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Abstract In this paper, we propose a mathemati-
cal model on the oncolytic virotherapy incorporating
virus-specific cytotoxic T lymphocyte (CTL) response,
which contribute to killing infected tumor cells. In
order to improve the understanding of the dynamic
interactions between tumor cells and virus-specific
CTLs, stochastic differential equation models are con-
structed. We obtain sufficient conditions for existence,
persistence and extinction of the stochastic system. In
relation to the therapy control, we also analyze the
stochasticity role of equilibrium point stabilities. The
Monte Carlo algorithm is used to estimate the mean
extinction time and the extinction probability of cancer
cells or viruses-specific CTLs. Our simulations high-
lighted the switch of the system leaving the attrac-
tor basin of the three species co-existence equilibrium
toward that of cancer cell extinction or that of virus-
specific CTLs depletion. This allowed us to character-
ize the spaces of cancer control parameters. Finally, we

B. I. Camara (X))

Laboratoire Interdisciplinaire des Environnements
Continentaux, Université de Lorraine - CNRS UMR 7360,
Campus Bridoux - 8 Rue du Général Delestraint, 57070
Metz, France

e-mail: baba-issa.camara@univ-lorraine.fr

H. Mokrani
Loratoire de Mathématiques Raphaél Salem, Université de
Rouen, Rouen, France

A. Diouf - I. Sané - A.S. Diallo

Laboratoire de Mathématiques & Applications, Université
Assane Seck de Ziguinchor, Route de Diabir, BP 523,
Ziguinchor, Senegal

Published online: 19 January 2022

determine the model solution robustness by analyzing
the sensitivity of the model characteristic parameters.
Our results demonstrate the high dependence of the
virotherapy success or failure on the combination of
stochastic diffusion parameters with the maximum per
capita growth rate of uninfected tumor cells, the trans-
mission rate, the viral cytotoxicity and the strength of
the CTL response.

Keywords Cancer virus therapy - Sensitivity analysis -
Monte Carlo algorithm - Attractor basin switching

1 Introduction

The search for new effective treatments with fewer side
effects has led oncology to develop a targeted strat-
egy based on oncolytic virotherapy. In fact, oncolytic
viruses (OVs) represent a promising immunotherapeu-
tic approach for the treatment of cancer due to their abil-
ity to create a microenvironment favorable to the action
of the immune system against unique determinants of
cancer cells [20,43]. However, the antiviral immunity
elicited against the viral antigens of the resulting infec-
tion is considered to be detrimental to OVs as acti-
vation of the immune system against the virus itself is
expected to restrict viral replication and spread, leading
to decreased therapeutic efficacy [31,36]. It is impor-
tant for cancer control to find a balance between anti-
tumor and anti-viral immunity. So much effort has been
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devoted to mathematical studies on oncolytic virother-
apy [4,7,12,24,43].

Mathematical models formulated in terms of ordi-

nary differential equations (ODEs) have been proposed
by Wodarz [44,45] to understand spreading dynamics
of oncolytic viruses through tumors by including an
immune response to the virus. Komarova and Wodarz
[24] formulated a general computational framework
depending on types of virus spread slow and fast spread.
To understand how immune system reacts to the emer-
gence of tumors and their growth, Khajanchi et al. [21]
investigated a tumor—immune interaction model that
consists of three nonlinear differential equations with
a single time-delayed interaction.
In[7], Camaraet al. extended the work of Zurakowski et
al. [47] to study the consequences for the spatial struc-
ture of the tumor by analyzing a mathematical model
that describes interaction between two types of tumor
cells: the cells that are infected by the virus and the cells
that are not infected but are susceptible to the virus.

But the process of the onset and then development
of cancer is well known to be complex and stochastic
[3,5,38]. Indeed, the acquisition of mutation somatic
properties and metastatic capacity by cells involve
stochastic events [32,35]. Moreover, in real-life situ-
ations, cell population systems are always affected by
various sources of noise in which the functional roles
in biological processes can vary greatly [14,39]. Thus,
various mathematical models have been developed to
integrate this stochastic dimension of the appearance
and development of cancer cells [11,17,22,25,26].
Recently, Phan and Tian [33] proposed a stochas-
tic model to represent interaction among tumor cells,
infected tumor cells and oncolytic viruses. But in [33]
the infection term does not satisfy the assumption of
the fast virus spreading given in [24].

Therefore, there is a considerable need to under-
stand the cancer cell extinction dynamics induced by
oncolytic virus.

In the present article, we propose to examine the effects
of the stochastic process solution of the mathematical
model investigated by Choudhury and Nasipuri [8]. In
their paper [8], they presented an ordinary differential
equation to study the efficacy of cancer therapy using
oncolytic viruses in the presence of immune response.
The immune response triggered by the infection is a
complex set of pathways consisting of the innate and
the adaptive immune response. In our case, only do we
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focus on the clearing of infected cells by cytotoxic T
lymphocytes (CTLs).

To provide a quantitative study of the relapse or fail-
ure of cancer control, we analyze the persistence or
extinction conditions of the stochastic oncolytic virus
and cancer cell system. The stability analysis of our
stochastic model equilibria is also treated in terms of
the first- and second-order moments. The cancer cell
extinction or virus-specific CTL disappearance will be
studied by estimating the First Passage Time (FPT)
[9,16,37]. Therefore, we will use the Monte Carlo algo-
rithm to determine the mean extinction time and the
associate extinction probabilities in cases of oncolytic
therapy success or failure. Finally, we will determine
the model solution robustness by analyzing the sensitiv-
ity of the model characteristic parameters. We have also
characterized the spaces of the cancer control param-
eters taking into account the system stochasticity. The
sensitivity analysis results will allow us to correlate
the effects of the control parameter variations on the
values of the mean extinction times or the extinction
probabilities.

2 Mathematical model
2.1 Formulation of models

In this paper, a stochastic term is added to the ODE
model introduced by Choudhury and Nasipuri [8] in
the context of fast-spreading virus [24]. The determin-
istic part of which the stability study and the modeling
assumptions have been declined in [8] is described as
follows:

d—xzrx<l—x+y>—/3 -

dt k xX+y+a

dy Xy

— =8y — , (D
dr ’3x+y+a Yo P

dz_

dt—)’yZ qz

where x = x(t) stands for the uninfected tumor cell
population, y = y(¢) represents the infected tumor
cell population and z = z(¢) is the population of the
virus-specific CTLs, with initial populations x (0) > 0,
y(0) > 0 and z(0) > 0.

All parameters involved with model (1) are fixed pos-
itive constants, and their interpretations are presented
in Table 1.



tochastic model analysis of cancer oncolytic virus

Table 1 Parameter values used in the model simulations

Parameter Description Unit Source
r The intrinsic growth rate of uninfected tumor cells day~! [4]

k The maximum carrying capacity mm?3 [4]

B The viral replication rate mm > day~! [10]

o The viral spreading rate mm? [30]

8 The viral cytotoxicity day™! [10]

p Immune killing rate mm~3 day~! [42]

y The strength of virus-specific CTL response mm~3 day~! [42]

q The virus clearance rate day™! [42]

The tumor cells are assumed to grow logistically
with intrinsic growth rate r. The maximum size of
space which the tumor is allowed to occupy is given
by its carrying capacity k. The viruses spread to tumor
cells at a rate 8. The deaths of virus infected cells
occur at a rate 8y, § is called the viral cytotoxicity.
Infected cells are destroyed by the CTL response at a
rate pyz, corresponding to lytic effector mechanisms
of CTL response, where the coefficient p represents
the strength of the lytic component. In the absence of
antigenic stimulation [2], virus-specific CTLs decay at

ke —2g+ 7/t~ — 4k — )

_ (kFa)dr — (B—8)8k + VM
B 28r ’

E3,

_ (B=8)(kr+8k—Bk)—(B+8)ar+(B—3)v'M
N 2B8r ’

2
M= ((k Yoy — (B — S)k) + daBkr.

E3,

In the presence of the virus-specific CTL response,
they found a coexistence equilibrium with both infected
and uninfected cells E4 := (E4,, E4,, Eg4,),

E4, = 2y
q
E4, = —,
Py
2B — kg —r(q +ay)k +a) +r(g + ay)/(k — ) — 4k (& —a)
E4y =

2kpq

rate g. yyz describes the rate of immune response due
to virus activation, where y stands for the strength of
the CTL response.

