direction of the photon, defined by angles q and w. For
spherical particles, this intensity is given by the Mie formulas with allowance
for the state of polarization (SOP) of each photon. An integral Is(u, f) over all
scattering directions determines the scattering cross-section

ss ¼ ∫
2p

0
∫
p

0
I sðu,fÞ sin ududf. (1.137)
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The probability density of photon scattering along the specified direction,
p(u, f), depends on the Mueller matrix of the scattering particle M(u, f)
(a single-scattering matrix) and the Stokes vector S associated with the
photon. The single-scattering Mueller matrixM(u, f) links the Stokes vectors
of the incident [Si (0, 0)] and scattered [Ss (u, f)] light. For spherical scatterers,
the elements of this matrix may be factorized

Mðu,fÞ ¼ MðuÞRðfÞ. (1.138)

The elements of the single-scattering matrixM(u) of spherical particles matrix
are given by the Mie formulas,1,12 which are functions of the scattering angle u
and diffraction parameter x ¼ 2pa/l, where a is the radius of the spherical
particle and l is the wavelength in the medium.

The matrix R(f) describes the transformation of the Stokes vector under
rotation of the plane of scattering through the angle f, which is defined by
Eq. (1.132). Thus, the intensity of the light scattered by spherical particles is
determined by the expression

I sðu,fÞ ¼ ½M11ðuÞI i þ ðQi cos 2fþ Ui sin 2fÞM12ðuÞ�, (1.139)

where Qi and Ui are the components of the Stokes vector of the incident light.
As it follows from this equation, the probability p(u, f) [Eq. (1.136)], unlike
the scattering matrix [Eq. (1.138)], cannot be factorized; it appears to be
parametrized by the Stokes vector associated with the scattered photon. In
this case, one should use a rejection method to evaluate p(u, f).

The following method of generating pairs of random numbers with the
probability density p(u, f) may be used.300 In the 3-D space, the function p(u,
f) specifies some surface. The values (u, f) corresponding to the distribution p
(u, f) are chosen using the following steps: (1) a random direction (uj, fj) with
a uniform spatial distribution is selected, the values of the random quantities
uj, and fj distributed over the intervals (0, p) and (0, 2p), respectively, are
found from the equations

cos uj ¼ 2j� 1, fj ¼ 2pj, (1.140)

where j is a random number uniformly distributed over the interval (0,1);
(2) the surface specified by the function p(u, f) is surrounded by a sphere of
radius R, equal to the maximum value of the function p(u, f), and a random
quantity rj ¼ jR is generated; (3) the direction (uj, fj) is accepted as the
random direction of the photon scattering at this stage, provided the condition
rj≤ p(uj, fj) to be satisfied. In the opposite case, steps 1 and 2 are repeated
again.

The migration of the photon in the scattering medium can be described by
a sequence of transformations for the related coordinate system. Each
scattering event is accompanied by a variation of the Stokes vector associated
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with the photon. The new Stokes vector Snþ1 is a product of the preceding
Stokes vector, transformed to the new scattering plane, and the Mueller
matrix Mk(u) of the scattering particle

Snþ1 ¼MkðuÞRnðfÞSn, (1.141)

where the matrix Rn(f) [see Eq. (1.132)] describes rotation of the Stokes vector
around the axis specifying the direction of propagation of the photon before
the interaction.

For the chosen scattering direction, the Stokes vector is recalculated using
Eq. (1.141) and expressions for elements of the single-scattering Mueller
matrix for a homogeneous sphere made of an optically inactive material.12

The value thus obtained is renormalized so that the intensity remains equal
to unity. Thus, the Stokes vector associated with the photon contains
information only about the variation of the SOP of the scattered photon.
Real intensity is determined by the number of detected photons in the chosen
direction within the detector aperture.

The above procedure is repeated as long as the photon appears to be
outside the scattering volume. In this case, if the photon propagation direction
intersects the surface of the detector, the photon is detected. Upon detection,
the Stokes vector is rotated from the current plane of the last scattering to the
scattering plane of the laboratory coordinate system. The values obtained are
accumulated in the appropriate cells of the detector whose number is defined
by the photon migration direction. Furthermore, with registering, the photon
is classified in accordance with the scattering multiplicity and the length of a
total path. For every nonabsorbed photon, the direction and the coordinates
of a point at which it escapes the scattering volume, as well as the number of
scattering acts it has experienced, were also recorded. The spatial distribution
of radiation scattered by the scattering volume can be obtained with regard to
polarization by analyzing the above data for a sufficiently great number of
photons.

To find the full LSM of an object, one has to detect the light scattering for
four linearly independent states of polarization of the incident light S1i, S2i,
S3i, and S4i. This allows one to construct the following system of linear
equations:

CM0 ¼ S0, (1.142)

where M0 is the column matrix composed of be found matrix elements of the
LSM of the object, and S0 is the 16-element vector containing the Stokes
vector elements recorded upon light scattering for the four independent states
of the incident light polarization. The transformation matrix C is determined
by the choice of the initial set of the Stokes vectors of the incident
light. Having solved this system of equations for the set of Stokes vectors:
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S1i ¼ (1,1,0,0), S2i ¼ (1,� 1,0,0), S3i ¼ (1,0,1,0), and S4i ¼ (1,0,0,1), one
finds the desired LSM of the object, M0 ¼ M

M ¼ 1
2

2
664

I1 þ I2 I1 � I2 2I3 � ðI1 þ I2Þ 2I4 � ðI1 þ I2Þ
Q1 þQ2 Q1 �Q2 2Q3 � ðQ1 þQ2Þ 2Q4 � ðQ1 þQ2Þ
U1 þU2 U1 �U2 2U3 � ðU1 þU2Þ 2U4 � ðU1 þU2Þ
V 1 þ V 2 V1 � V2 2V 3 � ðV 1 þ V 2Þ 2V4 � ðV 1 þ V2Þ

3
775,

(1.143)

where the elements of the Stokes vectors of the scattered light obtained in each
of these four cases are denoted as Sn ¼ (In, Qn, Un, Vn), (n ¼ 1, 2, 3, 4). As a
result, one may calculate the angular dependencies for all elements of LSM
with allowance for the contributions of multiple scattering.

1.8.2.3 Calculation of LSM for a multiple-scattering system

The simulation was performed for the systems of spherical particles with
relative index of refraction, m ¼ 1.2, which are uniformly distributed within a
spherical volume at volume fraction f ¼ 0.01.300 In the calculations, the
illuminating beam was assumed to be infinitely narrow and incident exactly
upon the center of the scattering volume in the zero angle direction, and the
scattered radiation is detected at different scattering angles in the far zone by a
detector with the full angular aperture of 1 deg in the scattering plane and
5 deg in a plane that is perpendicular to the scattering one.

The calculated angular distributions of the total scattering intensity
for different scattering systems of spherical particles with a small radius,
a ¼ 50 nm, or large radius, a ¼ 300 nm, are presented in Fig. 1.17. The
average multiplicity of scattering of the detected radiation increases with
increasing dimensions of the scattering system. For systems of small particles
at illumination in the visible range (633 nm), approximation of the Rayleigh
scattering is applicable. For rather small dimensions of the scattering volume
of 1 mm of diameter, the contribution of single scattering is predominant. This
follows from the intensity angular dependence, which is rather isotropic,
Fig. 1.17(a). As the dimensions of the scattering system increase, the fraction
of contributions of the higher multiplicity scattering grows as well. For a
20-mm-diameter system, the detected light contains noticeable contributions
of scattering of the 10th to the 20th multiplicity. With a further increase of the
system dimensions, most of the incident light is scattered in the backward
direction and the scattering intensity in the forward half-plane vanishes. For
this reason, beginning from a certain value, the dimensions of the scattering
system hardly affect the shape of the diagram of the scattering multiplicity
distribution.

Systems composed of particles with a size of the order of the wavelength
[Fig. 1.17(b)] also show an increase in the contributions of higher-order
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scattering with increasing dimensions of the scattering system. The system
transforms from the forward- to backward-directed scattering mode at rather
small thickness, 2 mm in diameter.

As is seen, the intensity of unpolarized light at the higher scattering
multiplicity weakly depends on the scattering angle and carries almost no
information about the size of the scattering particles. Note that systems of
small particles at triple scattering may already be considered as nearly
isotropic, while angular distributions for the large particles, strongly elongated
in the forward direction at single scattering, remain anisotropic for sufficiently
high scattering multiplicity [four to six scattering events for the system with a
0.2 mm diameter, Fig. 1.17(b)].

The view of the LSM elements’ angular dependences under the conditions
of multiple scattering differs substantially from that for the LSM of a single–
scattering system. It is seen from Figs. 1.18 and 1.19 that the multiple
scattering flattens the angular dependences of the LSM elements. The solid
line shows the result of calculation of a normalized LSM for an isolated
spherical particle with the similar radius and relative index of refraction. All
elements of the LSM are normalized to the M11 element (total scattering
intensity) along the given direction, and the element M11 is presented in the
plot as normalized to unity in the forward direction; its actual intensity
distributions are presented in Fig. 1.17.

Figure 1.17 Angular distributions of the total scattering intensity for the multiple-scattering
systems of spherical particles having relative refractive index m¼1.2 and uniformly
distributed within a spherical volume at volume fraction f¼0.01: (a) particles with small
radius, a¼ 50 nm, diameter of the system is equal to (1) 1, (2) 2, and (3) 20 mm; and
(b) particles with large radius, a¼ 300 nm, diameter of the system is equal to (1) 0.002,
(2) 0.2, and (3) 2 mm; the infinitely narrow unpolarized light beam is incident exactly upon
the center of the scattering volume in the zero angle direction; the wavelength is 633 nm
(see Refs. 9 and 300).
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Since the single-scattering angular distribution for particles with sizes
substantially exceeding the Rayleigh limit is strongly asymmetric, the
scattering intensity at large angles is very low. For this reason, one must
trace the trajectories of a great number of photons to obtain good accuracy in
this angular range. Therefore, to demonstrate the fine structure of the angular
dependence of the matrix elements, one needs to use in the simulation at least
107–108 photons.

For the scattering by particle suspensions in a spherical volume of small
diameter, almost all the detected photons are singly scattered. An increase in

Figure 1.18 The MC simulation: the angular distributions of the LSM elements for the
multiple-scattering systems of small spherical particles (a¼ 50 nm, m¼ 1.2) uniformly
distributed within a spherical volume (f¼ 0.01); diameter of the system is equal to 1 mm
(–•–), 2 mm (–▵–), and 20 mm (–○–); the solid line shows the results of calculations in the
approximation of single scattering; the infinitely narrow unpolarized light beam is incident
exactly upon the center of the scattering volume in the zero angle direction; the wavelength
is 633 nm (see Refs. 9 and 300).

84 Chapter 1



the optical thickness considerably enhances the contribution of multiple
scattering. The angular dependences of the LSM elements have a form close
to the single-scattering LSM, provided that the optical thickness of the
scattering system t does not exceed unity for the systems of large particles
considered ten or above for systems of small particles.

