Igor Andriyash

Igor Andriyash
École Polytechnique · Laboratoire d'Optique Appliquée (LOA)

PhD

About

84
Publications
13,102
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
928
Citations
Additional affiliations
October 2015 - present
SOLEIL synchrotron
Position
  • PostDoc Position
December 2012 - October 2015
MINES ParisTech
Position
  • PostDoc Position
December 2009 - December 2012
Université Bordeaux 1
Position
  • PostDoc Position
Education
May 2006 - November 2009
Lebedev Physical Institute of the Russian Academy of Sciences
Field of study
  • Plasma Physics
September 2000 - February 2006

Publications

Publications (84)
Article
Full-text available
Laser-plasma accelerators (LPAs) produce electric fields of the order of 100 GV m−1, more than 1000 times larger than those produced by radio-frequency accelerators. These uniquely strong fields make LPAs a promising path to generate electron beams beyond the TeV, an important goal in high-energy physics. Yet, large electric fields are of little be...
Preprint
Full-text available
In laser-wakefield acceleration, an ultra-intense laser pulse is focused into an underdense plasma in order to accelerate electrons to relativistic velocities. In most cases, the pulses consist of multiple optical cycles and the interaction is well described in the framework of the ponderomotive force where only the envelope of the laser has to be...
Article
Full-text available
The interaction of ultraintense laser pulses with an underdense plasma is used in laser-plasma acceleration to create compact sources of ultrashort pulses of relativistic electrons and x rays. The accelerating structure is a plasma wave, or wakefield, that is excited by the laser ponderomotive force, a force that is usually assumed to depend solely...
Article
An axiparabola is a reflective aspherical optics that focuses a light beam into an extended focal line. The light intensity and group velocity profiles along the focus are adjustable through the proper design. The on-axis light velocity can be controlled, for instance, by adding spatio-temporal couplings via chromatic optics on the incoming beam. The...
Preprint
Full-text available
Proton beams with up to 100 pC bunch charge, 0.48 MeV cut-off energy and divergence as low as a $3^{\circ}$ were generated from solid targets at kHz repetition rate by a few-mJ femtosecond laser under controlled plasma conditions. The beam spatial profile was measured using a small aperture scanning time-of-flight detector. Detailed parametric stud...
Article
In a dense gas plasma a short laser pulse propagates in a relativistic self-trapping mode, which enables the effective conversion of laser energy to the accelerated electrons. This regime sustains effective loading which maximizes the total charge of the accelerating electrons, that provides a large amount of betatron radiation. The three-dimension...
Article
Full-text available
Accelerating particles to high energies in plasma wakefields is considered to be a promising technique with good energy efficiency and high gradient. While important progress has been made in plasma-based electron acceleration, positron acceleration in plasma has been scarcely studied and a fully self-consistent and optimal scenario has not yet bee...
Article
The fourth generation of synchrotron radiation sources, commonly referred to as the Free Electron Laser (FEL), provides an intense source of brilliant X-ray beams enabling the investigation of matter at the atomic scale with unprecedented time resolution. These sources require the use of conventional linear accelerators providing high electron beam...
Preprint
Full-text available
Laser-plasma accelerators produce electric fields of the order of 100 GV/m, more than 1000 times larger than radio-frequency accelerators. Thanks to this unique field strength, they appear as a promising path to generate electron beams beyond the TeV, for high-energy physics. Yet, large electric fields are of little benefit if they are not maintain...
Article
Shocks in supersonic flows offer both high density and sharp density gradients that are used, for instance, for gradient injection in laser-plasma accelerators. We report on a parametric study of oblique shocks created by inserting a straight axisymmetric section at the end of a supersonic “de Laval” nozzle. The effect of different parameters, such...
Preprint
Full-text available
Accelerating particles to high energies in plasma wakefields is considered to be a promising technique with good energy efficiency and high gradient. While important progress has been made in plasma-based electron acceleration, positron acceleration in plasma has been scarcely studied and a fully self-consistent and optimal scenario has not yet bee...
Preprint
Full-text available
An electron or electron-positron beam streaming through a plasma is notoriously prone to micro-instabilities. For a dilute ultrarelativistic infinite beam, the dominant instability is a mixed mode between longitudinal two-stream and transverse filamentation modes, with a phase velocity oblique to the beam velocity. A spatiotemporal theory describin...