In [8], the authors mainly focused on the total tumor
load by analyzing each equilibrium of model (1). In the
absence of the virus-specific CTL response, they found

e A trivial equilibrium state E£1 = (0, 0, 0),

e An equilibrium state corresponding to only healthy
tumor cells £y = (k, 0, 0),

e A coexistence equilibrium with both infected and
uninfected tumor cells E3 := (E3,, E3,, 0), with

To take into account the influence of environmental
fluctuations, the deterministic model system (1) can be
extended to a stochastic model system by introducing
multiplicative noise terms into the intrinsic growth rate
parameters for three populations. In this study, we have
chosen an It6 formulation of the stochastic model (2).
Thus, the resulting stochastic process has the very prac-
tical mathematical property of martingale. This math-
ematical property of martingale is very useful when
computing the conditional expectation of an It6 pro-
cess, or in general, for analyzing and proving theorems
on the It6 integral, [6].

The resulting stochastic model is as follows:
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dx (1)
_ IRIORSIONIEION 0
= [0 (12220 - e
+o1x(1) dB1 (1),
e xoyo
0 =[Fr e e~ YO - oz fa
+0o2y(1) dBa (1),

dz(t) = [ yy(02) = gz Jdr + 032(1) dBs (1),
@)

where 0; > 0, (i =1, 2, 3) are the intensities of envi-
ronmental driving forces, and B;(¢), (i = 1,2, 3) are
three standard one-dimensional independent Wiener
processes defined over the complete probability space
(2, F;, P) having a filtration Fy which satisfy the
usual condition (i.e., it is right continuous and F con-
tains all P-null sets) [29]. The solution of (2) subjected
to the positive initial condition is an Ito process.

2.2 Preliminaries

In this section, we introduce the following definitions
and lemmas as in [28,40], which will be used in the
following sections.

Definition 2.1 The system is said to be strongly per-
sistent in the mean if (x(¢)), > 0, where (x(1)), =
lim, % fé x(s)ds and (x(¢))* is defined by (x (£))*
= E,_)m % fot x(s)ds.

In aforementioned definition, (x(z)) stands for the
time average of x(f) and is defined by (x(¢)), :=
% fot x(s)ds

To prove the persistence of populations, we need the
following Lemma (2.1).

Lemma 2.1 Suppose that x(t) € C[Q % R+,R9r],
where R(-)k = {ala >0, a e R}

(i) If there exist positive constants u, T, and A > 0
such that

t n
Inx(t) < A — M/ x)ds + > BiBi(0)
0

i=1

fort > T, where B;’s are constants, 1 < i < n,
then {(x(1))* < %, a.s.
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(ii) If there exist positive constants v, T, and A > 0
such that

1 n
Inx(r) > At — u/ x(s)ds + Y BiBi(1)
0

i=1

fort > T, where B;’s are constants, | < i < n,
then (x(t))y > %, a.s.

The following lemma will be used to demonstrate the
solution existence.

Lemma 2.2 Consider one-dimensional stochastic dif-
ferential equation

dX(t) = X(*) [(e — BX (1))dt + odB(1)] 3)

where parameters o,  and o are positive, B(t) is a
standard Brown2ian motion.

Suppose o > %, and X (t) is the solution of equation
(3) with any initial value Xy > 0, then we have:

In X (¢
lim X0
tH——400 1
and

1 [t o—
lim -/ X(s)ds = 2
0 B

t—>—+o00 t
almost surely (a.s.).

Consider the following stochastic differential equation.

dX () = u(X (@), t)dt + o (X(t), t)dB(t) @)

Then, we have:

’ _fs 2/1(v)dv
Lemma 2.3 Let S(u) = [y e *° <> dr and assume

that X (t) is the solution of (4). If S(—00) > —o0 and
S(400) = +00, then

lim X (r) = —o0.
t——>+400

Lemma 2.4 Consider the system of stochastic differ-
ential equations (2). Given an arbitrarily large but
finite time T, there exists a constant C dependent only
on T and the initial data, such that the following esti-
mates hold uniformly fort < T

t
/ Efu?(s)]ds < 400 (5)
0
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Lemma 2.5 Let (B;),>, a Brownian motion, then we
have:

. t
Iim — =0as.
t—400

3 Main results

3.1 Existence and uniqueness of positive global
solution

As the coefficient of equations (2) does not satisfy the
local Lipschitz condition and linear growth condition,
the solution of the system (2) may explode at finite time.
So, we prove first the local existence of the positive
solution of system (2), and then global solution by using
the comparison theorem of stochastic equations.

Theorem 3.1 Given positive initial value (xo, Yo, 20),
system (2) has a unique positive global solution
(x(1), y(2),z(t)) ont = 0.

Proof Let us introduce new variables u(¢) = In(x(¢)),
v(t) = In(y(¢)) and w(t) = In(z(¢)) in the system
(2). By applying the It6’s formula [1], we obtain the
following system:

u(t) v(t)
duU)::[r(l——EAAAtf:47>dt
K
v(t) 2
—ﬂ@mf;mig——%idr+oﬂ3mﬂ,
eu(t) " o.2
_ s ® _ 72
dwn_[ﬁﬂM+www+a 5 — pe 2]m

+02d B (1),

0_2
dwO%:Dw“”—q—Ai}h+aﬁBﬂm
(6)

It is obvious that the coefficients of system (6) satisfy
the local Lipschitz condition, then there is a unique
local solution (u(7), v(z), w(r)) ont € [0, 7), T € RY,
with initial value up = Inx(0), vo = Iny(0) and
wo = In z(0) [28,46]. Thus, we conclude that (x(¢) =
"D y() = "D, z(t) = ¥ ") is the unique posi-
tive local solution of system (6) with positive initial
conditions.

Now, in order to show that the unique positive solution
is not only local solutions but also global solution, we
need to prove that T = oo.

Consider the following set of equations of stochastic
system

dXQO)::rXZO)(I—-XQO))dt%—alxga)dB10L
(7a)
dY2(1) =Y(t) (ﬂ—(S—ﬂ Yzm) dt++02Y2(1)dBa (1),
k4o
(7b)
4Z2() = Z20)(yV2(0) — g )dt + 032204 B3 ),
(7¢)

with positive initial conditions X»(0) = xp, Y2(0) =
Yo, Z2(0) = zo.