The multiple-scattering intensity (the element M11) for a volume of large
diameter decreases with increasing scattering angle slower than the single-
scattering intensity. As the object diameter further increases, the backward
scattering becomes predominant (see Figs. 1.17–1.19). In the systems of small
particles (see Fig. 1.18), the growth of the multiple-scattering contributions is

Figure 1.19 The MC simulation: the angular distributions of the LSM elements for the
multiple-scattering systems of large spherical particles (a = 300 nm, m = 1.2) uniformly
distributed within a spherical volume (f = 0.01); diameter of the system is equal to 0.002 mm
(–•–), 0.2 mm (–▵–), and 2 mm (–○–); the solid line shows the results of calculations in the
approximation of single scattering; the infinitely narrow unpolarized light beam is incident
exactly upon the center of the scattering volume in the zero angle direction; the wavelength
is 633 nm (see Refs. 9 and 300).
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accompanied by a gradual decrease in magnitude of all of the elements except
forM11, i.e., the form of the LSM approaches that of the ideal depolarizer. In
particular, the magnitudes of the elementsM12 andM21 decrease in nearly the
same way; the elements M33 and M44 also decrease in magnitude, but M44

decrease faster. As a result, multiple scattering gives rise to a difference in the
detected values of the elementsM33 andM44, even for the systems of spherical
particles. The values of the element M22 become smaller than unity, this
decrease being more substantial in the range of scattering angles close to
90 deg. Thus, the manifestation of the effect of multiple scattering in
monodisperse systems of spherical particles, which is revealed in the
appearance of nonzero values of the differences |M33–M44| and |1–M22|, is
similar to the manifestation of the effect of nonsphericity of the scatterers
observed under conditions of single scattering.207

For large particle systems, the multiple scattering also decreases the
magnitudes and smooths out the angular dependences of the normalized
elements of the LSM (see Fig. 1.19). The corresponding angular dependences,
as compared to the LSM of small particles, show the following specific
features: the minimum value of the elementM22 is reached not at 90 deg, but
rather at large scattering angles; the fine structures of the angular dependences
for all elements are smeared even in the presence of a small fraction of the
multiply scattered light; and, finally, a very important result that the element
M44, unlike other elements, in the limit of high scattering multiplicity, tends to
0.5 rather than to zero for all scattering angles. Such a form of the LSM
means that the radiation scattered by the large particles holds the preferential
circular polarization at higher scattering multiplicities. This result may serve
as a confirmation of preferential survival of different types of polarization
under conditions of multiple scattering for different sizes of scattering
particles or tissue structures.276,279,302

The process of multiple scattering of the photons during their migration is
considered as a series of successive rotations of their coordinate systems,
determined by the scattering planes and directions. Since these rotations are
random, the detected photons will be randomly polarized and, hence, the
detected light will be partially depolarized. The depolarization will increase
with the increasing multiplicity of scattering. For the moderate optical
thicknesses (object diameter of 0.2 mm, f ¼ 0.01), the depolarizing ability is
strongly different for different directions. The scattered light may be almost
completely polarized in the region of small scattering angles and completely
depolarized at large angles (u ¼ 120 deg) and be partly polarized in the
backward direction. The angular range of the strongest depolarization
corresponds to the angle at which the element M22 acquires minimum values
(see Fig. 1.19).

The simulated dependences allow one to estimate the limits of
applicability of the single-scattering approximation when interpreting the
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results of experimental studies of disperse scattering systems. It follows from
these simulations that modifications of the LSM of monodisperse systems of
spherical particles due to the effects of multiple scattering have much in
common with modification of the LSM of singly scattering systems upon
deviation of the shape of the particles from spherical. This fact imposes
serious limitations on the application of the measured LSM of tissues for the
inverse problem solving to determine particle nonsphericity. The appropriate
criteria to distinguish the effects of multiple scattering and particle
nonsphericity have to be developed.

It is important to note that the comparison of MC simulation accounting
for all orders of multiple scattering with the analytical double-scattering
model had indicated no essential change in the back-scattering polarization
patterns.303 This is due to the fact that the main contribution comes from
near-double-scattering trajectories in which light suffers two wide-angle
scatterings and many near-forward scatterings among multiple-scattering
trajectories. The contributions of such multiple but near-double scattering
trajectories are obviously well approximated by the contributions of the
corresponding double-scattering trajectories.

The above MC technique of photon trajectory modeling is well suited to
the simulation of multiple-scattering effects in a system of randomly arranged
particles. Furthermore, this scheme allows for an approximate approach to
describe the interference effects caused by space particle ordering. To this end,
one should include the interference of scattered fields into calculations of the
single-scattering Mueller matrix and integral cross sections for a particle. In
other words, at the first stage one accounts for the interference effects for
simulation of the single-scattering properties, and then uses these properties
in the MC simulation of multiple scattering. Such an approach is admissible if
the size of a region of the local particle ordering is substantially smaller than
the mean free photon pathlength.

In general, for polarized light propagated in a strongly scattering medium,
the multiple scattering decreases the magnitudes and smooths out the angular
dependences of the normalized LSM elements, characterizing polarized light
interaction with the medium. For media composed of large particles, specified
by a high degree of single-scattering anisotropy or considerable photon
transport length, the scattered radiation holds the preferential circular
polarization at higher scattering multiplicities. This theoretical result serves
as a confirmation of preferential survival of different types of polarization
under conditions of multiple scattering for different sizes of scattering
particles or tissue structures.

Given the known character of the Stokes vector transformation for each
scattering act, the SOP following multiple light scattering in a highly
scattering medium can be found using various approximations of the
multiple-scattering theory or the MC method. For small particles, the effects
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of multiple scattering are apparent as the broken symmetry relationship
between LSM elements M12(u)≠M21(u), M33(u) ≠ M44(u), and a significant
reduction of linear polarization of the light scattered at angles close to p/2.304

1.8.2.4 Degree of linear and circular polarization of light interacting with
tissues

For a system of small spatially uncorrelated particles, the degree of linear
(i ¼ L) and circular (i ¼ C) polarization in the far region of the initially
polarized (linearly or circularly) light transmitted through a layer of thickness
d is defined by the relation279

Pi ≅
2d
ls
sinhðls∕jiÞ · expð�d∕jiÞ, (1.144)

where ls ¼ 1/ms is the scattering length, and

ji ¼ ðzi · ls∕3Þ0.5 (1.145)

is the characteristic depolarization length for a layer of scatterers d≫ ji, zL ¼
ls/[ln(10/7)], zC ¼ ls/(ln2).

As can be seen from Eq. (1.144), the characteristic depolarization length
for linearly polarized light in tissues that can be represented as ensembles of
Rayleigh particles is approximately 1.4 times greater than the corresponding
depolarization length for circularly polarized light. One can employ
Eq. (1.144) to assess the depolarization of light propagating through an
ensemble of large-scale spherical particles whose sizes are comparable with the
wavelength of incident light (Mie scattering). For this purpose, one should
replace ls by the transport length ltr≅ 1/ms0 and take into account the
dependence on the size of scatterers in zL and zC. With the growth in the size
of scatterers, the ratio zL/zC changes. It decreases from �1.4 down to 0.5 as
2pa/l increases from 0 up to �4; it remains virtually constant at the level of
0.5 when 2pa/l grows from �4 to 15.

MC numerical simulations and model experiments in aqueous latex
suspensions with particles of various diameters demonstrate that there are
three regimes of the dependence of the ratio of the degree of linear
polarization to the circular polarization for transmitted light, PL/PC, on d/
ltr.
279 In the Rayleigh range, PL/PC grows linearly with the increase of d/ltr. In

the intermediate range, this ratio remains constant. In the range of Mie
scattering, this quantity decreases linearly. Such behavior of this quantity is
associated with the transition of the system under study from isotropic
scattering to anisotropic. Qualitatively, the physical mechanism behind the
change in the depolarization is associated with the fact that a considerable
probability of backward scattering in each event of light–medium interaction
(isotropic scattering) does not distort linear polarization, whereas backward
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scattering for circular polarization is equivalent to the reversal of polarization
direction (similar to reflection from a mirror), i.e., it is equivalent to
depolarization. For the same reason, in the case of a strongly elongated
scattering phase function, the degree of circular polarization in an individual
scattering event (anisotropic scattering) for light propagating in a layer should
remain nonzero for lengths greater than the degree of linear polarization.

These arguments also follow from the above MC simulation of polarized
light interaction with multiple-scattering systems300 and experimental
works.302,305 For example, at high-scattering multiplicities the radiation
scattered by the large particles holds the preferential circular polarization
(LSM elementM44 is far from zero for all scattering angles) (see Fig. 1.19). At
multiple scattering, the LSM for a monodisperse system of randomly
distributed spherical particles is modified to be approximately identical to
the single-scattering LSM of the system containing nonspherical particles, or
optically active spheres.

Thus, different tissues or the same tissues in various pathological or
functional states should display different responses to a probe with linearly and
circularly polarized light. This effect can be employed in both optical medical
tomography and for determining optical and spectroscopic parameters of
tissues. As follows from Eq. (1.144), the depolarization length in tissues should
be close to the mean transport pathlength ltr of a photon, because this length
characterizes the distance within which the direction of light propagation and
consequently, the polarization plane of linearly polarized light, become totally
random after many sequential scattering events.

Since the length ltr is determined by the parameter g characterizing the
anisotropy of scattering, the depolarization length should also substantially
depend on this parameter. Indeed, the experimental data of Ref. 306
demonstrate that the depolarization length lp of linearly polarized light,
which is defined as the length within which the ratio I||/I⊥ decreases down to
2, displays such a dependence. The ratio mentioned above varied from 300
to 1, depending on the thickness of the sample and the type of tissue. These
measurements were performed within a narrow solid angle (�10–4 sr) in the
direction of the incident laser beam. The values of lp differed considerably
for the white matter of brain and tissue from the cerebral cortex: 0.19 and
1.0 mm for l ¼ 476–514 nm and 0.23 and 1.3 mm for l ¼ 633 nm,
respectively. Human skin dermis (bloodless) has a depolarization length of
0.43 mm (l ¼ 476–514 nm) and 0.46 mm (l ¼ 633 nm). The depolarization
length at l ¼ 476–514 nm decreases in response to a pathological change in
the tissue of aorta wall: 0.54 mm for a normal tissue, 0.39 mm for the stage
of tissue calcification, and 0.33 mm for the stage of necrotic ulcer. Whole
blood with a low hematocrit is characterized by a considerable depolariza-
tion length (about 4 mm) at l ¼ 633 nm, which is indicative of the
dependence on the parameter g, whose value for blood exceeds the values of
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this parameter for tissues of many other types and can be estimated as
0.966–0.9979,307 (see Chapter 2).

In contrast to depolarization, the attenuation of collimated light is
determined by the total attenuation coefficient mt. For many tissues, mt is
much greater than ms0. Therefore, in certain situations, it is impossible to
detect pure ballistic photons (photons that do not experience scattering), but
the forward scattered photons retain their initial polarization and can be used
for imaging.308,309 This is illustrated by Fig. 1.20, which presents the
experimental data for the decay of the degree of linear polarization PL

obtained for various tissues and blood as a function of light transmission.302

The authors of Ref. 310 experimentally demonstrated that laser radiation
retains linear polarization on the level of PL≤ 0.1 within 2.5ltr. Specifically, for
skin irradiated in the red and NIR ranges, we have ma≅ 0.4 cm–1, ms0 ≅ 20 cm–1,
and ltr≅ 0.48 mm. Consequently, light propagating in skin can retain linear
polarization within a length of about 1.2 mm. Such an optical path in a tissue
corresponds to a time delay on the order of 5.3 ps, which provides an
opportunity to produce polarization images of macro-inhomogeneities in a
tissue with a spatial resolution equivalent to the spatial resolution that can be
achieved by the selecting of photons using more sophisticated time-resolved
techniques. In addition to the selection of diffuse-scattered photons, polarization
imaging makes it possible to eliminate specular reflection from the surface of a
tissue, which allows one to use this technique to image microvessels in facile skin
and detect birefringence and optical activity in superficial tissue layers.311–316

Polarization imaging is an innovative technology in biopho-
tonics.9,294,308–326 The most prospective approaches for polarization tissue
imaging, in particular, linear polarization degree mapping, 2-D back-
scattering Mueller matrix measurements, polarization-sensitive OCT, and

Figure 1.20 Degree of linear polarization in different tissues as a function of the sample
optical transmittance, Iout/Iin ≡ T, on 633 nm. Each point is an average of three
measurements.302 The error bars representing standard deviation of measurements are
smaller than the used symbols.
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full-field polarization-speckle technique will be discussed in this and the
following chapters.

The registration of 2-D polarization patterns for the backscattering of a
polarized incident narrow laser beam is the basis for the polarization imaging
technique. The major informative images can be received using the back-
scattering Mueller matrix approach. To determine each of the 16 experimental
matrix elements, a total of 16 images should be taken at various combinations
of input and output polarization states.

