Ignazio Gallo

Ignazio Gallo
University of Insubria | UNINSUBRIA · Department of Theoretical and Applied Sciences

Master degree in Computer Science

About

159
Publications
52,488
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,578
Citations
Additional affiliations
January 2003 - present
University of Insubria
Position
  • Professor (Assistant)
January 2004 - present
University of Insubria
January 1998 - December 2003
Italian National Research Council
Position
  • CNR

Publications

Publications (159)
Preprint
Full-text available
Recent studies have shown that Convolutional Neural Networks (CNNs) achieve impressive results in crop segmentation of Satellite Image Time Series (SITS). However, the emergence of transformer networks in various vision tasks raises the question of whether they can outperform CNNs in this task as well. This paper presents a revised version of the T...
Article
Full-text available
Artificial Intelligence is revolutionizing industries by enhancing efficiency through real-time Object Detection (OD) applications. Utilizing advanced computer vision techniques, OD systems automate processes, analyze complex visual data, and facilitate data-driven decisions, thus increasing productivity. Domain Adaptation for OD has recently gaine...
Conference Paper
Full-text available
Recent studies have shown that Convolutional Neural Networks (CNNs) achieve impressive results in crop segmentation of Satellite Image Time Series (SITS). However, the emergence of transformer networks in various vision tasks raises the question of whether they can outperform CNNs in this task as well. This paper presents a revised version of the T...
Article
Full-text available
The new generation of available (i.e., PRISMA, ENMAP, DESIS) and future (i.e., ESA-CHIME, NASA-SBG) spaceborne hyperspectral missions provide unprecedented data for environmental and agricultural monitoring, such as crop trait assessment. This paper focuses on retrieving two crop traits, specifically Chlorophyll and Nitrogen content at the canopy l...
Article
Full-text available
The impact crater detection offers a great scientific contribution in analyzing the geological processes, morphologies and physical properties of the celestial bodies and plays a crucial role in potential future landing sites. The huge amount of craters requires automated detection algorithms, and considering the low spatial resolution provided by...
Article
Full-text available
Weeds are a crucial threat to agriculture, and in order to preserve crop productivity, spreading agrochemicals is a common practice with a potential negative impact on the environment. Methods that can support intelligent application are needed. Therefore, identification and mapping is a critical step in performing site-specific weed management. Un...
Article
An accurate, frequently updated, automatic and reproducible mapping procedure to identify seasonal cultivated crops is a prerequisite for many crop monitoring activities. Deep learning was demonstrated to be an effective mapping approach already successfully applied to decametric resolution satellite images (like Sentinel-2 data) to produce yearly...
Article
Full-text available
In computer vision, stereoscopy allows the three-dimensional reconstruction of a scene using two 2D images taken from two slightly different points of view, to extract spatial information on the depth of the scene in the form of a map of disparities. In stereophotogrammetry, the disparity map is essential in extracting the digital terrain model (DT...
Article
Full-text available
In space science and satellite imagery, better resolution of the data information obtained makes images clearer and interpretation more accurate. However, the huge data volume gained by the complex on-board satellite instruments becomes a problem that needs to be managed carefully. To reduce the data volume to be stored and transmitted on-ground, t...
Article
Full-text available
Text summarization aims to produce a short summary containing relevant parts from a given text. Due to the lack of data for abstractive summarization on low-resource languages such as Italian, we propose two new original datasets collected from two Italian news websites with multi-sentence summaries and corresponding articles, and from a dataset ob...
Article
Full-text available
Most existing food-related research efforts focus on recipe retrieval, user preference-based food recommendation, kitchen assistance, or nutritional and caloric estimation of dishes, ignoring personalized and conscious food recommendations resources of the planet. Therefore, in this work, we present a personalized food recommendation scheme, mappin...
Article
Full-text available
Nowadays, the transfer learning technique can be successfully applied in the deep learning field through techniques that fine-tune the CNN’s starting point so it may learn over a huge dataset such as ImageNet and continue to learn on a fixed dataset to achieve better performance. In this paper, we designed a transfer learning methodology that combi...
Article
We present a novel model called One Class Minimum Spanning Tree (OCmst) for novelty detection problem that uses a Convolutional Neural Network (CNN) as deep feature extractor and graph-based model based on Minimum Spanning Tree (MST). In a novelty detection scenario, the training data is no polluted by outliers (abnormal class) and the goal is to r...
Article
In neural networks, the loss function represents the core of the learning process that leads the optimizer to an approximation of the optimal convergence error. Convolutional neural networks (CNN) use the loss function as a supervisory signal to train a deep model and contribute significantly to achieving the state of the art in some fields of arti...
Chapter
Fine-Grained classification models can expressly focus on the relevant details useful to distinguish highly similar classes typically when the intra-class variance is high and the inter-class variance is low given a dataset. Most of these models use part annotations as bounding box, location part, text attributes to enhance the performance of class...
Chapter
In the last years, deep learning models have achieved remarkable generalization capability on computer vision tasks, obtaining excellent results in fine-grained classification problems. Sophisticated approaches based-on discriminative feature learning via patches have been proposed in the literature, boosting the model performances and achieving th...
Article
Full-text available