As x(t) and y(t) are always positive, we can write from
the first equation of model (6):

X0

dx(t) <rx(t) ( k

>m+am0M&0) (8)

By applying the comparison theorem of stochastic
differential equations, we obtain x(¢) < X,(¢), Vt €
[0, T), with

o2
[(V*T])Prm BI(’):|
e
Xo(1) =

172
|:(V_TI)S+UI B (S)}
d

1 r [t
wttle s

Let X (¢) be the solution of the following equation
r r
dX1(0) = Xi(0) (r = B = 2X1(0) = 2 X2(0)) dr

+o1X1(1)dB (1), X1(0) = xo. ©))

By (1)

s —
x(t) +y()+ o
equation of model (6):

< B, we can write from the first

dunzmoP—ﬁ—rin—inaﬂm

+o1x(1)dBy (1)

Therefore, we have x(t) > X;(t), Vt € [0, 1),
where

@ Springer
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e
X1(t) =

(72 t
|:(rﬂz|)t %/ Xo(s)ds + UlBl(f)}
0

2

o K

[< s L) ’"/SX< \im 4 onBis)|

| i | e=p——=)s — — 2(m)dm 1B1(s

Z/e 2 kJo ds
0

Thus, we obtain
X1(t) < x(t) < X2(1), ¥Vt € [0, 7). (10)

We are going now to construct an upper bound of the
dynamics of infected cancer cells y(t).
We have

o= (- )
o L X+y+a x+y+ao

— 8y — pyz]dt + o2 yd By (t)
ay =< [y (ﬂ . %) Jas

+ ooy (¢t)dBa(t). (11

By applying the comparison theorem of stochastic
differential equations, we obtain y(¢) < Y»(t), Vt €
[0, ), with

o2
|:(ﬂ* *72>1+0232(l)i|
e

- .

1 ! [(ﬂ—a—”i)ﬂr Bc)]

__|_ p e T et ds
k+ o

) =

As y(t) < Y»(t), we can deduce that
dz(1) < z(t) [y Y2(t) — q]dr + 032(1)dB3(r).  (12)

So, by applying again the comparison theorem of
stochastic differential equations, we obtain z(¢t) <
Z>(t), Vt € [0, t), with

t 02
y/ Y>(s)ds— <CI+73) t+03B3(t)
Z5(1) = zgek ° .

13)
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We are going now to construct a lower bound of the
infected cancer cell dynamics y(¢). We have

dy(r) = [ﬂy(t) (1 e ‘;’m —
—5y(t) — py(t)z(D)]dt + o2y (H)d By (1)

af By
2y |:'3 B x(t)+ax(t)+o 0= pZZ(t):| dr
+ o2y ()dBa(t). (14)

From the inequality (1 1) and using Lemma 2.1, we get

(v(1)* W%(k +a).
On the other hand, we have,
dx > [rx (1 — %) — —xy ,Bx] dt + o1xdBq(t)
2
()
dx > | rx (1—%) ——(kta)x—pBx | dt
+ o1xdB (1)
(r-r-3)
>x|r—p8-— 1P k+oa)——|dt
+ o1xdB (1)

By Lemma 2.1, from the previous inequality we deduce
this estimate of x (1)

o2
(X(t))s > Xinf, Where xjpp = |7 — B — 71
' (ﬁ o 672) k
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Using the inequality (15) below in inequality (14), we
obtain:

dyzy[p-s- o
Xinf + @  Xinf + o

+02yd B> (1)

— pZ2(t)] dt

Denote by Yi(#) the solution of the equation below,

with ¥1(0) = yo,

dy; = Y, |:/3_5_L
Xinf + o

BYi ]
— pZo(t) | dt + 02Y1dB3(¢)

Using similar arguments as earlier, we obtain z(f) >
Zi(1), Yt € [0, 7), with

2

t o3
Y Jo i()ds—| g+ 7
Z1(1) = zpe

Thus, we obtain

)I+U3B3([):|
. (18)

Z1(t) < z(t) < Zo(1), YVt € [0, 7). (19)

As the functions X, X7, Y1, Y2, Z; and Z;, are well
defined for all ¢ € [0, ), for an arbitrarily large mag-

Xinf o ) S
nitude of 7, this implies that T = oco. O
So, by applying again the comparison theorem of
stochastic differential equations, we get y(¢) > Y (¢),
vt € [0, T), with
af o? .
B—8— ————— — = |t=p [y Z2(s)ds+02B1 (1)
v Xinf + 2
Yi(1) = . (16)
|:(ﬂ 5 op % )s p [2 Za(m)dm+03 B (s)
1 t —0— — - A - 0 42 2D02(8
—+ _h / e Xinf +o 2 ds
Yo o Xinf o Jo

Thus, we obtain

Yi(1) = y(1) = Ya(1), ¥Vt € [0, 7). A7)

Let Z(¢) be the solution of stochastic differential
equation

dZi(1) = Z1 (1) [y (1) — q] dt
+03Z1(1)dB3 (1), Z1(0) = zo.

3.2 Persistence and extinction

In this section, we will establish the persistent condi-
tions for system (2) under certain parametric restric-
tions. Later, we will investigate the conditions for
which system (2) goes to be extinct.

Theorem 3.2 1. 1. If

B <

02 Uz 2
—\ra+ 5k |+, |ra+5k) +drkk+a)|d+

2
3

2k

then x(¢) is strongly persistent in mean.

)

2
%

2

(9w

9

?)

2
>+ar) +4rk(8+

2.1f
s 2k
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2
and y < % + —ﬂ, then y(t) is strongly persistent
o

in mean.

3. If

Applying 1t6’s formula and integrating both sides from
0 to ¢ on the following expression

o} o3 : o}
k<6+72>+ (k<5+72)) +4rk<6+72> (k+ )

p> 2%
and
) 2 In <?) + In <¥) + In (Zz(—t))
G\ (r o 28 0 0 0
(q+2)(k+a) r+2,3 ‘ , Y (s) o?
<y <-4+ — - _ L g ¥ T
rk(k + a) Y k o _/0 g k(x(s)er(s)) ﬁx(s)er(s)Jroz 2 ds

2
andg <r(r+a)— % then z(t) is strongly per-
sistent in mean.

Proof By using the previous equation (15),

(x(®))x > Xinf, where xipr

and by reformulating x;, s, we have

[k, k_ o} o} 1
fing = | KB = LF2 = Dp = (B0 - )kt | 5

r 2
[k, ko?
=|—B+Blk—— —k—«a
r 2r

+5+0—22(k+)l
2 “18

[k (et o3 1
= rﬂ ﬂ(Zr +a>+(8+ > (k+a) 5

So xjns is a quadratic equation in . Thus, x;,r > 0
whenever S satisfy

0.2 0.2 2 02
- (rot—i— le) + (ra—i— 7‘/() +ark (k+a) <8+ 72>

2k

0<B<

(20)

As (x(t))x = xiny > 0, then x(¢) is strongly persistent
in mean.

@ Springer

+f7131(l‘)+/t|:,37)c(s) ds
b Pr® +y0) ta

o2
_ (5 + 22> - pZ(S):| ds + 02 B2 (1)

t 02
+f0 [yy(s) -q- 23} ds + 03 B3(1).