In weakly absorbing media showing a small-angular multiple scattering,
the degree of linear polarization for a Henyey–Greenstein phase function is
described by325

PL ¼ �½ðm0s zÞ4∕2u2� ·
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðu∕m0s zÞ2

q
� 1�2 · ½1þ ðu∕m0s zÞ2

i
. (1.146)

This means that in a very small angle range (u≪ m0s z) the degree of polari-
zation does not depend on the depth (z)

PL ¼ �u2∕8. (1.147)

At the wings of the scattering angle dependence (u≫ m0s z), it tends to

PL ¼ �u2∕2, (1.148)

which equals the degree of polarization of singly scattered light.

1.8.2.5 Simulation of two-dimensional reflection and transmission LSM

Rakovic et al.327 present the MC-based simulations of the diffusely back-
scattering intensity patterns that arise from illuminating a turbid medium
with a polarized laser beam. It is rigorously shown that, because of the
axial symmetry of the system, only seven elements of the effective back-
scattering Mueller matrix are independent. Other studies have demonstrated
that information on the properties of turbid medium can be obtained by
analyzing the SOP of diffusely back-scattering polarized laser light.
Applications of this technique that have been investigated include the
measurements of the average particle size, the scattering coefficients and the
anisotropy factor of particle suspensions,268 and the study of biological
material.328 Hielscher et al.268 generalized the concept of an effective Mueller
matrix and measured the 2-D Mueller matrix of back-scattering light.
Rakovic et al.327 extended this work to include a theoretical, computational,
and experimental verification of the use of the incoherent scattering theory to
explain the patterns seen in polarized light back-scattering from the
suspensions of polystyrene spheres (Fig. 1.21). Yao et al. measured depth-
resolved Mueller-matrix images using polarization-sensitive optical coherence
tomography.329,330
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Figure 1.22 shows the reflection and the transmission Mueller matrices of
a turbid medium with parameters characteristic to tissues.294 The patterns of
the reflection Mueller matrix are identical to those reported in Refs. 288 and
327 (see Fig. 1.21). The symmetries in the patterns can be explained by the
symmetries in the single-scattering Mueller matrix and the turbid medium.327

The transmission Mueller matrix has different patterns from the reflection
Mueller matrix. One of the noticeable differences appears in elementsM31 and
M13, which are antisymmetric in the reflection Mueller matrix but symmetric
in the transmission Mueller matrix. This difference is caused by the mirror
effect in the reflection process of the scattered light.

1.8.2.6 Simulation of the spectra of transmission, reflection, and scattering

The collimated transmission is understood as a detection of a relative fraction
of photons running out of the scattering layer close to the forward direction
that exhibit a slight lateral shift corresponding to their entrapment by the
specified receiving aperture.

If light is incident onto a layer of parallel cylinder particles normal to
the cylinder axes, the scattered light propagates in a plane perpendicular
to these axes. Consequently, this problem has to be considered as a 2-D
one. When calculating the collimated transmission or the integral character-
istics of light scattering, the results calculated for linearly polarized light that
is normally incident to the surface of a system of layers that are randomly

Figure 1.21 Experimental and MC counted back-scattering Mueller matrix.327 The
phantom was comprised of a 0.05-wt% suspension of polystyrene spheres (of diameter
2.02 mm) in deionized water. The approximate size of each image was 1.6 by 1.6 cm. The
light wavelength was 633 nm. The smaller values correspond to contours located further
from the center of each plot.
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aligned around the direction of light propagation are equivalent to those
obtained for light incident onto a system of uniformly oriented layers. It is,
therefore, possible to restrict oneself by considering the 2-D problem if the
effects of rescattering between different layers are negligible, which
substantially simplifies the problem. It is, however, unfair for the angular
dependence of scattering.

M11  M12 M13 M14
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M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44
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Figure 1.22 (a) Reflection and (b) transmission Mueller matrices of a slab of turbid medium
with a scattering coefficient of 4 cm–1 and a scatterer radius of 0.102 mm.294 The calculated
Mueller-matrix elements are normalized to the M11 element to compensate for the radial
decay of intensity. Each of the images is displayed with its own color map to enhance the
image contrast. The size of each image is 4�4 cm2. (See color plates.)
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The simulation shows that dependence of transmission on the layer
thickness is described by two exponential terms. This allows for study of the
transition from predominantly single scattering to the diffusion regime of
scattering as thickness increases. The MC method also makes it possible to
study the kinetics of light scattering as the relative index of refraction in a
disperse medium is varied. The above effects have been investigated in detail
with the example of the eye sclera optical clearing (see Section 1.10 about
the sclera optical clearing and temporal spectra). The MC method is also
useful for simulating the spectral characteristics of scattering in different
directions.331

1.9 Nephelometry and Polarization Methods for Diagnostics
of Bioobjects

This section deals with the study of methods for the diagnostics of the
parameters of biological particles and tissues with regard to the angular and
polarization characteristics of elastically scattered light. These methods are
simple to realize and they easily undergo computer control. Moreover, the
study of the angular dependence of the scattered light intensity for measuring
the size or density of particles suspended in a fluid (the so-called
nephelometry) has a long history and is widely used in very different areas
of biology and medicine.332 As for the analysis of polarization effects, it is
made use of very rarely with light scattering, although this analysis yields
more extensive information on a scattering object. The polarization of light
scattered by biological cells can reveal properties not evident from
measurements of the total scattered intensity alone. Therefore, we consider
in detail the problems of laser polarization nephelometry, the methods for the
computer-controlled measurement of angular dependencies of the LSM
elements, and potentials for diagnostics.

The most complete information on elastic light scattering by an object
is contained in the LSM (see Section 1.3). The LSM elements and their
dependencies on the scattering angle contain information on the structure
and properties of the object under study. The solution of the appropriate
inverse problems can provide the size distribution function of scattering
particles, their index of refraction, shape and orientation. The rigorous
solution is, however, possible only for a small class of objects. Most biological
objects have a quite complex structure, hence even the solution of a
straightforward problem is a quite difficult task. Along with this, in a number
of cases a qualitative estimation of the object’s properties would be sufficient,
requiring no exact solution of the inverse problem. The general view of
experimental scattering matrix and symmetry relations for its elements allow
us to compare the object under study with a certain class of scattering
systems. The evaluation of the state of the object under study by using the
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experimental LSM can be done with the help of the relations between the
matrix elements. These relations can also be a criterion for estimation of the
correctness of experimental results.

1.9.1 Relations between the LSM elements: depolarization criterion

The nature and mathematical expressions of relations between 16 LSM
elements were considered in Refs. 333 through 335. It has been shown that
there are nine equalities relating the matrix elements for a nondepolarizing
system that is usually understood as a system whose Mueller matrix is
obtained by coherently summing the amplitude matrices of single elements of
the system.

It has been established336,337 that for depolarizing systems six of the above
mentioned equalities are transformed into the following inequalities:

ðM11 þM22Þ2 � ðM12 þM21Þ2 $ ðM33 þ M44Þ2 þ ðM43 � M34Þ2
ðM11 �M22Þ2 � ðM12 �M21Þ2 $ ðM33 � M44Þ2 þ ðM43 þ M34Þ2
ðM11 þM21Þ2 � ðM12 þM22Þ2 $ ðM13 þ M23Þ2 þ ðM14 þ M24Þ2
ðM11 �M21Þ2 � ðM12 �M22Þ2 $ ðM13 � M23Þ2 þ ðM14 � M24Þ2
ðM11 þM12Þ2 � ðM21 þM22Þ2 $ ðM31 þ M32Þ2 þ ðM41 þ M42Þ2
ðM11 �M12Þ2 � ðM21 �M22Þ2 $ ðM31 � M32Þ2 þ ðM41 � M42Þ2: (1.149)

Another important characteristic for the scattering matrices is the number Tr(M)

TrðMÞ ¼
X4
i,j¼1

M2
ij, (1.150)

where M is the scattering matrix normalized to the first element.
It was shown that the equality Tr(M) ¼ 4 is a necessary and sufficient

condition for this matrix M to describe a nondepolarizing object.338 For
depolarizing objects,Tr(M) takes values from 1 to 4. These inequalities enable
one to clearly classify various objects and in some cases to verify the
experimental results. The application of the above relations to the analysis of
the LSM of different biological objects has been described.339 The symmetry
relations for the LSM of an ensemble of particles are considered.340

A collection of particles of random orientation has a scattering matrix of
the form

MðuÞ ¼

0
B@

m11ðuÞ m12ðuÞ m13ðuÞ m14ðuÞ
m12ðuÞ m22ðuÞ m23ðuÞ m24ðuÞ

�m13ðuÞ �m23ðuÞ m33ðuÞ m34ðuÞ
m14ðuÞ m24ðuÞ �m34ðuÞ m44ðuÞ

1
CA. (1.151)

95Introduction to Light Scattering by Biological Objects



If all particles have a plane of symmetry or, equivalently, particles and their
mirror particles are presented in equal numbers, we obtain the block-diagonal
structure

MðuÞ ¼

0
B@

m11ðuÞ m12ðuÞ 0 0
m12ðuÞ m22ðuÞ 0 0
0 0 m33ðuÞ m34ðuÞ
0 0 �m34ðuÞ m44ðuÞ

1
CA. (1.152)

In the case of back-scattering, consequences for the linear and circular
depolarization ratios have been reported by Mishchenko and Hovenier.341

1.9.2 Angular dependence of the scattering intensity of
nondepolarized light

One of the main characteristics to be examined with light scattering is the
angular dependence of the scattered intensity. The measurement is provided
by illuminating an object with the light beam and recording the intensity of
light scattered at different angles. Therefore, an optical nephelometer, the
device measuring scattered light, is based on a source with small angular
divergence and a light detector with a certain angle of view. Lasers appear to
be the most suitable light sources in this case because of sufficient directness
and high intensity of the laser beams.

To find particle sizes in a range of 0.02–0.2 mm, the method of the angular
dependence asymmetry is used. It is based on recording of the scattering
angular dependence deviation from that of Rayleigh form with greater
particle size. The method of full angular dependence measurement is applied
to quantify the particle sizes in a range of 0.1–10 mm, and that of small-angle
light scattering is used to measure the particle sizes in a range of 1–300 mm.342

Laser nephelometry is employed in immunology to quantitatively estimate the
antigen–antibody reaction and to determine the concentration of components
participating in the reaction. In particular, laser nephelometry was used to
study the influence of various factors (temperature, pH of the medium, and
others) on the rate of the reaction and of the formation of antigen–antibody
complexes.343

A number of physically justified light scattering methods were developed
to investigate the morphological parameters of erythrocytes (sizes, shape,
concentration, and aggregation) under conditions approaching their native
state.344–346 They include the procedures of deriving the hematocrit ratio,
aggregation function of erythrocytes, and concentration of hemoglobin
derivatives via elastic light scattering. Particularly, a strong dependence of
scattering angular dependences on the erythrocyte sizes that has been revealed
for angles of 1–30 deg permits one to obtain their size-distribution function.
At the same time, the surface roughness of pathological erythrocytes is
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determined with a high accuracy by a higher scattered laser radiation intensity
within angles exceeding 90 deg.

1.9.3 Measurements of the angular dependences of the scattering
matrix elements

The simplest measuring technique for the LSM elements evaluation is based
on the conventional nephelometer and additional optical elements placed
ahead of and after the scattering medium under study. The linear polarizers
and quarter-wave plates are employed as such elements.12 The results of such
measurement are the combinations of the LSM elements obtained by
multiplying the matrices of optical elements placed ahead of the scattering
object, the matrices of the scattering object itself, and those of optical elements
placed after the scattering object (Fig. 1.23). In general, four measurements
are necessary to obtain one LSM element. Despite the fact that this technique
is reasonable even if quite cumbersome, its application may be followed by
significant relative errors associated with small matrix elements obtained as
differences of big signals. These errors can be avoided by modulating the
polarization state in the incident and/or the scattered fields.