Preprint
Axiparabolas are reflective aspherical optics that produce extended focal line, with adjustable intensity and group velocity profiles along the optical axis. The on-axis light velocity can be controlled by adding spatio-temporal couplings via chromatic optics. Therefore, propagation of the central spot can be made subluminal or superluminal, and ca...
Preprint
Full-text available
In a dense gas plasma a short laser pulse propagates in relativistic self-trapping mode, which enables effective conversion of laser energy to the accelerated electrons. This regime sustains effective loading which maximizes the total charge of the accelerating electrons, that provides a large amount of betatron radiation. The 3D particle-in-cell s...
Preprint
Full-text available
The interaction of ultra-intense laser pulses with an underdense plasma is used in laser-plasma acceleration to create compact sources of ultrashort pulses of relativistic electrons and X-rays. The accelerating structure is a plasma wave, or wakefield, that is excited by the laser ponderomotive force, a force that is usually assumed to depend solel...
Article
Driving laser wakefield acceleration with extremely short, near single-cycle laser pulses is crucial to the realization of an electron source that can operate at kHz-repetition rate while relying on modest laser energy. It is also interesting from a fundamental point of view, as the ponderomotive approximation is no longer valid for such short puls...
Preprint
Shocks in supersonic flows offer both a high-density and sharp density gradients that can be used, for instance,for gradient injection in laser-plasma accelerators. We report on a parametric study of oblique shocks created by inserting a straight axisymmetric section at the end of a supersonic "de Laval" nozzle. The impact of different parameters s...
Article
Laser–plasma acceleration at kilohertz repetition rates has recently been shown to work in two different regimes with pulse lengths of either 30 fs or 3.5 fs. We now report on a systematic study in which a large range of pulse durations and plasma densities were investigated through continuous tuning of the laser spectral bandwidth. Indeed, two las...
Conference Paper
We report the first simultaneous measurements of high-harmonic generation, accelerated electron and proton beams generated on relativistic plasma mirrors with controlled scale length using laser pulses with duration tunable from 27 fs to sub-4 fs.
Preprint
Laser plasma acceleration at kilohertz repetition rate has recently been shown to work in two different regimes, with pulse lengths of either 30 fs or 3.5 fs. We now report on a systematic study in which a large range of pulse durations and plasma densities were investigated through continuous tuning of the laser spectral bandwidth. Indeed, two LPA...
Article
Full-text available
This report presents the conceptual design of a new European research infrastructure EuPRAXIA. The concept has been established over the last four years in a unique collaboration of 41 laboratories within a Horizon 2020 design study funded by the European Union. EuPRAXIA is the first European project that develops a dedicated particle accelerator r...
Article
This report presents the conceptual design of a new European research infrastructure EuPRAXIA. The concept has been established over the last four years in a unique collaboration of 41 laboratories within a Horizon 2020 design study funded by the European Union. EuPRAXIA is the first European project that develops a dedicated particle accelerator r...
Article
Figure 20.1 was not correct in the published article. The original article has been corrected. The published apologizes for the inconvenience.
Article
Full-text available
Laser-plasma proton acceleration was investigated in the target normal sheath acceleration regime with a target composed of a gas layer and a thin foil. The laser’s shape, duration, energy and frequency are modified as it propagates in the gas, altering the laser-solid interaction leading to proton acceleration. The modified properties of the laser...
Article
Full-text available
We report on the stable and continuous operation of a kilohertz laser-plasma accelerator. Electron bunches with 2.6 pC charge and 2.5 MeV peak energy were generated via injection and trapping in a downward plasma density ramp. This density transition was produced in a specially designed asymmetrically shocked gas jet. The reproducibility of the ele...
Article
Acceleration of ultrathin foils by the laser radiation pressure promises a compact alternative to the conventional ion sources. Among the challenges on the way to practical realization, one fundamental is a strong transverse plasma instability, which develops density perturbations and breaks the acceleration. In this Letter, we develop a theoretica...
Preprint
Laser-plasma proton acceleration was investigated in the Target Normal Sheath Acceleration (TNSA) regime using a novel gas-foil target. The target is designed for reaching higher laser intensity at the foil plane owing to relativistic self-focusing and self compression of the pulse in the gas layer. Numerical 3D particle-in-cell (PIC) simulations w...
Article
Full-text available
The Free Electron Laser (FEL) application of Laser Plasma Acceleration (LPA) requires the handling of the energy spread and divergence. The COXINEL manipulation line, designed and built at SOLEIL for this purpose, consists of high gradient quadrupoles for divergence handling and a decompression chicane for energy sorting, enabling FEL amplification...