Using the following equality,

x(s) o

XOFy®) +a x4y +a

B y(s)
x(s) +y(s) +o’

we get

In (&) +1In <M> +1In (ﬂ)
X0 Yo 20

r t r t t
—|= ds+ (= — d d
[kfox@) s+(k y)/o ¥(s) s+pf0z<s) s]

t
— |:/ 2B ds + /t __ ds:|
0 X()+y@s) +a 0 X($)+y@) +a

+ 01B1(t) + 02By(t) + 03B3(1)

2 2 2
z(r—i—ﬁ—a—q—glaz—%)t

t P ,
_ [2./0 x(s)ds + (% - )/)fo y(s)ds +p/0 Z(S)ds]
t
([ ]
o« 0 Xinf o

+01B1(t) + 02B2(t) + 03B3(1)
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In (i[)) +1In (&) +1In <@>
X0 Y0 20
P S W W s
Z(N”g awta T2 2 2)!

|:r ! r 28 !
_ 7/ x(s)ds—i-(f—l—f—}/)/ ¥(s)ds
k 0 k o 0

t
+p/ z(s)ds] +01B1(t) +02By(t) +03B3(t) (21)
0

According to Lemma 2.5, we obtain

By(t Bo(t Bs(t
im 20 o gim 220 g iy B0
t—+400 t t——+400 t t—400 t

=0.
(22)

According to Lemma 2.2 and equations (8), (11) and
(12), we have

lim *In <x(t)>= lim *1n <y(t))
t—o00 t X0 =00 ¢ Yo

— lim ‘1 (Z(’)) ~0 (23)

—oo 20

By using Itd’s formula to dy in system (2), we get
2
y(t
In ( “) 5+ 2
Yo 2
t 13 X5
+ 02 By(t) — /zds—l— /—ds
22()Pos 'Boxs-i-ys+a
02 t
[0+ %)t aamn - p [z
2 0
! o Vs
+ﬂ/ [l— — :|ds
0 Xstystoa xg+ys+o
2
< ﬁ_g_ﬁ—a_o_z t
Xinf + o 2

' '
+ 02 By (1) — g/o y(s)ds —p/O zsds (24)

y<£+—and
k o

From equation (21), we have

! t t (¢
—p/ zsds < 1In (&> + In <&> + In <£)
0 X0 Yo 20
off 012 022 (732
— —8— —qg————=——=]t
<r+ﬂ Xt 172772 2

r ! r 2B !
+ |:7/‘ x(s)ds + (* + — — y) / y(s)ds]
k 0 k o 0

—01B1(t) + 02 Ba(t) + 03 B3(1) (26)

Using the inequalities (21) and (26) with the properties
(22) and (23), we obtain

B>

_<k<r—q—é)+ar)+\/<k<r—q__2>+ar>2+4rk<5+0722>'

_ a9
r—p > i (k + )
(o-s-9)
>2B8+ P (k + )
S o L )
Xinf + > (k + o 7 ) (@)«
kﬂ2+|:k<r—q—%3 +ari| —r<8+%2>
>
> kp
@7
Thus, y(¢) is strongly persistent in mean if
(25)

2k
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We deduce from the equation (21) that

r 2B !
(* +— - V) / y(s)ds
k o 0
) o () o (2)
X0 Yo 20

2 2 2
ap oy 0; 03
-5 - —= |t
+ (r+/3 P =5 ) > )

r t t
— |:7/ x(s)ds + p/ z(s)ds:|
k Jo 0

+01B1 (1) + 02 B2 (1) + 03 B3 (1) (28)

and by applying It6’s formula to dz in system (2), we
have

In <@>
20

t O.2
/ [Vy(S) —q - 73} ds + o3B3 (1)
0

ez

o3B3(1) (29)

Let us use the inequality (28) in equation (29), then
multiply the resulting inequality by % and let us tend ¢
toward +oo, then we get:

p(z(®))x =2 =8

7
o r\B—8—%)(k+a)
- —q+
Xinf +a 1 kp
2
2
(a+5) 22 2
a y 2 2
r(6+%) G+
rk+o) 2
Zhoot T kB
2
2
(q+%><%+?ﬂ) o2
y 2
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2 2
kﬁZ—(a+%)kﬁ—r(a+%)(k+a)

>
= B
o2 28
0+ 9) 6+
rk+a < 2 ) k™a
+ ( ) _ (30)
k Y
Therefore, z(¢) is strongly persistent in mean if
o2 2
(+3) (%),
rle(k + @) Srepty
02
q <r(r-|—01)—73 and
0'2 0_2 2 0'2
k<8+22>+\/(k<8+22>) +4rk(8+72>(k+<x)
B>
2k
(€2Y)
m]

2 2
Theorem 3.3 Ifr — %- < Oand p— 8 — %3 < 0

2
o2
(k+a)(ﬂ—8—72) o2
and y ———5———= —q — 5 < 0 Then, for any ini-
tial condition (xg, Yo, z0) > 0, the stochastic model
system (2) goes to extinction exponentially with prob-

ability one.
Proof From It6’s formula, it follows that

2

In(x(£)) < In(xo) + (r _ %) t+01B)

and

0_2
In(y(1) < In(yo) + (ﬂ - ;) t+ 0 B?

wra(p-s-%)
In(z() < In(zo) + | ¥ 3 —q-— 73 ¢

+U3Bt3

According to Lemmas 2.2 and 2.5, we note that

.Bi
lim [G‘—’+

t——+00 t

Hy = x0, y0, 20, i =1,2,3.

In (Ho)

:| =0, for
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According to Lemma 2.3, we have

2
t
lim sup ? < (r - 671) <O0as.,

t—>—+00

2
t
limsup¥ < (ﬂ—&—%) <O0as.,

t—+00
RO (ﬂ - _72> _

lim sup —
e = B 2

IA

< 0a.s.

Therefore, the stochastic model system goes to extinc-
tion exponentially. O

3.3 Stochastic effects on model equilibrium stability

In this section, we will establish the condition of local
asymptotic stability of the equilibria E1 = (0, 0, 0),
E, = (k0,0), E3 = (FE3,FE3,,0) and E4 =
(E4,, Ea,, E4;), for stochastic system (2). We note that
in [8], the authors provide the local stability of equilib-
ria mentioned above:

e FE is always unstable for system (1),
e FE» islocally asymptotically stable for system (1) if

Shta)
e FEjislocally asymptotically unstable for system (1)
if
k(B=8)(r+8—B) —(B+8ar+(B—8MM
v 26r -

where MM =/(r (k + o) — (B—8) k)* + dapkr,
e Ejislocally asymptotically stable for system (1) if

2
ry <k+0l /(k—i-a)z—ti;) > 4Bkq.

Therefore, we will highlight the consequence of
introducing multiplicative noise in a loss of regularity
in the cancer cells population and virus-specific CTL
dynamics. We will show how a stable equilibrium for
system (1) becomes unstable for system (2). We intro-
duce small perturbations in the vicinity of these equi-
libria; then, we study the dynamic stability of the first-
and second-order moments which result from them.
Let (x«, y«, z+) denote the equilibrium point of the
deterministic system (1) whose components are given

explicitly in earlier section. The change of variables
consists of setting:

x(t) = xx + x1(7)

y(@) =y« + y1(0)

2(t) =z + 21(2)

where [x1 ()], [y1 ()], [z1 ()] K< 1.

Substituting this transformation in the stochastic model
(2), we obtain the following linearized version by

neglecting the second- and higher order terms of small
quantities:

dx(t) = (a11x1 + aiy1) dr + o1 (xs + x1(2))d B}

(32)
dyi(t) = (ax1x1 + axnyi +axzy)de
+02(yx + y1(1))d B2 (33)
dz1 (1) = (azy1 + a33z1) dt + 03(z4 + 21(2))d B},
(34)
IF; .
where a;; = — , i,j = 1,2,3 and
BX/ (Xs5 Y, 25)

F(X) = (Fi(X), F2(X), F3(X)), X = (x1, x2, x3).
The expressions of a;; and F; are given in the
“Appendix A”.