A laser polarization nephelometer has been described with the principle of
operation relying on the modulation of the polarization state of incident and
scattered light by mechanically rotating polarization elements.339,347,348 The
principle of operation is described by the following matrix equation:

S ¼ AaFaMFpApS0, (1.153)

where S and S0 are the Stokes vectors of recorded and source radiation,
respectively; A and F are the Mueller matrices for the linear polarizer and the
phase plate, respectively. As the phase plates are rotated, the intensity
recorded by a photodetector, i.e., the first element of the Stokes vector S,
would depend on time. By multiplying the matrices in Eq. (1.153) and
performing the appropriate trigonometric transformations, one can show that
the output intensity would be represented as a Fourier series, namely,

I ¼ a0 þ
XK
k¼1
ða2 k cos 2 kwþ b2 k sin 2 kwÞ, (1.154)

where w is the angle of orientation of the phase plate axis. The coefficients of
this series are defined by the values of the matrix M elements of the object

Figure 1.23 Schematics of a polarization nephelometer with the rotating phase plates.
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under study, and their measurement ensures a system of linear equations to
determine the matrix M. The number of equations and the degree of
stipulation for this system of equations are dependent on choosing the ratio
between the rotation rates of the phase plates. The proper choice of the
rotation rates relation as 1:5 allows one to get an optimally stipulated system
of linear equations to find the full matrix M of the object under study.

More sophisticated elecro-optical349,350 and magnitoptical351 modulation
principles of polarization states are also used.

1.9.4 The LSM for some biological objects

A review of experimental studies of scattering polarization properties of
biological tissues and cells the reader could find in the multiple litera-
ture.9,76,207,283,294,302,306,310–321,328 The following regularities can be mentioned
that allow for parameters of scattering particle structures or suspensions to be
classified by analyzing their LSM. The distinction between elements M22 and
M11 would serve as a measure for scattering particles to be nonspherical.
These peculiarities were studied for different types of pollen352 and marine
organisms.353,354 However, a similar distinction between elements M22 and
M11 for a model of spherical particles may be caused by multiple scattering
(see above).

As noted in Refs. 76, 352, and 355–358, element M34 is most specific for
various bioparticles. This element is sensitive to small morphological
alterations of scatterers. It has been shown that the element M34 is affected
by a small surface roughness on a sphere.356 It was also proven that M34

measurements may be the basis for determining the diameter of rod-shaped
bacteria (Esgherichia coli cells) that is difficult to be measured using other
techniques.357

In Refs. 352 and 355, the measuring results for the whole LSM of
some biological particles are presented. A high specificity of element M34/
M11 was shown for every type of biological scatterer. Stable distinctions
were revealed in the values of parameter M34/M11 for spores of two mutant
varieties of bacteria, which are distinguished by the variations of their
specific structure and are invisible by means of traditional techniques. The
distinctions of other matrix elements, however, were seen less clearly for
these two types of similar scatterers. When scattering by biological particles
is well described by the RG approximation, M34 ¼ 0. Thus, M34 is a
matrix element that suffers strongly from the deviation of the particle
parameters from those that satisfy the RG approximation. Possibly, this is
the reason for the M34/M11 to be so sensitive to the characteristics of
biological scatterers.12

The polarization characteristics for suspension of biological particles have
been described in Ref. 207, where the sensitivity of different matrix elements
to the variation of the scatterer shape and size is analyzed. It is noted that the
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magnitudes of elements M33 and M44 measured in the backward scattering
direction may serve as an indicator for the particle nonsphericity.

The polarization nephelometry is also used to examine blood corpuscles.
The protocol for determination of the real part of the index of refraction of
blood corpuscles based on the study of the angular structure of the LSM
nonzero elements is described by Korolevich et al.346 This protocol is useful
for the normal or gamma distribution of polydisperse particles and does not
require data on the particle concentration; it is only necessary to obey the
condition of single scattering. The technique for determination of the real part
of the relative index of refraction m is reduced to finding a scattering angle at
which the LSM element is zero within a range of scattering angles from 80 to
120 deg. Further, the relative index of refraction m is derived accordingly to
nomograms valid in the range from 1.02 to 1.07. If the element is not zero
within the angular range of 80–120 deg, then m. 1.07, and it is needed to
determine a scattering angle at which elementM34 is also zero. The measuring
of angular dependencies for the total LSM of blood erythrocytes enables one
to distinguish between disc-like and spherulated cells345 (Fig. 1.24). As it was
noted in Ref. 76, the comparison between measured signals for all types of
human white blood cells allows one to distinguish between two types of
granulocytes.

The results of measuring the angular dependence of the LSM elements of
the sliced samples of human skin dermis, bones, and muscular tissues were
presented.359 The LSM analysis of the tissue slices shows a high level of
birefringence and a random nature of orientation of the bone tissue local
structures. A determined orientation of optically active bundles of the
muscular tissue is revealed in a quasi-harmonic behavior of the LSM element
angular dependence. The random orientation of collagen bundles in the skin
dermis results in an LSM transformation to its form inherent to a multiple-
scattering diffuser.

Figure 1.24 Angular distributions for the LSM elements: M22 (1, 2, 3) M33 (4, 5, 6), M12 (7),
andM21 (8) for disc-like erythrocytes (3, 4, 7, 8) and spherocytes (2, 6). Dashed lines refer to
theoretical analysis using the Mie formulae (from Ref. 345).
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Study of transmission and scattering polarization properties of a tissue
gives a basis that allows one to consider in what way the alteration of spatial
protein organization would lead to turbidity. The measurements of the
angular dependences of LSM elements for the human eye lens carried out
using the laser polarization nephelometer249 demonstrate substantial distinc-
tions in these dependencies for normal and turbid (cataractous) lenses360

(Fig. 1.25).
These distinctions are due to large nonspherical scattering particles

appearing in the medium of a turbid lens (because of formation of high-
molecular proteins). A transparent lens is featured by a monodisperse system
of small-diameter scatterers. A turbid lens contains a reasonable fraction of
larger scatterers. The high sensitivity of the LSM angular dependencies to the
variations in the medium structure makes it possible to employ the LSM
measurements for early diagnostics of the alterations in the tissue structure
that are related to the cataract appearance.

The possibility of elastic light scattering utilization to quick identification
of the bacteria suspensions is a highly attractive field of applications.
However, the reproducibility of the light scattering measurements is often
insignificant for various bacteria and other bioparticles obtained in different
laboratories, unlike the scattering properties measured for suspensions of
physical particles (i.e., suspension of identical polystyrene spheres serves as a
standard). For example, the reproducibility and sensitivity of polarized light
scattering were examined for cylinder samples of bacterial suspensions under
different growing conditions.361 The angular dependencies of certain LSM
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Figure 1.25 Experimental angular dependencies for the LSM elements of (a) normal (age
of 56 y, 5 h after death), and (b) cataractous (age of 88 y, 5 h after death) human lenses.
Measurements were performed at a wavelength of 633 nm.360
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elements (predominantly M34/M11) were studied. The M34/M11 angular
dependencies were found to be highly correlated with the bacterial cell sizes.
From the viewpoint of significant variations revealed to different growing
conditions, it was concluded that a better technique is necessary to distinguish
scattering patterns associated with such alterations of bacterium properties.

1.9.5 Effects of circular light probing and optical activity

Many tissues and systems of bioparticles demonstrate the effects of optical
activity that are manifested in circular dichroism and circular birefringence.
The optical activity of biological objects may be conditioned by the optical
activity of the substance they are formed from and by their structure
peculiarities. Circular intensity differential scattering (CIDS) is a difference
between scattered intensities for left and right circularly polarized (RCP)
incident light. The CIDS effects can be investigated by measuring the LSM
element M14.

12 The so-called form-CIDS is an anisotropy caused by the
helical structure of a particle.76 The CIDS interrelation with the scatterer
structure has been considered by Bustamante et al.362–364 The measurements
of CIDS are used to study secondary and ternary structures of macro-
molecules365 and the polymerization of hemoglobin in sickling RBC.366

The experimental studies of the polarization properties of laser radiation
scattered by optically active tissues359 show that laser polarization nephelom-
etry can be employed for developing noninvasive methods for diagnostics of
the bone tissue structure.

Circularly and elliptically polarized laser light and a standard optical
polarimeter were used to observe the alterations of polarization properties of
light back-scattered from tissue samples at cancer development.323,367 It was
shown that by tracking the Stokes vector of the detected light on the Poincaré
sphere, a differentiation between normal and cancerous tissue can be assessed.

If a tissue contains a substance exhibiting optical activity, then the
polarization measurements provide a noninvasive procedure for determining
the concentration of this substance. For example, an important diagnostic
problem is the monitoring and precise control of blood sugar elevation for
patients with diabetes.368–371

Polarimetric quantification of glucose is based on the phenomenon of
optical rotatory dispersion whereby a chiral molecule in an aqueous solution
will rotate the plane of linearly polarized light passing through the
solution.6,9,294,368–371 The angle of rotation depends linearly on the
concentration of the chiral species, the pathlength through the sample, and
a constant for the molecule called the specific rotation. The net rotation is
expressed as w ¼ alLC, where al is the specific rotation for the species in
dm–1(g/L)–1 at the wavelength l, L is the pathlength in dm, and C is the
concentration in g/L. Glucose in the body is dextrorotatory (rotates light in
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the right-handed direction) and has a specific rotation of þ 52.6 dm–1(g/L)–1

at the sodium D-line of 589 nm.
At physiological concentrations and pathlengths of about 1 cm, optical

rotations due to glucose are on the order of 0.005 deg. A number of techniques
for obtaining measurements with this high degree of accuracy exist and
generally fall into two categories: those that utilize crossed polarizers to
measure rotation via amplitude changes, and those that measure the relative
phase shift of modulated polarized light passing through the sample.9,294,368–371

It is difficult to measure in vivo sugar concentration in blood because
strong light scattering by the skin causes light depolarization. For this reason,
a number of investigators have suggested the anterior chamber of the eye
(aqueous humor) as a site that is well suited for polarimetric measurement
since scatter in the eye is generally very small compared to other tissues.

The use of optical polarimetry for the noninvasive measurement of
physiological glucose concentration in the anterior chamber of the eye of New
Zealand white rabbits was reported.371 Measurements were acquired using a
custom-designed laser-based optical polarimetry system (Fig. 1.26). Aqueous
humor-based polarimetric measurements were obtained by coupling light
through the anterior chamber of the eye. Blood glucose levels were first
stabilized and then altered with intravenous dextrose and insulin administra-
tion and measured every 3–5 min with a standard glucometer and
intermittently with a glucose laser analyzer. Acquired polarimetric glucose
signals were calibrated to measured blood glucose concentration. Errors in
glucose concentration prediction were shown to be related to gross movement
of the rabbit during the procedures, incurring time-varying corneal birefrin-
gence effects that directly affect the measured polarimetric signal. These
effects can be compensated for with appropriate design modifications. The
technique provides a basis for the development of a noninvasive polarimetric
glucose monitor for home, personal, or hospital use.

Figure 1.26 The polarimetric experimental setup employed for the sensing glucose
concentration in the eye. DAQ, data acquisition; GPIB, general purpose interface bus.371
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1.10 Controlling Optical Properties of Tissues

Reflection, absorption, and scattering in tissues and blood can be effectively
controlled by different methods.9,10,372–399 Tissue as a scattering medium
shows all optical effects that are characteristic to turbid physical systems. It is
well known that turbidity of a dispersive physical system can be effectively
controlled using an immersion liquid by matching of refractive indices of the
scatterers and the ground material. The living tissue allows one to control its
optical (scattering) properties using various physical and chemical actions
such as compression, stretching, dehydration, coagulation, UV irradiation,
exposure to low temperature, and impregnation by chemical solutions, gels,
and oils.9,10,372–399

Control of in vivo tissue optical properties is very important for many
medical applications. A number of laser surgery, therapy, and diagnostic
technologies include tissue compression and stretching for better transportation
of the laser beam to underlying layers of tissue. The human eye compression
technique allows one to perform transscleral laser coagulation of the ciliary
body and retina/choroid.375–377 The possibility of selective translucence of the
upper tissue layers should be very useful for developing eye globe imaging
techniques and for detecting local inhomogeneities hidden by a highly scattering
medium in functional tomography. Results on control of human sclera optical
properties by tissue impregnation with hyperosmotic chemicals, such as
trazograph (x-ray contrast), glucose and polyethylene glycol (PEG), as well
as hypaque-60 (x-ray contrast), were reported.9,10,372–374,378,379,383–386

In general, the reduced scattering coefficient m0
s of tissue is dependent on

refractive index mismatch between the extracellular fluid and the cellular
membrane; between cytoplasm, cell nucleus, organelles, melanin, and cellular
membrane; and for fibrous tissue (like sclera, dermis, and breast) between an
interstitial medium and collagenous fibers. For hematous tissue like the liver,
its impregnation by solutes with different osmolarity also leads to refractive
index matching and reduction of the scattering coefficient, however, the effect
is not so pronounced as for skin and sclera due to cells changing size as a
result of osmotic stress.372,373

Soft tissue is composed of closely packed groups of cells entrapped in a
network of fibers through which water percolates. At a microscopic scale, the
tissue components have no pronounced boundaries. They appear to merge
into a continuous structure with spatial variations in the refractive index. As it
was discussed, to model such a complex structure, it is necessary to resort to a
statistical approach.

