CONTROL SYSTEM AND FAULT DETECTION ALGORITHM FOR A RESTORED TEETH FATIGUE ASSAY MACHINE

I. Peñarrocha, M. Orellana
ipenarro@esid.uji.es
Dept. d’Enginyeria de Sistemes Industrials i Disseny. Universitat Jaume I de Castelló, Spain
SUMMARY

- Introduction
- Machine requirements
- Machine and control system description
- Machine operation
- Fault detection algorithm
- Experimental results
- Conclusions
INTRODUCTION

- Necessities for dental restorations in Dentistry field
 - Optimal design of the restored teeth
 - Posts of different material and geometry
 - Tested with time-varying forces
 - Knowing which component fails first
MACHINE REQUIREMENTS

- Test different posts (material and geometry) of restored teeth
- Emulate the mastication forces
 - Application of time-varying forces
- Number of mastication cycles before the failure of the tooth
 - Fault detection
- Knowing which component fails first
 - Automatic stop of forces application
FATIGUE ASSAY MACHINE
DESCRIPTION
MACHINE OPERATION

- Force calibration:
 - Torque reference (u_k) vs. Measured force (F_k)
MACHINE OPERATION

- Specimen fatigue assay
 - From required force (F_k) to Torque reference (u_k)
 - Measured position (y_k) depends on the fault (f_k)
Model-based fault detection

- Noisy model: \(y_k = g(\{u_k\}) + f_k + v_k \)
- Prediction model: \(\hat{y}_k = \hat{g}(\{u_k\}) \)
- Prediction error: \(e_k = y_k - \hat{y}_k \)
- Expected (fault free) prediction error: \(e_k = g(\{u_k\}) - \hat{g}(\{u_k\}) + v_k \)
 - This error can be bounded during the identification process
 \[\| e_k \|_{RMS} \]
- Fault detection algorithm:
 - Failure occurs with probability of 99.74% if
 \[|e_k| > 3\| e_k \|_{RMS} \]
Identification of the prediction model:

- LTV model

\[\hat{y}_k = \hat{g}_k(\{u_k\}) = \hat{A}_k + \hat{B}_k \cdot u_{k-d} \]
FAULT DETECTION ALGORITHM

- Prediction error

![Graphs showing prediction error comparison for different frequencies](image-url)
FAULT DETECTION ALGORITHM

- FDA:
 - RLS
 \[\psi_k = [1, u_{k-28}]^T \]
 \[\gamma_k = \frac{P_k \psi_k}{\lambda + \psi_k^T P_k \psi_k} \]
 \[\hat{\theta}_k = \hat{\theta}_k + \gamma_k (y_k - \psi_k^T \hat{\theta}_k) \]
 \[\hat{\theta}_k = [\hat{A}_k, \hat{B}_k]^T \]
 \[P_k = \frac{1}{\lambda} (I - \gamma_k \psi_k^T) P_{k-1} \]
 \[\hat{y}_k = \psi_k^T \hat{\theta}_k \]
 \[e_k = y_k - \hat{y}_k \]

- Adaptive threshold
 \[\hat{\sigma}_k^2 = \beta \hat{\sigma}_{k-1}^2 + (1 - \beta) e_k^2 \]
 \[\hat{\sigma}_k \approx \|e_k\|_{RMS}^2 \]

\[\begin{cases}
 \text{If } |e_k| < p \cdot \hat{\sigma}_k & \text{No fault} \\
 \text{If } |e_k| \geq p \cdot \hat{\sigma}_k & \text{Fault}
\end{cases} \]
FAULT DETECTION ALGORITHM

- **Tuning process**
 - **Forgetting factor** λ
 - As big as possible to detect slow changes on the process
 - Big enough to avoid changes on the parameters due to faults
 - **Filter pole used to approximate** $\|e_k\|_{RMS}$ β :
 - Big enough to approximate properly
 - Small enough to initiate the application
 - **False alarm ratio related parameter** ρ:
 - Small enough to detect the faults as fast as possible
 - Big enough to avoid false alarms
EXPERIMENTAL RESULTS

- Prediction error and threshold

\begin{align*}
\text{time(s)} & = 0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 \\
\text{Prediction error and threshold} & \text{vs. time(s)} \\
\end{align*}
EXPERIMENTAL RESULTS

- Tooth failure
CONCLUSIONS

- Development of a fatigue assay machine for studying the dynamical behaviour of restored teeth
- The control system has been described
- The machine operation has been described
- The fault detection algorithm has been addressed
- The tuning process has been carried out
- Experimental results have been discussed
CONTROL SYSTEM AND FAULT DETECTION ALGORITHM FOR A RESTORED TEETH FATIGUE ASSAY MACHINE

I. Peñarrocha, M. Orellana
ipenarro@esid.uji.es
Dept. d’Enginyeria de Sistemes Industrials i Diseny.
Universitat Jaume I de Castelló, Spain