By integrating both sides of the equations (32) to (34)
from O to ¢, and by using the mean zero property of
Ito’s integral [1,28], we can write the system of ordi-
nary differential equations for first-order moments as
follows:

dE[x1(1)]

5 = a1 Elx1 ()] + a2E[y;1 ()] (35)

E
w = a1 E[x1 ()] + ax2E[y1 ()] + a23E[z1(7)]
(36)
@ = anE[y1(t)] + a33E[z1(1)] (37)

Once we have the equations of the first-order moments,
we use Ito’s formula to obtain:

dxf(t) = [Qai1 + o)x{ + 2a12x1y1 + 207 %1%,

+6]2xf]dt + 201x1de,1 (38)
dyf (1) = Razix1y1 + 2az + 03)y7 + 2a23y121

+203 y1ys + 07y71dt + 2021 ydB} (39)
dzi (1) = [2a32y121 + (2a33 + 03)z7 + 2052124

+03zz£]dt + 203zlde[3 40)
dx1 (1) y1 (1) = [(a11 + ax)x1y1 + anny? + anx?

+azzxiz11dt + oy y]de,1 + 07x] ydBt2 “41)
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dy1()z1(t) = [az1x121 + (a22 + az3)y121 + axzi anElxi] +apEy1 =0 (50)
+azy?dt + o221 ydB? + 03y12d B} (42) a2 E[x1] 4+ anEly1] + asElz1]1 =0 (51
dx1(1)z1(t) = [(a11 + az3)x1z1 + anyizi aElyr] + a33E[z1] =0 (52)
+azxiy11dt + o1z xd B} Qayy + o2)E[x?] + 2a12E[x 1]
—|—03xlde,3 43) +2012x*E[x1] = —alzxf (53)
) . . 2a21Elx1 911 + Qaz + o) E[y7]
Integrating the aforementioned equations from O to #, 4 2anEl 14 2029, Ey] = —02y? (54)
then taking mathematical expectation of both sides with a3 ELvIE % y*z . 5 azzy*
the help of Fubini’s theorem as explained in [19,23,28, 2anklyizi] + Qass + 03)Elzi] + 2032, E[21]
41], and finally differentiating with respect to ¢, we =037 (35)
obtain the system of differential equations for second- (a11 + an)Ex1y1] + apElyi]
order moments as follows: +a21E[x12] +a3E[x1z1] =0 (56)
dE[xlz(t)] ) ) ax1E[x1z1] + (a22 + a33)Ely121]
a4 Qair +o)E[xT] + 2aElx1y1] +anBlz]] + anElyf] =0 (57)
+ 207 x,Elx1] + ofx? (44) (an + a)Elxizi] + ai2Elyiz1] + anElx1y1] = 0,
2 58
POV _ oy Bl w11 + aze + oDE?] , , Y
dr For notational convenience, we assume that the
+2a23E[y121] steady-state for the first- and second-order moments
+2‘722Y*E[)’1] + (722}])% (45) is denoted by E[x11«, E[y1]«, E[z1]x, E[xlz]*a ]E[ylz]*,
dE[2(1)] o Elzile, Elx1y1 ] Ely121s, Elxizils.
—a - 2a3E[y1z1] + (2a33 + 03)E[z7] Thus, the stability of these steady states depends upon
+20‘322*E[Z1] n 03223 (46) E‘I/lle ds;fgi?lec;f t;c/al parts of the eigenvalues of the matrix
" an apn 0 0 0 0 0 0 0 T
any a»  a 0 0 0 0 0 0
0 azyp  as 0 0 0 0 0 0
20fx, 0 0 (Qan+o}) 0 0 2a1, 0 0
M=| 0 2}y, 0 0 (2ax + o3) 0 2a 2a3 0
0 0 20}z 0 0 Qa3 +03) 0 2a3) 0
0 0 0 azi ap 0 (a11 + a) 0 a3
0 0 0 0 az an 0 (an +az)  an
. 0 0 0 0 0 0 asp ap (a1 + az3) |

dE
@y ©Ol = (a11 + an)E[x;yi]+ anEyi]

! +anBlxfl+ anElxizil  (47)
%?ZI(I)] = ay1E[x1z1] + (a2 + a33)E[y121]
+axE[z}] + anEly]] (48)
w = (a11 + a33)E[x1z1]

+apElyizi] + anElxiy1].  (49)

Steady-states of the first- and second-order moments
are obtained by solving following system of equations:
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Applying the Routh—Hurwitz criteria, one can find
the conditions for the negative real parts of all eigen-
values of the matrix M, but the obtained conditions
cannot be put into explicit conditions. So all details of
stochastical stability analysis are given in “Appendix
(A1)—-(A2)”.

Theorem 3.4 1. Thetrivial equilibrium E1 = (0, 0, 0)
is unstable in terms of first- and second-order
moments.

2. The first- and second-order moments associated
with the cancer infezcted cells dynamics around zero

. 0'2
are stable if § > -
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3. The first- and second-order moments associated
with the virus-specific CTL dynamics around zero

are stable if ¢ > % and g > r.

Proof Around the trivial equilibrium point E; =
(0, 0, 0), the eigenvalues of the matrix M associated
with the first- and second-order moments are given as
follows

AL =1, Ay = —6 A3 = —(q,
)L4=2r+012, As :—28+022, Ap = —2¢q +032,
M=r—96 ixg=—-0+¢q) A =r—gq.

1. Note that the first-order moment A = r and the
second-order moment Ay = 2r + 012 are always
positive. Thus, the cancer uninfected cells dynam-
ics around O are unstable and therefore, E is also
unstable.

2. Inthe vicinity of 0, the cancer infected cells dynam-
ics are stable if the first-order moment A, = —§
and the second-order moments A5 = —23§ + 622
and A3 = — (8 + ¢q)) are negative.

3. In the vicinity of 0, the dynamics of virus-specific
CTLs are stable if the first-order moment A3 = —q
and the second-order moments Ag = —2¢ +a32 and
A9 = r — g are negative. O

Theorem 3.5 Under the Assumption 1, the stochastic
model around the interior equilibrium point E3 is stable
in terms of second-order moments.

Proof According to the calculations made in the
“Appendix (A1)-(A2)” on miners using the Routh—
Hurwitz theorem, we have from (A10):

Ap =a; =16 = —(m1 +myq), Ay =arAy,
Az = a3y, Aq=ag;
As = asAy, Ag = agAs

Assumption 1: All terms (A;);=1,....6 must be positive.
O

Theorem 3.6 Under Assumption 3, the stochastic
model around the interior equilibrium point E4 is
unstable in terms of first- and second-order moments.

Proof According to the calculations made in the
“Appendix (A1)-(A2)”, it is shown from (A9) that

Al =a; = pe = —(m1 +my)
=— (4(6411 +ax +as;z) + 012+022+632)

So two possible cases arise:
Assumption 2: A1 < 0if a1 + axp 4+ azz > 0.

Assumption 3: A > 0 if (a11 + ayp + a3 <

0and4(a11+a22+as3)§012+022+032>' o

3.4 Numerical simulations of population dynamics,
probabilities of extinction and mean extinction
time

This section will thus illustrate the mathematical results
obtained in the previous section. We use Milstein’s
Higher Order Method to obtain the system (59) which
is a discretization transformation of system (2). Mil-
stein’s numerical scheme is a first-order method which
can be weakly or strongly convergent [18]. Due to the
Lipschitzian characteristics of the deterministic and
stochastic parts of our model, we have here a strong
convergence of the Milstein scheme [27]. The conver-
gence of this numerical method has been validated in
for many models having an explicit expression of their
exact solution, [15,18,34].