It has already been shown that the tissue components that contribute most
to the local refractive-index variations are the connective tissue fibers (bundles
of elastin and collagen), cytoplasmic organelles (mitochondria, lysosomes,
and peroxisomes), cell nuclei, and melanin granules.9,204,248,378,400–403
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Figure 1.27 shows a hypothetical index profile formed by measuring the
refractive index along a line in an arbitrary direction through a volume of
tissue. The widths of the peaks in the index profile are proportional to the
diameters of the elements, and their heights depend on the refractive index of
each element relative to that of its surroundings. In accordance with this model,
the origin of the index variations will be presented by a statistically equivalent
volume of discrete particles having the same index but different sizes.

The statistical mean index profile in Fig. 1.27 illustrates the nature of the
approximation implied by this model. The average background index is
defined as the weighted average of refractive indices of the cytoplasm and the
interstitial fluid, ncp and nis, as

204

�n0 ¼ f cpncp þ ð1� f cpÞnis, (1.155)

where fcp is the volume fraction of the fluid in the tissue contained inside the
cells, ncp ¼ 1.367, and nis ¼ 1.355.402 Since approximately 60% of the total
fluid in soft tissue is contained in the intracellular compartment, it follows
from Eq. (1.155) that �n0 ¼ 1.362. The refractive index of a particle can be
defined as the sum of the background index and the mean index variation

�ns ¼ �n0 þ hDni, (1.156)

which can be approximated by another volume–weight average

hDni ¼ f f ðnf � nisÞ þ f ncðnnc � ncpÞ þ f orðnor � ncpÞ: (1.157)

Here, subscripts f, is, nc, cp, and or refer to the fibers, interstitial fluid, nuclei,
cytoplasm, and organelles, respectively, which are the major contributors to
index variations. The terms in parentheses in this expression are the
differences between the refractive indices of the three types of tissue
components and their respective backgrounds; the multiplying factors are
the volume fractions of the elements in the solid portion of the tissue. The
refractive index of the connective-tissue fibers is about 1.47, which
corresponds to about 55% hydration of collagen, its main component. The

Figure 1.27 Spatial variations of the refractive index of a soft tissue.204 A hypothetical
index profile through several tissue components is shown along with the profile through a
statistically equivalent volume of homogeneous particles.
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nucleus and the cytoplasmic organelles in mammalian cells that contain similar
concentrations of proteins and nucleic acids, such as mitochondria and the
ribosomes, have refractive indices that lie within a relatively narrow range (1.38–
1.41).402 Accounting for this and supposing that nnc ¼ nor ¼ 1.40, the mean
index variation can be expressed in terms of the fibrous-tissue fraction ff only:

hDni ¼ f f ðnf � nisÞ þ ð1� f f Þðnnc � ncpÞ. (1.158)

Collagen and elastin fibers comprise approximately 70% of the fat-free dry
weight of the dermis, 45% of the heart, and 2 to 3% of the nonmuscular
internal organs.204 Therefore, depending on tissue type, ff ¼ 0.02–0.7, which
corresponds to ,Dn. ¼ 0.035–0.09.

The mean refractive index �n of a tissue is defined by the refractive indices
of material of the scattering centers ns and ground matter n0 [see Eq. (1.155)]

�n ¼ f sns þ ð1� f sÞn0, (1.159)

where fs is the volume fraction of the scatterers.
The ns/n0≡m ratio determines the scattering coefficient. For example, in a

simple monodisperse model of scattering dielectric spheres (Mie theory)404

m0s ¼ 3.28pa2rs
�
2pa
l

�
0.37
� ðm� 1Þ2.09, (1.160)

where a is the radius of the particles and rs is their volume density.
Equation (1.160) is valid for noninteracting Mie scatterers g. 0.9; 5, 2pa/
l, 50; 1,m, 1.1.

It follows from Eq. (1.160) that even a 5% change in the refractive index of
the ground matter (n0 ¼ 1.35! 1.42), when that of the scattering centers is
ns ¼ 1.47, will cause a sevenfold decrease of m0s . In the limit of equal refractive
indices for nonabsorbing particles, m ¼ 1, and m0s ! 0.

Light scattering and absorption of particles that compose tissue is
calculated by Mie theory. The relevant parameters are the size (radius a) and
shape of the particles, their wavelength-dependent complex refractive index

nsðl0Þ ¼ n0s ðl0Þ þ in00s ðl0Þ, (1.161)

the refractive index of the dielectric host (ground material) n0(l0), and the
relative refractive index m ¼ ns/n0. The imaginary part of the complex
refractive index of scatterer material is responsible for light loss due to
absorption. Mie theory yields the absorption and scattering efficiencies and
the phase function from which the absorption and scattering coefficients
ms ¼ rss and ma ¼ rsa and the scattering anisotropy g are calculated; r is the
scatterer (particle) density, ss and sa are the scattering and absorption cross
sections, respectively [see Eqs. (1.15)–(1.17)].
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The introduction of the specific scattering and absorption coefficients
extrapolated to a volume fraction of 100% is useful for describing scattering
and absorption properties of tissues with controlled structural proper-
ties.405,406 In that case and when the particles are sufficiently diluted to pre-
vent dependent scattering, the scattering, transport scattering and absorption
coefficients are proportional to the dimensionless volume fraction of scatterers
cs≡ fs

ms ¼ cs�ss,m0s ¼ cs�ss½1� gðl0,aÞ�,ma ¼ cs�sa, (1.162)

where the specific scattering and absorption coefficients �ss and �sa are
expressed in cm–1. The optical parameters of broad-banded particle size
distributions are averaged values over the distribution weighted by the volume
fractions of particles with different diameters. The resulting specific optical
coefficients are the averaged values and can be defined analogously to
Eqs. (1.15)–(1.17).

Mie theory predicts that scattering introduced by spherical micrometer-
sized particles is strongest if particle radius and wavelength are of the same
order of magnitude. Mie theory is strictly applicable only to particles of
particular regular shapes, but results are still useful if the shape is irregular.
The oscillatory structure of the scattering coefficient and anisotropy factor as
a function of particle size, which is observed with spherical particles
(Fig. 1.28), is averaged out. The transport scattering coefficient increases

Figure 1.28 Scattering properties of nonabsorbing particles at the wavelength 633 nm
calculated by Mie theory. (a) Transport scattering coefficient strongly depends on both the
particle size and relative refractive index. This graph is approximately symmetric. The axis of
symmetry is at n0s∕n0 ¼ 1. While the transparent scattering coefficient equals zero at that
point, (b) the scattering anisotropy factor is maximal. In some parts of the range shown, the
functions are not monotonous but rapidly oscillating.406

106 Chapter 1



strongly with the ratio n0
s∕n0. In its turn, the scattering anisotropy factor is

maximal when this ratio approaches 1 (Fig. 1.28).
For the matched refractive indices of scatterers and background material

the scattering coefficient goes to zero, that means that only absorption is
responsible now for the light beam extinction. However, as it follows from
Mie theory, absorbing particles suspended in an index-matched medium cause
strongly forward-directed resonance scattering. Light absorption by such
particles is smaller than expected from their bulk absorption coefficient.405,406

For 1-mm diameter particles with ns ¼ 1.6 and bulk absorption coefficient of
their material equal to 104 cm–1 in an index-matched medium, the particle
system absorption coefficient ma ¼ cs � 4120 cm–1.

If particle size and ratio of refractive indices are fixed, the wavelength
dependencies are caused by the spectral variation of the ratio of particle size
and wavelength. For particles with a refractive index close to that of the host
(see Fig. 1.28), the scattering coefficient of the particle system with a diameter
of particles smaller than the wavelength decreases with wavelength, while that
of a system with a diameter of particles larger than the wavelength is almost
constant. The scattering anisotropy factor depends less on the wavelength.
There are plateaus if the particles are much smaller (isotropic scattering) or
larger (highly anisotropic scattering) than the wavelength with a steep increase
between.406

It is possible to increase significantly the transmission through a soft tissue
by its squeezing (compressing) or stretching. The optical clearing of living
tissue is due to its optical homogeneity achieved through the removal of blood
and interstitial fluid from the compressed site. This results in a higher
refractive index of the ground matter, whose value becomes close to that of
scatterers (cell membrane, muscle, or collagen fibers).375,376 Indeed, the
absence of blood in the compressed area also contributes to altered tissue
absorption and refraction properties. Certain mechanisms underlying the
effects of optical clearing in tissues were proposed in Refs. 375 and 376. It
should be emphasized, however, that squeezing-induced effects in tissues
containing little blood, such as sclera, are characterized by a marked inertia
(a few minutes) because of the relatively slow water diffusion from the
compressed region.375,378 It was suggested that compression of sclera may
displace water from interspace of collagen fibrils increasing the protein and
mucopolysaccharide concentrations. Since these proteins and sugars have a
refractive index closer to that of the collagen fibrils, a more index-matched
environment can be created. On the other hand, compression reduces speci-
men thickness, which might increase the effective scatterer and chromophore
concentration inside the tissue.376 Therefore, compression may also give rise
to the increase in tissue scattering and absorption coefficients. Sometimes
the scatterer concentration increase is likely to be more dominant than the
reduction in index mismatch.376
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It is possible to achieve a marked impairment of scattering by matching
the refractive indices of scattering centers and ground matter by means of
intratissue administration of appropriate chemical agents. Conspicuous
experimental optical clearing in the human sclera and skin in the visible
and NIR wavelength range induced by administration of x-ray contrast
(verografin, trazograph, hypaque, omnipaque, glucose, propylene glycol,
polyethylene glycol, glycerol and other solutions) has been described in
Refs. 9, 374, and 378–399. Coordination between refractive indices in
multicomponent tissues showing polarization anisotropy (e.g., cornea) leads
to its decrease.9,248 Osmotic and diffusive processes that occur in sclera treated
with an optical clearing agent (OCA) are also important.378 Osmotic
phenomena appear to be involved when optical properties of cells and tissues
are modulated by sugar, alcohol, and electrolyte solutions. This may interfere
with the evaluation of hemoglobin saturation with oxygen or identification of
such absorbers as cytochrome oxidase in tissues by optical methods.372,373

A marked clearing effect through the human385 and the rat383 skin and the
rabbit sclera385,386 occurred for an in vivo tissue within a few minutes of
topical application or intratissue injection of glycerol, glucose, verografin, or
trazograph.