Preprint
Full-text available
Driving laser wakefield acceleration with extremely short, near single-cycle laser pulses is crucial to the realisation of an electron source that can operate at kHz-repetition rate while relying on modest laser energy. It is also interesting from a fundamental point of view, as the ponderomotive approximation is no longer valid for such short puls...
Article
Full-text available
Ultra-intense lasers produce and manipulate plasmas, allowing to locally generate extremely high static and electromagnetic fields. This study presents a concept of an ultra-intense optical tweezer, where two counter-propagating circularly polarized intense lasers of different frequencies collide on a nano-foil. Interfering inside the foil, lasers...
Article
Laser-plasma accelerators (LPA) deliver relativistic electron beams with high peak current and low emittance, with energies up to the GeV-level in only few centimetres. However, the divergence and the energy spread of these beams remain too large for potential light source applications. A magnetic transfer line can be used to manipulate the electro...
Article
Full-text available
Betatron x-ray sources from laser-plasma accelerators reproduce the principle of a synchrotron at the millimeter scale. They combine compactness, femtosecond pulse duration, broadband spectrum, and micron source size. However, when produced with terawatt class femtosecond lasers, their energy and flux are not sufficient to compete with synchrotron...
Article
Full-text available
Undulator based synchrotron light sources and Free Electron Lasers (FELs) are valuable modern probes of matter with high temporal and spatial resolution. Laser Plasma Accelerators (LPAs), delivering GeV electron beams in few centimeters, are good candidates for future compact light sources. However the barriers set by the large energy spread, diver...
Article
Full-text available
The Horizon 2020 project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction si...
Conference Paper
Full-text available
Plasma accelerators present one of the most suitable candidates for the development of more compact particle acceleration technologies, yet they still lag behind radiofrequency (RF)-based devices when it comes to beam quality, control, stability and power efficiency. The Horizon 2020-funded project EuPRAXIA (“European Plasma Research Accelerator wi...
Preprint
Full-text available
Betatron x-ray sources from laser-plasma accelerators combine compactness, high peak brightness, femtosecond pulse duration and broadband spectrum. However, when produced with Terawatt class lasers, their energy was so far restricted to a few kilo-electronvolt (keV), limiting the range of possible applications. Here we present a simple method to in...
Preprint
Acceleration of ultrathin plasma foils by laser radiation pressure promises compact alternatives to the conventional ion accelerators. It was shown, that a major showstopper for such schemes is a strong transverse instability, which develops the surface ripples, and is often attributed to the Rayleigh-Taylor (RT) type. However, simulations indicate...
Article
Full-text available
A new scheme for a laser-driven proton accelerator based on a sharply tailored near-critical-density plasma target is proposed. The designed plasma profile allows for the laser channeling of the dense plasma, which triggers a two-stage acceleration of protons—first accelerated by the laser acting as a snowplow in plasma, and then by the collisionle...
Conference Paper
Since the laser invention [1, 2], the advent of Free Electron Lasers (FEL) [3, 4] in the X-ray domain half a century later, has opened new areas for matter investigation with higher temporal resolution. In parallel, the development of laser plasma acceleration (LPA) [5] that delivers today several GeV beam acceleration [6] in a short distance appea...
Article
Full-text available
Laser plasma accelerators (LPA) can sustain GeV/m accelerating fields offering outstanding new possibilities for compact applications. The LPA beam brightness can now be comparable to radio-frequency accelerators (RFA), thanks essentially to the beams short duration (<3fs) and low emittance (as small as 0.1 micron). Still, the mrad level divergence...
Preprint
Full-text available
A new scheme of proton acceleration from a laser-driven near-critical-density plasma is proposed. Plasma with a tailored density profile allows a two-stage acceleration of protons. The protons are pre-accelerated in the laser-driven wakefields, and are then further accelerated by the collisionless shock, launched from the rear side of the plasma. T...
Article
Full-text available
The energy spread in laser wakefield accelerators is primarily limited by the energy chirp introduced during the injection and acceleration processes. Here, we propose the use of longitudinal density tailoring to reduce the beam chirp at the end of the accelerator. Experimental data sustained by quasi-3D particle-in-cell simulations show that broad...
Preprint
Full-text available
Laser Plasma Accelerators (LPA) can sustain GeV/m accelerating fields offering outstanding new possibilities for compact applications. Despite the impressive recent developments, the LPA beam quality is still significantly lower than in the conventional radio-frequency accelerators, which is an issue in the cases of demanding applications such as F...