Xj+yj
Xjt1 =Xj+[er (1— J kyj>

XV
—ﬂ’—y’} At +01x; By jv/Ar
Xj+yjt+a
Ulzx_,-(Blzh/.fl)

LA,

XiYi
i1 =y + _
Vit Vi ['ij—i-yj—i-a

2. BZ 1
+02yj B jv/ AL+ Mm,
zjr1 = zj +[yyjzj —azj] At

o2zi(B? . —1
+032j B3, j~/ At + MAL

—8yj — pijj] At

(59)
where the time increment At > 0. For a fixed obser-
vation period [0, T'], n is estimated as follows n =
1 + round (%) and the time discretization is t; =
jAt, for j =1,...,n.0; >0, fori =1,2,3, are
the noise intensities. By j, B, ; and B3 ; denote inde-
pendent Gaussian random variables which follow the
normal distribution N (0, 1) for j =1, ..., n.

We also use the Monte Carlo algorithm to estimate
the extinction probabilities (P j, Py j, P, ;) as well
as the mean extinction times (Ey ;, Ey j, E; ;) asso-
ciated with the extinction of each of the populations.
This algorithm works as follows: for each discretiza-
tion interval (¢, ¢j41), we perform RN simulation runs
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whose outcome is to increment by one unit the count-
ing variable (Ly ;, Ly j, L;;), when xj41 < O or
vj+1 < 0or zj41 < 0. The extinction probabilities

(Py,j, Py, j, P, ;) are approximated by the relative fre-

. Ly Lyj L. .
quencies ( R R R—Aj) The complexity and con-

vergence of this estimation algorithm for extinction
probabilities and mean extinction times have been stud-
ied in [13]. The detailed code of this algorithm is pre-
sented in “Appendix B”.

Numerical simulations will be able to show how the
combination of the effects of the parameters of the
deterministic model (1) with the stochastic diffusion
parameters affects the stochastic population dynamics
of cancer cells and viruses given by system (2). For
example, we will show how a stable equilibrium for
system (1) becomes unstable for system (2), thus lead-
ing to the extinction of one or all of the populations.
Finally, with this first passage estimation algorithm, we
analyzed the parameter variation effects of model (2)
on the mean first passage time, in the case of species
extinction.

3.4.1 Simulations of cancer cells and virus-specific
CTLs stochastic dynamics

This section is devoted to demonstrating our main
analytical results in previous subsections. During the
numerical resolution of stochastic system (2), the ini-
tial density of the populations of cancer cells and virus-
specific CTLs is close to the equilibrium E4 of coexis-
tence of the three populations:

xo = E4; —0.01, yo = E4, —0.001,

z0 = E4; — 0.001

To investigate the dynamical behavior of cancer cells
and virus-specific CTLs, we choose a set of parameter
values:

r=0.15, k =12.0, « = 0.001, B =0.35,
y=0.1,86§=0.12, p=03, ¢ =0.1

o1 =0.08, 0o = 0.1, 03 =0.105 (60a)
r=0.15, k =12.0, « = 0.001, B =0.35,
y=0.1,§=0.12, p=0.3, ¢ =0.1

o1 = 0.21, 0o = 0.1, 03 = 0.105 (60b)
r=0.27, k=120, « = 0.001, g =0.35,
y=0.1,§=0.12, p=0.3, ¢ =0.1

o1 =0.02, 0, =0.02, 03 =0.22 (60c)
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r =027, k=120, « = 0.001, B =0.35,
y=0.1,8=0.12 p=03, g =0.1
o1 =0.02, 0p = 0.02, 03 = 0.5 (60d)

Figure lA corresponds to the parameter values
of stochastic system (2) given in equation (60a),
while Fig.1B results from the parameter values set
in equation (60b), where the intensity of stochastic
noise was increased for the three populations. Notice
that in equations (60a) and (60b), the parameters
(r, k, a, B, y, 8, p, g) have been fixed so that for
deterministic system (1), the equilibrium Ej is locally
stable and the equilibrium £ is unstable. The popula-
tion of cancer cells and virus-specific CTLs gradually
decrease and fluctuating in the neighborhood of E4 in
Fig. 1A, it indicates weak persistence. Thus, the diffu-
sion and mutation of cancer cells can be controlled by
varying the strength of noise. Further, Fig. 1B indicates
that fluctuation of the same population tends to zero
after 100 days. This implies that the increase in noise
intensity leads the stochastic system (2) from popula-
tion coexistence dynamics to an extinction of the three
populations. Figure 1C and D corresponds to the out-
puts of stochastic system (2) with the parameter values,
respectively, given in equations (60c) and (60d). Note
that in (60d), the stochastic noise intensity is greater
than that in (60c), for only the virus-specific CTLs and
the parameters (r, k, «, B, v, §, p, q)havebeen fixed
so that the equilibrium E4 is locally stable and the equi-
librium E3 is unstable for system (2). Figure 1C shows
weak persistence of the three populations in the neigh-
borhood of E4. However, we show in Fig. 1D the virus-
specific CTL depletion induced by the increase in the
noise intensity 03. The stochastic system is therefore
switched from endemic equilibrium Ej4 to the equilib-
rium E3. Itis an evidence that the parameter value com-
bination and the intensity of environmental noise play
pivotal role in determining the success of virotherapy.

3.4.2 Estimation of species extinction probabilities
and mean extinction time

In our numerical resolutions based on the Monte Carlo
algorithm, we set the increment time at Ar = 0.001
and the repetition number RN of the simulations at
RN = 6000, with the fixed parameter values in (60b)
and (60d). The graphs in Fig. 2 represent the distribu-
tion of all first pass times over RN = 6000 simulations.
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Fig. 1 Noise intensity o (A) (B)
effects of the cancer cells s | variable
and virus-specific CTL = 10.0- 15 )
dynamics, when the initial E g Uninfected cells
population densities are g 75- 10 - i In.fected cells
close to the equilibrium Ejy. 5 — Virus
A Represents weak 9 5.0
persistence of the three € 5-
populations for the system a 2.5 - : ’:! ; c ’
2) for parameters given in > .
E6z)a). lgRepresent{sg e o00-, . . - 0w - : :
extinction of the three () © 146 200 300 (D) © 100 200 300
populations for the system » 125- 12.5 -
(2) after 100 days for 5
parameters given in (60b). & 100- 10.0
C Represents weak 3
persistence of the three g 75- 75"
populations for the system S
(2) for parameters given in @ 5.0 - 5.0
(60c). D Represents the IS 25- 25
virus-specific CTL o = ’
depletion induced by the 5‘ 0.0 - 00-
increase in the noise 0 100 200 300 0 100 200 300
intensity o3 for parameters
given in (60d) Time (days) Time (days)
Fig. 2 Distribution of (A) (B)
frequencies of first 0.008-
extinction time using Monte Variables 0.006-
Carlo simulation. The \ H mg:gt;:";“s
parameters of models are > 0.006- \ Virus 2
fixed as: in (60b) for the @ 2
three populations extinction 2 g 0.004°
(A); in (60d) for g 0.004 oy
virus-specific depletion (B) g o}
g g 0.002-
L 0.002- w
0.000- 0.000-
100 200 300 100 200 300
Extinction time of each of the Extinction time of a single virus
three populations population (days)
Ly