Albumin, a useful protein for index matching in phase contrast
microscopy experiments, can be used as the immersion medium for tissue
study and imaging.402 Proteins smaller than albumin may offer a potential
alternative to the relatively high scattering of albumin. Alternatively, medical
diagnosis or contrasting of a lesion image can be provided by the
enhancement of tissue scattering properties by applying, for instance, the
acetic acid that was used successfully as a contrast agent in optical diagnostics
of cervical tissue.402 It has been suggested that the aceto-whitening effect seen
in cervical tissue is due to coagulation of nuclear proteins. Therefore, an acetic
acid probe may also prove extremely significant in quantitative optical
diagnosis of precancerous conditions due to its ability to selectively enhance
nuclear scatter.402

The loss of water by tissue seriously influences its optical properties. For
instance, during in vitro study of the human aorta the absorption coefficient
increased by 20% to 50%, especially in the visible range, when an average of
46.4% of the total tissue weight was lost as a result of dehydration.406 The
weight loss was accompanied with an average thickness shrinkage of 19.5%.
The loss of water decreased the sample thickness. Primarily because of
shrinkage the absorption coefficient was increased in the spectral range of 400
to 1300 nm. There was only a slight increase of 2–15% of the reduced
scattering coefficient in the visible range.

Natural physiological changes in cells and tissues are also responsible for
their altered optical properties, which may be used as a measure of these
changes, e.g., for glucose concentration monitoring.369,380–382
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A model of the human sclera in a local region can be represented as a slab
with a thickness d that is filled by thin and long dielectric cylinders (collagen
fibers) with average diameter � 100 nm and refractive index nc ¼ 1.474. The
cylinders are located in planes that are parallel to the slab surface, but within
each plane their orientations are random. The interstitial space is filled by a
homogeneous base substance with the refractive index n0 ¼ 1.345. This
refractive index is a controlled parameter and can be changed in the range from
1.345 to 1.474. For nc ¼ n0 ¼ 1.474, the medium becomes totally homoge-
neous and optically transparent if absorption of scatterers is small.405,406

The described model of tissue is applicable to any fibrous tissue including
skin dermis and muscle. Indeed, refractive indices and fiber diameters should
be changed. The transmission of collimated light by a tissue layer of thickness
d is defined as Bouguer’s law [Eq. (1.2)], where �t ≡ mt ¼ ma þ ms is the
extinction coefficient, and ma and ms are the absorption and scattering
coefficients, respectively. For the human sclera at the wavelength l ¼
650 nm, the absorption coefficient ma≅ 0.08 cm–1, and the reduced scattering
coefficient m0s ¼ msð1� gÞ ≅ 25 cm�1, where g is the scattering anisotropy
factor.408 For g ¼ 0.9, ms≅ 250 cm–1.

To describe the kinetics of the refractive index and corresponding decrease of
the scattering coefficient when a chemical agent diffuses within the interstitial
substance of a tissue, the model of free diffusion was used.378,409 The
approximate solution of diffusion equation for a plane slab with a thickness d,
at the moment t ¼ 0 and concentration c0 (the initial concentration of this
substance within the slab is equal to 0; i.e., t ¼ 0, 0≤ x≤ d, c ¼ 0) has the form

c ≅ c0½1� expð�t∕tÞ�, (1.163)

where

t ¼ d2

p2D
(1.164)

is the diffusion constant, D is the diffusion coefficient, and d is the thickness of
the scleral sample. This relation is very close to the relation describing
diffusion through a partially permeable membrane.378,409 These equations are
valid for diffusion through a homogeneous slab when OCA is applied to both
surfaces of the slab. However, due to its fibrous structure, a tissue can be
presented as a porous material that leads to modification of the agent
diffusion coefficient

D ¼ D0∕p. (1.165)

Here, D0 is the chemical agent diffusion coefficient within the interstitial fluid,
and p is the porosity coefficient defined as

p ¼ ðV � VcÞ∕V , (1.166)
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where V is the volume of the scleral sample and Vc is the volume of collagen
fibers.

When applying an OCA, a change in pH level of the environment is very
important, because swelling or shrinkage of tissue is expected. The swelling or
shrinkage of a fibrous tissue is caused not only by the increase (decrease) of
collagen (elastin) fibril size but also by the increase (decrease) of the sample
volume due to the rise (diminution) of the mean distance between fibrils. It is
well known that the change of the environmental pH to the more acidic
or more alkaline side from a colloid isoelectric point increases the degree of
swelling. It is explained by the appearance of a positive or negative charge of
colloid particles and, therefore, increase of hydration degree. In general, the
initial pH condition of the tissue under study and the acid or alkaline nature of
the impregnated solution may lead to different dependencies of tissue
thickness or volume on chemical agent concentration (or time of impregna-
tion) due to changes of pH. Such behavior of a tissue sample should be taken
into account when optical measurements are used for estimation of tissue
properties. For example, the swelling or shrinkage was observed for different
initial conditions of scleral tissue sample preparation and solutions
used.9,378,384–386

A fiber optic photodiode array spectrometer was used for in vitro and
in vivo light transmittance or reflectance measurements of sclera in the spectral
range 400–800 nm.386 In in vitro study, the conjunctiva and ciliary body, as
well as the retina with choroid were removed. The mean thickness of samples
was about 0.5 mm. A sample under study was fixed on a plastic plate with a
square aperture of 5� 5 mm2 (effective impregnation by a chemical agent via
both surfaces of the sample was provided) and placed in a 5-ml cuvette filled
with an OCA. Various solutions (glucose, trazograph, verografin, and
propylene glycol) were used, which do not have strong absorbing bands
within the used spectral range.

To understand the mechanisms of scleral tissue optical clearing, the
collimated transmittance spectra and change of the scleral sample weight were
measured concurrently with the administration of glucose solution.386

Figure 1.29 illustrates the kinetics of transmittance spectra. It is easily seen
that the untreated sclera is a poorly transparent media for visible light.
Glucose administration makes this tissue highly transparent. As it follows
from Fig. 1.30, the characteristic time response of human optical clearing is
about 5 min.

Based on such measurements, the two-stage model of action of
hyperosmotic liquid on a fibrous tissue was suggested.386 At the first stage,
which takes place approximately 5 min after a sample is placed in a glucose
solution, besides substantial optical clearing, an increase of sample mass was
observed. The latter is due to considerable swelling of collagen fibers in
glucose solution with pH ¼ 3.5 (40% glucose from a drugstore, prepared for
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intravenous injection). In spite of tissue thickness (mass or volume) increase,
the first stage is characterized by a highly increased tissue transmittance
caused by a very effective refractive index matching.

During the following stage, which occurs after 5 min, the matter diffusion
(and correspondingly refractive index matching) saturates, but tissue thickness

Figure 1.29 The time-dependent collimated transmittance of the human sclera sample
impregnated by 40% glucose: (1) 10 sec, (2) 1 min, (3) 2 min, (4) 3 min, (5) 4 min, (6) 5 min,
(7) 5 min, and (8) 8.5 min after the scleral sample was immersed in glucose.386

Figure 1.30 The time-dependent collimated transmittance of the human scleral sample
measured at 420 nm (squares); 589 nm (circles); 630 nm (up triangles); and 700 nm (down
triangles) concurrently with administration of 40% glucose. 386
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increases due to the glucose solution acting in the space between fibrils. At this
stage, transmittance is also saturated and even goes slightly down.

To estimate the matter diffusion coefficient, the experimental data for
collimated transmittance (Figs. 1.29 and 1.30) and the time-dependent
measurements of tissue sample mass (thickness) changes under immersion
solution action can be used. The model of glucose transport in fibrous tissue
is described in Ref. 386. Equations (1.165) and (1.166) are the basis for
this model, which can be used for reconstruction of the diffusion constant.
The estimated average value of the diffusion coefficient of glucose transport
in the scleral sample is equal to (3.45 ± 0.46)� 10–6 cm2/sec at a temperature
of 20 °C.

In vivo measurements were done for a rabbit eye (see Fig. 1.31). The
surface temperature of the rabbit eye was � 38 °C. As an OCA for the optical
clearing of sclera, 40% glucose was administered to the eye by drops. A
significant decrease of the reflectance during the first 5 min of glucose
administration is seen. Dips appearing at 420, 530, and 570 nm are caused by
blood perfusion. The lower reflectance at 420 nm is caused by the strong
absorption of blood. Evidently, more fast decay reflects blood perfusion
kinetics due to eye conjunctiva and sclera inflammation caused by light
irradiation and the osmotic action of glucose. Because blood has less influence
at 630 and 700 nm, measured kinetic responses can be used for in vivo
estimation of diffusion coefficient for glucose in scleral tissue.

The kinetic response of optical properties (modulation depth and phase
shift of intensity modulation of the back-scattered light) of the human eye
sclera via interval of a chemical agent (solution, gel, or oil) administration
was measured using a photon-density wave (frequency-domain) technique.

Figure 1.31 The in vivo time-dependent reflectance spectra of a rabbit eye sclera
measured concurrently with administration of 40% glucose: (1) 1 min, (2) 4 min, (3) 21 min,
(4) 25 min, and (5) 30 min after dropping the glucose solution into the rabbit eye.386
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When intensity of the light source is modulated at a frequency v, a photon
density wave is induced in a scattering medium9,372,380,408 (see Chapters 3 and 7)

AðrÞ ¼ Adc þ Aac exp½�iðvt � uÞ�, (1.167)

where Adc, Aac, and (vt � u) are the dc and ac components of the amplitude
of the photon-density wave and its phase, respectively.

Photon-diffusion theory provides independent determination of the
absorption and reduced scattering coefficients from measurements at a single
modulation frequency. The expressions for the measured quantities as the
phase delay u and ac amplitude Aac have been presented elsewhere

9 (see also
Chapters 3 and 7). These expressions depend on the source–detector
separation r, reduced scattering coefficient m0

s , and absorption coefficients ma.
The intensity and phase of photon-density waves generated by an NIR

optical source were measured at several source–detector separations. The light
source was a laser diode with a wavelength of 786 nm and 4-mW power at the
end of a coupled multimode fiber (core diameter 62.5 mm).374 The intensity
modulation depth of approximately 80% at a frequency of 140 MHz was
provided by modulation of the injection current of the laser diode. The
experimental setup was designed at the University of Pennsylvania.

A multifiber detection system with small source–detector separations
together with a Dicon multichannel fiber optic switcher has been used for
immersion experiments on the human sclera ex vivo. The whole human eyeball
was studied. Data shown in Fig. 1.32 are the temporal changes of ac amplitude
during trazograph administration for three different source–detector separa-
tions and two different techniques of immersion solution administration—by
injection and by drops. The clearing of scleral tissue was observed during the
first 3 min of trazograph administration by injection. For small source–detector
separations (about 1–2 mm) and a relatively large one (3.5 mm), the temporal
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Figure 1.32 Frequency-domain measurements. The time-dependent changes in ampli-
tude of optical signal from the human eye globe ex vivo after (a) trazograph injection and (b)
trazograph drops in the vicinity of the detector fiber tip.374
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dependencies are quite different. Keeping in mind that at the first 3 min after
injection of the chemical agent the positive time scale corresponds to a decrease
of scattering due to tissue immersion, the opposite tendencies of considered
dependencies can be understood as the following. For small source–detector
separation close to the back-reflectance geometry, intensity of reflected light
decreases along with scattering; and for rather large separations, when lateral
photon diffusion effects are important, intensity at first goes up with decreased
scattering, but if scattering continues to decrease, intensity will lessen. That is
why a local maximum on a curve for a separation of 3.5 mm was observed. At
the third minute after chemical agent injection, due to its diffusion into
neighboring tissue regions, amplitudes for all separations have a tendency to go
to initial values. Another technique of chemical agent administration by drops
shows the same tendencies for small and large separations as for injection, but
essential changes of the amplitudes happen momentarily after chemical agent
drops are applied, and then amplitudes slowly change in the opposite
directions. Such behavior depends on the specific features of a chemical agent
application, which are (1) superficial impregnation (underlines the importance
of surface immersion effect and (2) continuous renovation of the chemical
agent on the tissue surface (many drops during the measurement interval).

This study shows that the impregnation of the eye sclera by hyperosmotic
chemical agents affects the reversible refractive index matching of the collagen
fibrils and interstitial media that leads to dramatic reduction of the tissue
scattering ability.