Preprint
Full-text available
The energy spread in laser-wakefield accelerators is primarily limited by the energy-chirp introduced during the injection and acceleration processes. Here we propose and demonstrate the use of longitudinal density tailoring to adapt the accelerating fields and reduce the chirp at the end of the accelerator. Experimental data supported by 3D PIC si...
Conference Paper
Full-text available
The ERC Advanced Grant COXINEL aims at demonstrating free electron laser (FEL) at 200 nm, based on a laser-plasma accelerator (LPA). To achieve the FEL amplification a transport line was designed to manipulate the beam properties. The 10-m long COXINEL line comprises a first triplet of permanent-magnet variable-strength quadrupoles (QUAPEVA), which...
Article
Full-text available
The original version of this Article contained an error in the last sentence of the first paragraph of the Introduction and incorrectly read 'A proper electron beam control is one of the main challenges towards the Graal of developing a compact alternative of X-ray free-electron lasers by coupling LWFA gigaelectron-volts per centimetre acceleration...
Article
Full-text available
With gigaelectron-volts per centimetre energy gains and femtosecond electron beams, laser wakefield acceleration (LWFA) is a promising candidate for applications, such as ultrafast electron diffraction, multistaged colliders and radiation sources (betatron, compton, undulator, free electron laser). However, for some of these applications, the beam...
Article
Full-text available
Recent progress in laser-driven plasma acceleration now enables the acceleration of electrons to several gigaelectronvolts. Taking advantage of these novel accelerators, ultra-short, compact and spatially coherent X-ray sources called betatron radiation have been developed and applied to high-resolution imaging. However, the scope of the betatron s...
Article
Full-text available
The Horizon 2020 Project EuPRAXIA ("European Plasma Research Accelerator with eXcellence In Applications") is preparing a conceptual design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plas...
Article
The advent of X-ray Free Electron Lasers (FEL), unique powerful tuneable, short pulse lasers in the X-ray light source landscape enables new matter investigations. Besides, Laser Plasma Acceleration (LPA) had made these last decades significant progress and enabled the acceleration of electrons with GeV/mm. The achieved electron beam performance st...
Conference Paper
Full-text available
COXINEL (COherent Xray source INferred from Electrons accelerated by Laser) is a European Research Council (ERC) advanced grant aiming at the demonstration of Free Electron Laser amplification using electrons generated by laser plasma acceleration. A special electron beam transfer line with adequate diagnostics has been designed for this project. S...
Article
The laser–plasma accelerator (LPA) presently provides electron beams with a typical current of a few kA, a bunch length of a few fs, energy in the few hundred MeV to several GeV range, a divergence of typically 1 mrad, an energy spread of the order of 1%, and a normalized emittance of the order of π.mm.mrad. One of the first applications could be t...
Article
Full-text available
A new spectral particle-in-cell (PIC) method for plasma modeling is presented and discussed. In the proposed scheme, the Fourier-Bessel transform is used to translate the Maxwell equations to the quasi-cylindrical spectral domain. In this domain, the equations are solved analytically in time, and the spatial derivatives are approximated with high a...
Article
Full-text available
All-optical Compton sources are innovative, compact devices to produce high energy femtosecond X-rays. Here we present results on a single-pulse scheme that uses a plasma mirror to reflect the drive beam of a laser plasma accelerator and to make it collide with the highly-relativistic electrons in its wake. The accelerator is operated in the self-i...
Article
We propose a spectral Particle-In-Cell (PIC) algorithm that is based on the combination of a Hankel transform and a Fourier transform. For physical problems that have close-to-cylindrical symmetry, this algorithm can be much faster than full 3D PIC algorithms. In addition, unlike standard finite-difference PIC codes, the proposed algorithm is free...
Article
Full-text available
The scheme of the XUV/X-ray free electron laser based on the optical undulator created by two overlapped transverse laser beams is analyzed. A kinetic theoretical description and an ad hoc numerical model are developed to account for the finite energy spread, angular divergence and the spectral properties of the electron beam in the optical lattice...
Conference Paper
Full-text available
One direction towards compact Free Electron Laser is to replace the conventional linac by a laser plasma driven beam, provided proper electron beam manipulation to handle the large values of the energy spread and of the divergence. Applying seeding techniques enable also to reduce the required undulator length. The rapidly developing LWFA are alrea...