Figure 2A corresponds to the extinction time frequen-
cies for the three populations, whereas Fig.2B corre-
sponds to the extinction time frequencies for only virus
population. This algorithm estimates the frequencies
and the mean time of extinctions. It also computes the
associate probability of extinction of the three species
in the case of therapy success (extinction of cancer
cells and viruses-specific CTLs) as well as in the case
of failure (depletion of the virus-specific CTLs only).
In the event of successful virotherapy, the extinction

probabilities are IéiN = 0.891 for extinction of unin-

fected cells, ¢ = 0.797 for extinction of infected
cells and Ié—ZN = 0.876 for virus-specific CTLs. In this
success therapy situation, the mean extinction times
are 171.5032,207.2255 and 195.8487 days for, respec-
tively, uninfected cells, infected cells and virus specific
CTLs (see Fig.2A). However, under the conditions of
failure (given parameter values in 60d), the probabil-
ity of extinction and the mean extinction time for the
virus-specific CTLs were estimated to Ié_ZN = 0.897
and 142.9962 days, respectively (see Fig.2B).
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Effects of parameter variations on the uninfected cell mean FPT

(A)
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Effects of parameter variations on the infected cell mean FPT
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o
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Effects of parameter variations on the virus CTL mean FPT
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02 200
2 175
[
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01- 100
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Fig.3 Effects of the variation of the viral replication rate, 8, and

the viral cytotoxicity, §, on mean extinction time and extinction
probability for cancer cells and virus-specific CTLs. Red zone

3.4.3 Model parameter sensibility on extinction
probabilities and mean extinction time

In this part of the analysis, we went further to determine
the effects of parameter variations on the model out-
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Effects on the uninfected cell extinction probability
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Effects on the virus CTL extinction probability
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corresponds to higher values of extinction probabilities or mean
extinction times, while blue zone is for their low values

puts. Therefore, we determined the spaces of parameter
values leading to the success or failure of the virother-
apy. We also determined the associated mean extinction
times and probabilities of extinction.
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Effects of parameter variations on the virus CTL mean FPT

(A)
13-
. -- meanFPT
|| | 140
|| E
g || = .j, 135
EC- - . - 130
5 N J-[ }-"‘\ 125
120
15
.09~
[ S |

Fig.4 Effects of the variation of the strength of CTL responses,
y, and the maximum per capita growth rate of uninfected tumor
cells, r, on mean extinction time and extinction probability for

To determine the parameter sensitivities and the
robustness of the therapy success characterized by the
extinction of cancer cells and the disappearance of
virus-specific CTLs, we vary the parameters 8 (8 €
[0.14 0.45]) and § (6 € [0.01 0.35]). For the rest of
the stochastic model parameters, the values are fixed
as in equation (60b). The estimation robustness of the
mean extinction times and extinction probabilities as
well as the parameter sensitivities of the stochastic
model are presented in Fig. 3. For cancer cells as well
as for virus-specific CTLs, the high extinction proba-
bilities correspond to the low mean extinction times.
Due to the model nonlinearity, the extinction estima-
tion, when 8 and § vary, show the existence of a portion
of a parabolic curve separating two zones. Above this
portion of the parabolic curve, the uninfected cancer
cells persist (Fig. 3A, B). However, below this portion
of the parabolic curve, there is an extinction of unin-
fected cancer cells. In this situation, the extinction prob-
abilities (Fig.3B) of uninfected cancer cells increase
with the simultaneous variations of 8 and § (increase in
B and decrease in §). The extinction of infected cancer
cells is observed for the parameter values on either side
of this nonlinear separation (Fig.3C, D). The highest
probabilities of extinctions are observed for high values
of § with § > 0.2 (Fig.3D), part above the separation
or for high values of g with 8 > 0.4 (Fig.3D), part
below the separation. The mean disappearance times
of virus-specific CTLs are also separated into two parts
by a portion of a parabolic curve (Fig.3E). Above this

Effects of parameter variations on the extinction probability of virus C

(B)
= -

0.12- ProbaZFPT
0.9
0.8
0.7

0.6

0.265 0.270 0.275 0.280

virus-specific CTLs. Red zone corresponds to higher values of
extinction probabilities or mean extinction times, while blue zone
is for their low values

curve, the mean disappearance time is lower than above
it. Conversely, the probabilities of disappearance of
virus-specific CTLs are higher above this portion of
curve than below (Fig.3F). Under the depletion con-
dition of virus-specific CTLs without extinction of the
cancer cells, the sensitivity analysis was carried out
by varying the parameters » € [0.264 0.2934] and
y € [0.087 0.133]. The rest of the other model param-
eters are fixed as in (60d). The simulations in Fig.4
show that the low y values (y < 0.1) lead to a high
extinction probability, greater than 0.9 (Fig.4B) with
low mean extinction times, less than 120 days (Fig. 4A).
If y isin [0.10 0.12], the disappearance probability of
virus specific CTLs will decrease around 0.7 and 0.8,
while the mean disappearance time of virus-specific
CTLs increases to be around 130 and 140 days. Then,
for large values of r (r > 0.275) and y (y > 0.12),
the disappearance probability of virus-specific CTLs
decreases below 0.6.

4 Conclusion

In this paper, a stochastic mathematical model is ana-
lyzed in order to improve the cancer oncolytic virother-
apy incorporating virus-specific CTL responses. We
established the conditions of the model solution exis-
tence, persistence and extinction. In relation to the
success or failure of the therapy, we investigated the
equilibrium point stabilities by calculating the first-
and second-order moments of the associated linearized
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system. Using Monte Carlo algorithm, we estimated
the mean first extinction time and the probability of
extinction, under the conditions of success of therapy
(corresponding to the extinction of cancer cells and
viruses) or failure of therapy (depletion of the virus-
specific CTLs without cancer cell extinction). Further-
more, by using this algorithm, we were able to establish
the robustness of estimations and also the sensibility
effects or our parameter variations on the extinction
probabilities or the mean extinction times. This ana-
lytical process allows to estimate, on the one hand,
the probability of the therapy success and the nec-
essary remission duration necessary. Our results also
allow to determine the therapy failure probability and
so to adjust the control parameters before the disappear-
ance period of the virus-specific CTLs. Our numerical
simulations allow us to characterize the spaces of the

Appendix A: Stability conditions analysis
1. Stability analysis around E4

To find the eigenvalues of the matrix M, it is necessary
to solve the auxiliary equation det(M’—AI) = 0, where
M’ is the square matrix defined by retaining only the
second-order moments. Let

B = aii +of — 1) (A1)
B2 = Qaxn + 07 — 1) (A2)
B3 = (2az3 + 05 — A) (A3)
Ba = (a1 +axn — ) (A4)
Bs = (ax +azz — 1) (AS)
Be = (a11 +azz — 1). (A6)

Since,
Qay+of — 1) 0 0 2a12 0 0
0 2an +C722 —A) 0 2ay1 2ay3 0
2 _
M ] = 0 0 (Qazz+o3 — A) 0 a3y 0
as ai 0 (an+ax —A) 0 a3
0 az az 0 (a2n+azz —A) a
0 0 0 az ai (ar1+azz —A)
cancer control parameters in this stochastic dynamical then,
system. In both success or failure therapy, the popu-
lation fluctuated for a long period around the attractor B 0 2as; 2a» 0
of the co-existence equilibrium E4 before switching to 0 B3 0 2a3 0
the attractor of the equilibrium E| (success) or E3 (fail- dettM' —Al) =B |ain 0 By 0 aos
ure). Finally, our simulations highlighted the decisive appax 0 Bs an
effects of the combination of the stochastic diffusion 0 0 a3y ap P
parameters with the viral replication rate, 8, the viral 0 By 0 2ay 0

cytotoxicity, §, the strength of CTL responses, y and the
maximum per capita growth rate of uninfected tumors
cells, r, on the success or failure of virotherapy.