A large amount of research on Convolutional Neural Networks (CNN) has focused on flat Classification in the multi-class domain. In the real world, many problems are naturally expressed as hierarchical classification problems, in which the classes to be predicted are organized in a hierarchy of classes. In this paper, we propose a new architecture f...
Article
Full-text available
In this paper, we provide an innovative contribution in the research domain dedicated to crop mapping by exploiting the of Sentinel-2 satellite images time series, with the specific aim to extract information on “where and when” crops are grown. The final goal is to set up a workflow able to reliably identify (classify) the different crops that are...
Article
Full-text available
Optimization methods are of great importance for the efficient training of neural networks. There are many articles in the literature that propose particular variants of existing optimizers. In our article, we propose the use of the combination of two very different optimizers that, when used simultaneously, can exceed the performance of the single...
Conference Paper
Full-text available
Recent years have seen a surge in finding association between faces and voices within a cross-modal biometric application along with speaker recognition. Inspired from this, we introduce a challenging task in establishing association between faces and voices across multiple languages spoken by the same set of persons. The aim of this paper is to an...
Chapter
Full-text available
The question we answer with this paper is: ‘can we convert a text document into an image to take advantage of image neural models to classify text documents?’ To answer this question we present a novel text classification method that converts a document into an encoded image, using word embedding. The proposed approach computes the Word2Vec word em...
Preprint
Full-text available
Optimization methods (optimizers) get special attention for the efficient training of neural networks in the field of deep learning. In literature there are many papers that compare neural models trained with the use of different optimizers. Each paper demonstrates that for a particular problem an optimizer is better than the others but as the prob...
Preprint
Full-text available
In neural networks, the loss function represents the core of the learning process that leads the optimizer to an approximation of the optimal convergence error. Convolutional neural networks (CNN) use the loss function as a supervisory signal to train a deep model and contribute significantly to achieving the state of the art in some fields of arti...
Preprint
Full-text available
In neural networks, the loss function represents the core of the learning process that leads the optimizer to an approximation of the optimal convergence error. Convolutional neural networks (CNN) use the loss function as a supervisory signal to train a deep model and contribute significantly to achieving the state of the art in some fields of arti...
Preprint
Full-text available
A large amount of research on Convolutional Neural Networks has focused on flat Classification in the multi-class domain. In the real world, many problems are naturally expressed as problems of hierarchical classification, in which the classes to be predicted are organized in a hierarchy of classes. In this paper, we propose a new architecture for...
Preprint
Full-text available
The transfer learning technique is widely used to learning in one context and applying it to another, i.e. the capacity to apply acquired knowledge and skills to new situations. But is it possible to transfer the learning from a deep neural network to a weaker neural network? Is it possible to improve the performance of a weak neural network using...
Preprint
Full-text available
Recent years have seen a surge in finding association between faces and voices within a cross-modal biometric application along with speaker recognition. Inspired from this, we introduce a challenging task in establishing association between faces and voices across multiple languages spoken by the same set of persons. The aim of this paper is to an...
Preprint
Full-text available
A typical issue in Pattern Recognition is the non-uniformly sampled data, which modifies the general performance and capability of machine learning algorithms to make accurate predictions. Generally, the data is considered non-uniformly sampled when in a specific area of data space, they are not enough, leading us to misclassification problems. Thi...
Preprint
Full-text available
We present a novel model called One Class Minimum Spanning Tree (OCmst) for novelty detection problem that uses a Convolutional Neural Network (CNN) as deep feature extractor and graph-based model based on Minimum Spanning Tree (MST). In a novelty detection scenario, the training data is no polluted by outliers (abnormal class) and the goal is to r...
Conference Paper
Full-text available
Current cross modal retrieval systems are evaluated using R@K measure which does not leverage semantic relationships rather strictly follows the manually marked image text query pairs. Therefore, current systems do not generalize well for the unseen data in the wild. To handle this, we propose a new measure SemanticMap to evaluate the performance o...
Preprint
Full-text available
We propose a novel deep training algorithm for joint representation of audio and visual information which consists of a single stream network (SSNet) coupled with a novel loss function to learn a shared deep latent space representation of multimodal information. The proposed framework characterizes the shared latent space by leveraging the class ce...
Preprint
Full-text available
In this paper, we propose a design methodology for one-class classifiers using an ensemble-of-classifiers approach. The objective is to select the best structures created during the training phase using an ensemble of spanning trees. It takes the best classifier, partitioning the area near a pattern into $\gamma^{\gamma-2}$ sub-spaces and combining...
Preprint
Full-text available
Visualization refers to our ability to create an image in our head based on the text we read or the words we hear. It is one of the many skills that makes reading comprehension possible. Convolutional Neural Networks (CNN) are an excellent tool for recognizing and classifying text documents. In addition, it can generate images conditioned on natura...
Preprint
Full-text available