Inhomogeneities of the trazograph concentration in the tissue volume
cause macroscopic spatial inhomogeneities of polarization structure of
scattered light; such polarization structure of the sclera image can be easily
observed using an optical scheme with a “white” light source and a tissue
sample placed between two crossed polarizers. Figure 1.33 illustrates the
evolution of such polarization images during scleral clearing.9

Figure 1.33 Polarization images of sclera sample (white light source, crossed polarizers)
for different stages of sclera clearing. Time elapsed after trazograph administration: (1) 4 min,
(2) 5 min, (3) 6 min, (4) 7 min, (5) 8 min, (6) 9 min, (7) 5 min, and (8) 10 min.9 The tissue-
supporting wires are seen for the translucent sample.
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MC modeling of the initially collimated photons transport within the
sclera tissue, represented as a fibrous structure combined of thin and
long collagenous cylinders randomly distributed within the ground medium,
allows one to understand the character of transition from multiple to single
scattering due to refractive index matching.9,229,378 Results of such modeling
for a system of scattering cylinders with a mean diameter of 120 nm, a mean
separation between fibrils centers of 285 nm, and a refractive index nc
¼ 1.47 surrounded by an interstitial medium with a changeable refractive
index are shown in Fig. 1.34. Calculations were done in a geometry very close
to the experimental one for 1-mm sample thickness.9,229,378 The numbers of
back- and forward-scattered photons collected by integrating spheres
were calculated. It is easy to see that for partly matched refractive
indices the unscattered and low-step scattered photons dominate in both
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Figure 1.34 Model of the human eye sclera, refractive indices of scleral components:
collagen, nc¼ 1.47, and ground media, n0. Calculated distributions of the number Nph of
(A) forward- and (B) back-scattered photons (l¼ 800 nm) via number of collisions Ns (two
integrating sphere geometry): (a) n0¼ 1.35 (normal tissue); (b) n0¼ 1.39 (slightly immersed
tissue); and (c) n0¼ 1.45 (strongly immersed tissue).9
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directions—forward and backward. In the NIR, the optical clearing of tissue
and transformation of the scattering mode from multiple to low-step or even
single begins much earlier than for visible light. The validity of such
calculations were proved using spectral measurements of human scleral tissue
at different stages of clearing.9,378

It has been shown that administration of osmolytes to fibrous tissue and
cell structures allows one to control effectively their optical characteristics.
The kinetics of tissue optical clearing are characterized by a time response of
about 5–10 min, which is defined by the dynamics of refractive index
matching, which in turn depends on the diffusivity of immersion OCA in
tissue and tissue thickness. Tissue swelling plays an important role in tissue
clearing; it leads to saturation or even a slight reduction of tissue optical
transmittance for more prolonged action of some OCAs.

Temporal optical characteristics can be used to determine the diffusion
coefficient of endogenous (metabolic) and exogenous (chemical agent) fluids
in the human sclera, skin, and other tissues. Obtained magnitude for the
diffusion coefficient of glucose in the human sclera corresponds well to values
of the diffusion coefficient for small molecules diffusing in water with some
hindering caused by fibrous structure of the tissue.409

Particularly for blood, the refractive index mismatch between erythrocyte
cytoplasm and blood plasma is important. The refractive index of erythrocyte
cytoplasm is mostly defined by hemoglobin concentration (blood hemato-
crit).410 The scattering properties of blood are also dependent on erythrocyte
volume and shape, which are defined by blood plasma osmolarity,113,410 and
aggregation or disaggregation ability.411–414 The feasibility of index matching
as a method to overcome the limited light penetration through blood for
capturing tissue images has been demonstrated.415–417 Glucose, low- and high-
molecular dextrans, x-ray contrasting, glycerol, and other agents were used to
increase the refractive index of blood plasma closer to that of erythrocyte
cytoplasm to improve penetration depth so that images of objects behind the
blood layer could be obtained.

The reduced scattering coefficient m0
s of blood depends on a mismatch of

averaged refractive indices of blood plasma and RBC cytoplasm. The ratio
nRBC/nbp≡mRBC determines the scattering coefficient, nRBC is the mean
refractive index of RBC cytoplasm, and nbp is the mean refractive index of the
blood plasma. For modeling the RBC ensemble as a monodisperse system of
noninteracting scattering dielectric spheres of radius a irradiated at an NIR
wavelength l, when 5, 2pa/l, 50, anisotropy scattering factor g. 0.9, and
mRBC≅ 1.05, m0

s is well described by Eq. (1.160).
The blood plasma contains up to 91% water, 6.5%–8% (about 70 g/L)

various proteins, and about 2% low-molecular compounds. Because of the
low concentration and relatively low refractive index of low-molecular
chemical compounds, the mean blood plasma (background) index can be
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estimated as the weighted average of the refractive indices of water (92%) nw
and proteins (8%) np

nbp ¼ f wnw þ ð1� f wÞnp, (1.168)

where fw is the volume fraction of water contained in plasma, nw ¼ 1.329 at
800 nm, and the index of proteins can be taken as np ¼ 1.470.9,218 Since
approximately 92% of the total plasma is water, it follows from Eq. (1.168)
that nbp ¼ 1.340.

The refractive index of RBC cytoplasm defined by the cell-bounded
hemoglobin solution can be found from410

nRBC ¼ nw þ bc, (1.169)

where c is the hemoglobin concentration in g/100 ml and b ¼ 0.001942 at a
wavelength of 589 nm. Since the scattering coefficient of blood is not
significantly dependent on wavelength in the range from 580 to 800 nm, this
value of b can be used for estimation of the refractive index of RBC in the
NIR.410

As it follows from Eq. (1.160), about a tenfold reduction of the scattering
coefficient m0s is expected when the refractive index of the blood plasma is
changed from nbp ¼ 1.340 to 1.388 and the refractive index of RBC
cytoplasm is kept constant, nRBC ¼ 1.412 (for hemoglobin concentration in
cytoplasm of 400 g/L). 410

A 1300-nm optical coherent tomography (OCT) system (see Chapter 7 in
Volume 2) was used to take images of the reflector through circulating blood
in vitro.415 The total intensity of the signal off the reflector was used to
represent penetration. As immersion substances, dextran (group refractive
index of 1.52) and IV contrast (group refractive index of 1.46) were taken.
Both dextran and IV contrast were demonstrated to increase penetration
through blood: 69% ± 12% for dextran and 45%± 4% for IV contrast. The
studies of blood scattering reduction by the immersion technique using
various solutions that are biocompatible with blood, such as saline, glucose,
glycerol, propylene glycol, trazograph (x-ray contrasting substance for
intravenous injection), and dextran, are described in Refs. 9, 416, and 417.
For taking images of the reflector through a 1-mm layer of noncirculating
fresh whole blood, 820- and 1310-nm OCT systems were applied. It was
shown that for noncirculating blood sedimentation plays an important role in
blood clearing using the immersion technique, and OCT allows for precise
monitoring of blood sedimentation and aggregation. It was found that blood
optical clearing is defined not only by the refractive index matching effect, but
also by changes of RBC size and their aggregation ability when OCA are
added. For example, when to whole blood twice diluted by a saline 6.5%-
glycerol is added, the total attenuation coefficient is reduced from 42 to
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20 cm–1, and, correspondingly, the optical penetration at 820 nm increases to
117%. For other tested agents (glucose, dextrans, propylene glycol, and trazo-
graph), the enhancement of penetration was from about 20% up to 150.5%.

Blood optical clearing has great perspectives for optical multimodal
endoscopic imaging in clinics with using of OCT for atherosclerotic plaques
and stent lesions monitoring.418,419

In a blood sedimentation study, the regular or irregular oscillations or
jumps of the RBC/plasma boundary were observed. The 1-min time period of
regular oscillations correlates well with the kinetics of the aggregation process,
described by the two subsequent stages of formation of the linear and 3-D
aggregates.412,413,416,417

Blood vessel’s imaging through skin is another prospective optical clearing
technology.9,394,395,397,420–422 First demonstrated for rat skin by spectral
reflectivity technique,420 it is now widely used for different optical imaging
modalities including speckle-correlation technologies.397,422

Blood vessels are also a pathway for OCA supply into living tissue. This
was demonstrated for the first time for the animal model, when combined
intravessel and intratissue injection were used for OCA delivery.421

1.11 Circularly Polarized Light

An alternative approach to the Mueller matrix and LSM has been
developed.367,423 The technique utilizes circularly polarized light. When
circularly polarized light is multiply scattered within a turbid tissue-like
scattering medium, the incident light is depolarized, and the depolarization rate
depends strongly on the size and shape of scattering particles,264,268 as well as
on the number of scattering events.424 A popular belief claims that linear
polarization is better preserved in scattering tissue-like media compared to
circularly polarized light. This, however, turns out to be true only when the size
of scattering particles a is smaller than the wavelength of the incident light l,
a,l. In media consisting larger scattering particle sizes (a$l), the opposite
situation happens. This phenomenon is known as the circular polarization
memory of light,425,426 and is of fundamental importance. Due to the intrinsic
phase difference between its two basis linear components in the case of
reflection at the medium surface, an incident state of circular polarization
undergoes a flip in its helicity426 and the same goes for the back-scattering of
light. For the large particles with highly anisotropic scattering, the light
becomes strongly forward scattered that preserves its initial helicity. Linear
polarization possesses no such sense of the direction in which light travels.

Therefore, with a known stage of polarization of incident light, the helicity
of detected optical radiation can be used to determine if it has been forward or
back scattered. With the geometry of an experimental system that allows both
portions of forward and back-scattered circularly polarized light to be
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measured, changes in the medium under observation can be resolved by
looking at the contribution of each part to the final signal. When combined
with the knowledge of anisotropy of scattering particles within the medium,
this effect provides a method for examining relevant properties of a scattering
medium, including size, shape, number density, and refractive index of
scattering particles.

The experimental realization of the technique utilizing circularly polarized
light is presented in Fig. 1.35.

The back-scattered light is collected at distance d from the point of light
incidence (see Fig. 1.35) and then passed through a polarimeter to measure its
SOP. Incident circularly polarized light is propagated through the turbid
medium and undergoes multiple-scattering events before being collected by
the detector. The MC-based computational studies428 indicated that when the
source and detection areas are overlapped (d ¼ 0), the detected signal is likely
to be overwhelmed by the cross-polarized component due to single back-
scattering events at or near the surface. Separation of the source and detector
increases the pathlength of the light within the sample before reaching the
detector, and thus increases the contribution of the co-polarized component to
the detected signal. Too large a detecting distances result in complete
depolarization of the incident light. The actual value of d causing complete
depolarization is related to the optical properties of the medium, specifically
the transport mean-free path ltr (ltr ¼ 1∕m0s ).

Figure 1.35 Schematic presentation of the experimental setup. Vertically polarized light
from a laser diode (LQC639-30C, Newport, RI, 639 nm, 30 mW) is directed toward the
sample at 55 deg from the normal. The light is then altered by a quarter wave plate into a
state of RCP and/or right elliptically polarized (REP), and focused onto the surface of the
tissue by a lens. The source detector separation d as well as the angle of detection u can be
varied to influence the sampling volume.427,428 (See color plates.)
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To visualize and quantify changes in light polarization associated with
alterations that were built into models or changes in biological tissues, the use
of the Poincaré sphere has been suggested.367,423 The coordinates on the
Poincaré sphere are defined by the Stokes parameters, defined as1

S0 ¼ I , (1.170)

S1 ¼ Q ¼ I · DOP · cosð2cÞ cosð2xÞ, (1.171)

S2 ¼ U ¼ I · DOP · sinð2cÞ cosð2xÞ, (1.172)

S3 ¼ V ¼ I · DOP · sinð2xÞ, (1.173)

where I is intensity, DOP is the degree of polarization and describes the
portion of polarized light, x is ellipticity angle, and c is azimuth angle. Using
the Poincaré sphere makes it easier to visualize multiple polarization states at
once for comparison purposes. The last three Stokes parameters are plotted in
3-D space, outlining a sphere with all possible polarization states (Fig. 1.36).

The Poincaré sphere has been used as a convenient graphical tool for the
analysis of SOP of light scattered within biological tissue and tissue-like
scattering meida.367,423 Mapping the Stokes vector of the back-scattered light

Figure 1.36 The Poincaré sphere describes all possible states of polarization. The
distance from the center of the sphere indicates the degree of polarization; fully polarized
states occupy a point on the surface of the sphere, whereas partially polarized states reside
inside. Each point on the sphere represents one SOP so for instance a point at the northern
pole +S3 signifies right-handed circular polarization, and the south pole �S3, left circular.
States of linear polarization lie on the equator, and elliptical polarizations fill the remaining
surface.
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on a Poincaré sphere demonstrated that the changes of polarization state
correlates with the concentration of scattering particles and their sizes.

Figure 1.37 shows that SOP of light begins in a right handed elliptical
polarization state and reverses its helicity to become left handed with the highly
dilute Intralipid water solutions. The helicity of the polarization state remains
right-handed with the water solutions of Intralipid up to dilution factor 1:40.
After this point the polarization state changes more significantly, whereas the
changes between the first and second measurement is minimal (see Fig. 1.37).

The results of measurements of the signature of the Stokes vector on the
Poincaré sphere for the light scattered in the mono-disperse solutions of
polystyrene microspheres (of known optical properties, see Table 1.1) are
presented in Fig. 1.38.

Thus, the quantitative phantom studies utilizing polystyrene beads
confirmed that the Stokes vector position on the Poincaré sphere depended
on the size of the light-scattering particles, which in turn influenced the
latitude of the Stokes vector mapped onto the Poincaré sphere. Based on the

Figure 1.37 Position of the Stokes vector on the Poincaré sphere for right helically
polarized light scattered in the water solutions of with dilution factor (from top): 1:1 ( – blue),
1:10 ( – green), 1:20 ( – red), 1:40 ( – cyan), 1:100 ( – magenta), 1:200 ( – yellow), and
1:500 ( – black). d = 1 mm and u = 10 deg. � indicates the Stokes vector of incident light.
(See color plates.)

Table 1.1. Optical properties of mono-disperse solutions of polystyrene microspheres
used in the experiments.

Diameter (mm) Concentration (particles/ml) g Is (cm
–1) ms

0 (cm–1) Dilution factor

a 11 ± 0.25 3.55� 107 0.912 68.6 6.0 1:1
b 5.9 ± 0.29 1.25� 108 0.864 68.6 9.3 1:1.77
c 5.9 ± 0.29 8.09� 107 0.864 44.3 6.0 1:2.74
d 5.9 ± 0.29 3.55� 107 0.864 19.5 2.7 1:6.23
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Mie theory and the associated calculations of scattering pattern and
polarization state, we can see that for small microspheres the scattering acts
like a dipole. Figure 1.39(a) shows the S3 component of Stokes vector (also
known as V) of the light after a single-scattering event for a small (0.1 mm)
microsphere as a function of the cosine of the scattering angle u. Since the
incident light is right circularly polarized the negative values for V indicate a
helicity flip. We can see that back-scattering events (when cosine of scattering
angle , 0) result in a helicity flip. The S-shaped curve can be explained by the
attenuation of p- and s- components in terms of projections of the electric field
vector. But for larger spheres this behaviour drastically changes. The S-shape
is lost at a sphere size of 0.3 mm [Fig. 1.39(b)]. The angles resulting in helicity
reversal become even more complicated at the sphere sizes used in the
experiments described above [see Fig. 1.39(c) and (d)].

Figure 1.40 shows the results of a MC simulation428 recording the spatial
distribution of the V component of the Stokes vector on the surface of a
scattering medium. The optical properties of media used in the modelling are
presented in Table 1.1 (a–d), respectively. As one can see the bulk polarization
state measured from the medium with the highest scattering anisotropy
[see Fig. 1.40(a)] has the highest helicity preservation, or V component. The
overall trend between ellipticity and changes of anisotropy of scattering is
clearly seen between all the samples.

The results of phantom studies with water solutions of Intralpid and
microspheres show clearly the response of backward scattered circular/
elliptically polarized light. The results of MC modelling shows that phase
shifts are involved in scattering by large spheres but that their helicity flips

Figure 1.38 Position of Stokes vector on the Poincaré sphere for right-handed circularly/
elliptically polarized light scattered in water solutions of microspheres, the scattering properties
of which presented in Table 1.1: a ( – red), b ( – blue), c ( – green), and d ( – cyan),
� indicates the Stokes vector of incident light. d = 6 mm and u = 30 deg.
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Figure 1.39 V component (S3) of the outgoing Stokes vector vs. cosine of scattering angle
calculated by using Mie theory429 for the diameter of scattering particles: (a) 0.1 mm,
(b) 0.3 mm, (c) 5.9 mm, and (d) 11 mm. The wavelength of light is 639 nm.

Figure 1.40 Spatial distribution of V component of the Stokes vector on the surface of
scattering medium, obtained for circularly polarized light [1,0,0,1] of a wavelength of 639 nm
incident to the surface of the medium at point (0,0) with the angle of 45 deg. The optical
properties of scattering media are, respectively, presented in Table 1.1. (See color plates.)
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occur at a complex range of scattering angles. The obtained results give a
strong suggestion that changes in nuclear size in cells can be characterised by
this technique. This provides a good foundation for further work implement-
ing the noninvasive circularly/elliptically polarized light based diagnostic
approach for early disease detection, as many forms of cancerous growths
alter properties such as anisotropy and density of scattering sites.

Following the results discussed earlier, Fig. 1.41 illustrates the changes of
SOP of light scattered during the tissue optical clearing by using water
solutions of glycerol. As one can see in the first measurement, the initial right-
handed elliptical polarization state gradually narrows and approaches linear
polarization along the x axis. It is clearly seen that the incident right circularly
polarized light retains its helicity over the measured time. Within the first
20 min, the SOP of the back-scattered light changed more rapidly than at later
time intervals. Up to 30 min, the SOP decreases (see Fig. 1.41).

It has long been speculated that altered nuclear size and shape are
representative of various underlying causes of altered nuclear morphology
that occur during cancer onset. This altered nuclear morphology is thought to
reflect primary changes in chromosome organization, which in turn can affect
gene expression,430 although the exact relationship between these parameters
has still not been defined. It has also been proposed that the altered nuclear
shape in cancer cells facilitates the formation of metastases because of
reduced nuclear stiffness, which could increase the ability of transformed
cells to penetrate tissue.431 Consistent with these ideas is the notion that
certain (as yet unidentified) factors in cells regulate or limit nuclear expansion.

Figure 1.41 The position of the Stokes vector on the Poincaré sphere for right-handed
circularly/elliptically polarized light scattered at in vitro tissue optical clearing by topical
application of water solution of glycerol: (a) chicken skin sample and (b) bovine tendon sample.
The SOP was recorded every 10 min during a time period of 100 and 90 min, respectively.
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For example, several studies suggest that nuclear size is determined by cyto-
plasmic volume,432 and it is well documented that the nuclear to cytoplasmic
ratio decreases in cells as they move from being stem cells to being terminally
differentiated.431

Abnormalities induced in tissues by cancerous changes include an
increased nucleus-to-cytoplasm ratio and an overall increase in the volume
density of cells.433,434 These two effects, as shown with the phantom studies
discussed above and confirmed by the results of theoretical studies,435–437

impact greatly on the SOP of light propagated through the tissue. An increase
in nuclear size leads to a higher forward scattering of light (Fig. 1.42).

Therefore, if the SOP of the scattered light is closer to the state of incident
right circularly polarized light, i.e., to the north pole on the Poincaré sphere,
then the tissue sample is either neoplastic potentially malignant or neoplastic
malignant. If the state of polarization of the scattered light is close to the
equator of the Poincaré sphere then the tissue sample is normal. The results of
feasibility studies439 show that the current approach can discriminate between
cancerous and noncancerous tissue by mapping the Stokes vector of back-
scattered light on a Poincaré sphere (see Fig. 1.43).

Multiple measurements were performed in a scanning approach on a
human lung metastasis of thymic carcinoma embedded in paraffin wax.367

The samples had a variety of tissue structures present, including both healthy
and cancerous tissue. A pathologist reviewed the tissue prior to taking
measurements, and the region of the cancer tissue was outlined on a 5-mm
tissue section via histological haematoxylin and eosin staining and light
microscopy.

Figure 1.44 is shown the averaged polarization states of detected light
scattered from healthy and cancerous tissues complete with standard

Figure 1.42 The SOP of the right-handed elliptically polarized light scattered from healthy
(green) and cancerous (red) sites of kidney tissue.438 (See color plates.)
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Figure 1.43 Position of the Stokes vector on the Poincaré sphere (right) correlates with
the successive grades of colorectal cancer (normal colon, green; grade 2, yellow;
grade 3, red) confirmed by microscopy (left three panels: normal colon, bottom; grade 2,
middle; grade 3, top). (See color plates.)

Figure 1.44 Lung tissue embedded in paraffin wax (left) shows the boundary between
healthy lung and tumor tissue (red line) marked based on histological examination.
Microscopy images of hematoxylin and eosin stained 5-mm tissue sections are shown in the
colored squares, and their position on the block is marked by the corresponding squares.
The Poincaré sphere (right) shows the mean Stokes vector of REP light back-scattered from
the region of healthy lung tissue (green), tumor-generated fibrous tissue (blue) and the tumor
cellular component (red); dots with error bars represent a single measurement, and the
larger circles represent the mean SOP. d = 1.5 mm, and u = 30 deg. (See color plates.)
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deviation. With right-handed elliptically polarized incident light, we can see
on the figure that the ellipticity (latitude on the sphere) is much higher for the
cancerous tissue. This is expected to be a result of the increased average size of
lung cell nuclei (as can be seen in the corresponding microscope images). This
leads to higher anisotropy and an increase in successive forward-scattering
events contributing to the signal where co-polarized helicity has a stronger
influence.

Thus, it has been shown that back-scattered circularly polarized light is
highly sensitive to the presence of cells with enhanced plasticity. It has been
found that the magnitude of the alterations defined by the Stokes vector on
the Poincaré sphere is proportional to the grade of cancer. These results
demonstrate a robust, sensitive, and unbiased method for identifying
enhanced plasticity in tissues in real time before metastasis. In the bigger
picture, this approach has the strong potential to revolutionize the current
practice of cancer screening in living tissues to ensure the well-being of
patients in the near future.

1.12 Summary

In this chapter, the basic theoretical approaches and methods that are widely
used for calculations of angular distribution and total extinction of light
scattered and absorbed by small particles or particle aggregates are discussed.
At present there are a number of web sites with public domain computer codes
that maintain up-to-date theoretical approaches that can be easily imple-
mented for biomedical applications (see, e.g., Ref. 96). In the first part of the
chapter, the direct and inverse spectroturbidimetric problems of disperse
systems with random and ordered particle orientations have been considered
in detail. We have shown how to estimate the average size, shape, and index of
refraction of cells using the extinction (integral light scattering) spectra
recorded at various orientations of a light beam with respect to an external
orienting field.

In the second part of the chapter, it was shown that the model of discrete
scatterers explains many experimental optical properties of various tissues,
primarily the spectral dependences of light scattering and transmittance. It
should be emphasized that a simple model of single light scattering by
independent particles fails at theoretical simulation of optical properties of
real tissues in situ, except in the case of specially prepared samples. For
example, the high transparency of structurally nonhomogeneous tissues of the
eye can be explained only by the concept of dependent light scattering from
spatially ordered discrete scatterers. Accounting for the optical softness of
structural elements of the majority of tissues, an adequate description of
experimental data, including polarization and angular characteristics, can be
achieved by using approximate variants of the multiple-wave scattering
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theory. A prospective method for controlling of tissue optical properties is
discussed. It was demonstrated in in vitro and in vivo studies that an effective
reduction of tissue scattering could be achieved by a refractive index matching
using tissue and blood immersion by OCA.

The experimental angular dependences of an LSM, i.e., a combination of
angular and polarization light scattering characteristics, creates an informa-
tive basis for solving inverse problems that are important for noninvasive
optical tissue diagnostics. The actual number of examples of successful
application of optical polarization techniques in tissue optics is growing,
because the capabilities of this approach are rather promising, especially at
using the Poincaré sphere concept for fast recognition of pathology grade.
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