Current cross-modal retrieval systems are evaluated using R@K measure which does not leverage semantic relationships rather strictly follows the manually marked image text query pairs. Therefore, current systems do not generalize well for the unseen data in the wild. To handle this, we propose a new measure, SemanticMap, to evaluate the performance...
Chapter
Full-text available
One-class classifiers are trained only with target class samples. Intuitively, their conservative modeling of the class description may benefit classical classification tasks where classes are difficult to separate due to overlapping and data imbalance. In this work, three methods leveraging on the combination of one-class classifiers based on non-...
Preprint
Full-text available
One-class classifiers are trained with target class only samples. Intuitively, their conservative modelling of the class description may benefit classical classification tasks where classes are difficult to separate due to overlapping and data imbalance. In this work, three methods are proposed which leverage on the combination of one-class classif...
Preprint
Full-text available
With massive explosion of social media such as Twitter and Instagram, people daily share billions of multimedia posts, containing images and text. Typically, text in these posts is short, informal and noisy, leading to ambiguities which can be resolved using images. In this paper we explore text-centric Named Entity Recognition task on these multim...
Conference Paper
Multi-modal approaches employ data from multiple input streams such as textual and visual domains. Deep neural networks have been successfully employed for these approaches. In this paper, we present a novel multi-modal approach that fuses images and text descriptions to improve multi-modal classification performance in real-world scenarios. The pr...
Poster
Full-text available
We propose a pipeline to improve face recognition systems. Our pipeline is capable of cleaning an existing face dataset to improve the recognition performance or creating one from scratch. We present detailed experiments to show characteristics and performance of the pipeline. In addition, a small-scale application for face recognition that makes u...
Article
Multi-modal strategies combine different input sources into a joint representation that provides enhanced information than the uni-modal. In this paper, we present a novel multi-modal approach which fues image and encoded text description to obtain an information enriched image. The approach casts encoded text obtained from Word2Vec word embedding...
Conference Paper
Full-text available
Face recognition has a wide practical applicability in very different contexts, for example, detecting students attending a lecture at university, identifying members in a gym or monitoring people in a airport. Recent methods based on Convolutional Neural Network (CNN), such as FaceNet, achieved state-of-the-art performance in face recognition. Ins...
Preprint
Full-text available
Majority of the current dimensionality reduction or retrieval techniques rely on embedding the learned feature representations onto a computable metric space. Once the learned features are mapped, a distance metric aids the bridging of gaps between similar instances. Since the scaled projection is not exploited in these methods, discriminative embe...
Preprint
Full-text available
Multi-modal approaches employ data from multiple input streams such as textual and visual domains. Deep neural networks have been successfully employed for these approaches. In this paper, we present a novel multi-modal approach that fuses images and text descriptions to improve multi-modal classification performance in real-world scenarios. The pr...
Conference Paper
Full-text available
Convolutional Neural Networks (CNNs) have been widely used in computer vision tasks, such as face recognition and verification, and have achieved state-of-the-art results due to their ability to capture discriminative deep features. Conventionally, CNNs have been trained with softmax as supervision signal to penalize the classification loss. In ord...
Preprint
Full-text available
The question we answer with this work is: can we convert a text document into an image to exploit best image classification models to classify documents? To answer this question we present a novel text classification method which converts a text document into an encoded image, using word embedding and capabilities of Convolutional Neural Networks (...
Preprint
Full-text available
Convolutional Neural Networks (CNNs) have been widely used in computer vision tasks, such as face recognition and verification, and have achieved state-of-the-art results due to their ability to capture discriminative deep features. Conventionally, CNNs have been trained with softmax as supervision signal to penalize the classification loss. In ord...
Preprint
Full-text available
This paper proposes a cross-modal retrieval system that leverages on image and text encoding. Most multimodal architectures employ separate networks for each modality to capture the semantic relationship between them. However, in our work image-text encoding can achieve comparable results in terms of cross-modal retrieval without having to use a se...
Conference Paper
Full-text available
Deep metric learning plays an important role in measuring similarity through distance metrics among arbitrary group of data. MNIST dataset is typically used to measure similarity however this dataset has few seemingly similar classes, making it less effective for deep metric learning methods. In this paper, we created a new handwritten dataset name...
Presentation
Full-text available
Oral presentation at The 14th IAPR International Conference on Document Analysis and Recognition Kyoto, Japan
Presentation
Full-text available
Oral presentation at The 14th IAPR International Conference on Document Analysis and Recognition Kyoto, Japan
Article
Full-text available
In recent years, many new and interesting models of successful online business have been developed, including competitive models such as auctions, where the product price tends to rise, and group-buying, where users cooperate obtaining a dynamic price that tends to go down. We propose the e-fair as a business model for social commerce, where both s...
Conference Paper
Full-text available
In this paper we propose a query suggestion method for price comparison search engines. Query suggestion techniques are used for generating alternative queries to facilitate web users in information seeking; in this specific domain, suggestions provided to web users need to be properly generated taking into account that the suggested products must...