Data Availability Statement The data from simulations that
support the findings of this study are available on request from
the corresponding author, B.I. Camara
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0 0 B32a3n O
—2ap|ax a2 0 0 ax
0 axn ax Bs ax
0 0 0 an B

= p1D1 — 2a12D7,

with
B2 2az1 2a3 0 B2 0 2a O
Dy = B a2 Bs 0 ax aip 0 B4 ax
ax 0 Bs an ax az 0 ay
0 azx ann P 0 0 an B
(AT)
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B 0 26623 0 By 0 an
D> = ay) P 93| = a1 |axs Bs an
asx a3 PBs an 0 an fe
0 0 anx PBe
0 2ay; O
+aziazn | B3 0 ax (AB)
0 apn B
Ba 0 ax
In order to calculate Dy, let F1 = 2| 0 B5 a1 | —
azy a2 Be
a2 0 ax a2 B4 ax
2ap1 a3z PBs ax1 |+ 2ax3 (azxx 0 az|,
0 a2 Be 0 azn Bs
0 By ax app 0 ax
and F, = B |axs 0 az1 |+ 2a21 (a3 a3 a
0 azx Be 0 0 Be
So,

Fi = B2(BaPsBe — azBsaxz — Baarnaz)
2
— 2a31(a12B5B6 — azszazraiz — aj,azy)
2
+ 2az3(axzaz, — Baazfe — arpazazi),

Fy = Ba(a3az — PePaars) + 2aiaazian; fe.

Then,

Dy = B3F1 +2anF, = B283B4B5B6
—azpaxPaP3pfs — 2az1a123P5Pe
—2az1a12a23a32P3
— 243,01, B3 + 243,033
—2a3a3283B4 6 — 2az3ainazaz B3
— anaz PaBsPa + 2a3,a33
— 2a3pa23 42846 + 4azaziarnazs Pe

B1D1 = B1B2B3B4Bs5B6 — azrazzB1B2B83Bs

M, M
— 2ay2a21 8183586 — 2ax1ax3a3a1281 83
M My
— 247,03, 1 B3 + 203,033 1 B3
Ms Ms
— 2azpa238183B4B6 — 2azraxzainaz1 B183
My Mg
— appazi B1BaBsBa + a3,a3: 81 B
My Mo
— 2a32a2381B284B6 + 4arnaziazraz i Pe
My, Mo

We set

My = B1B283B4B5Bs

=|2a;; + 012 =X |2a2»n + 022 =X |2a33 + 032 —A
——— —— ——
N N> N3

axn +aip —A| |axn +asz —A| |azzs +an —2
— —— ~—— ———
Ny Ns Ne

= A= Ni + Ny + N3 22
[N —

mj

+ | NNz + NiN3 + NoN3 | A — N1 N2 N3
————

mp m3

x | A3 = [ Na+ Ns+ Ng | 22
N— ————

L my

+ | N4Ns + NyNg + NsNg | A — NyN5Ng
——

ms me

:)»6—(m1 +m4)A5+ my + ms + mymy 24
—_—

122

— | m3 +me +mims + momy 23

w2

+ | mime +msma 4+ mamq | 22

3

— | mame + m3ms | A + m3mg
—_—

Ha

My = (Ny — ) (N2 — &) (N3 — &) (N5 — A) azpazs
= (A* —m12% + mah — m3) (N5 — &) azpa23

= azan At — axazy (m1 + Ns) A3 + axzazy (ma + miNs) A2
———

M5 M6 124
— apzaz (m3 +myNs) A + azpazzmzNs
Nl

s
M3 = 2ay2a21 81838586
=2apaz (N —A) (N3 — &) (N5 — 1) (Ng — A)
= apan A* — 2apaz (N + Ns + N3 + N) A3
——

"9 H10

+ 2aj2az1 (N1 Ne+ N3Ng+ NsNg+ N3 N1+ Ny N5+ N3Ns) 22

Ml
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— 2ajpaz (N1N3Ng + N1N5sNg + N1 N3Ns + NsN3Ng) A

K12
+2a12a21 NsNi N3 Ng

My = 2az1a12a32a23 81 B3 = 2az1aipazazs (Ny — 1) (N3 — )

= 2aannanan A — 2azananas (N1 + N3) A

s 26
+2az1ai2a32a23 N1 N3

Ms = 2a3,a3, 183
=2a3,a}, (N; — 1) (N3 — 1)
=2a3,a5 2> — 2a3,a%, (N + N3) A + 2a3,a%, N1 N3
27 sy T

H27 28

Mg = 2a3,a3, 8183 = 2a3,a3; (N1 — 1) (N3 — 1)
=20a%a3, 3% — 2adya3y (N + N3) A + 2a%,a3,N1 N3
—— — ——
H29 30
M7 = 2a3a23 8183846
= 2azaz3 (N1 — 1) (N3 — 4) (Ng — A) (N6 — 1)
= 2axnaxn »* — 2axnax (N1 + N3 + Ny + Ne) 1>
——

H13 ni4
+2a3a3 (N N3+ Nj Na+Ny N+ N3 Ny+ N3 No+NaNo) 1.

H1s
—2a3pa23 (N{N3N4 + N1 N3Ng + N1 NeNy + NeN3Ny) A

16
+2a3a23 N1 N3N4Ne

Mg = 2apazaziaxsfipz
= 2apaznazas(Ny — A)(N3 — 1)
= 2apaxnayani’ — 2a1a3a21a23(Ny + N3)A
+ 2aiazaziaz3 NiN3
My = arpaz B1B2B83P4
= anaz (N1 —2) (N2 — A) (N3 — A) (N4 — %)
= %k“ — apaz (my + Ng) 1>
n17 n18
+ anazy (my + myNy) A

K19

—apaz; (m3 +myNyg) L + ajpaz1m3Ny

20
Mo = a3ya3; 182 = azyaz; (N1 — 1) (N2 — 1)
= a%za%)»z - a§2a§3 (N1 + Np)A
+ a%a NiN

My = 2a3a23 1828486
= 2anazs (N1 — A) (N2 — ) (Ng — 1) (Ne — 1)
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= 2azpax A — 2anax (Ny + Na + Ny + Ng) »°
N

12531 H22

+2azpazs (N1 N2+ Ny Ny+ Ny No+ NaNy+NaNe+ NyNe) A2

23
—2azaz3 (N1N3Ng + N1 N3Ng + Ny NeNy + NeN3Ny) A

o4
+2azax3 Ny NaNaNe

M2 = 4azazaniaxpiPe
= dayaznazia3(Ny — A)(Ne — 1)

2
= daazxnaziax A~ —4aixa3a21a23(N1+Ng) A

231 2u32

+ 4ajpazraziazz N1 Ne.

From (A7), we have

Dy = a2182(B3BsBs + azzaia — Prarnazr)
—a12a32a2383P6

Then,

—2a12Ds = —2a12a21 P23 856 — 2a3,a33a21 B2
+2a},a3, B2 B3 + 4arnaziarzaza B3 .

We set

M3 = 2a12a21 8283856
= 2apanr* — 2aipaz1 (N3 + Ny + Ns 4 Ng)r°
+ 2a12a21(N3N2 + NaNs + Ne N>
+ NgN3 + N3Ns + N5 Ng )2
— 2a12a21 (N2 N3Ns + NoN3Ng + N2 N5 Ng
+ N3Ns5Ng)A + 2ajpa21 N2 N3 Ns Ng,
My = 2a1,a33a21 B2 = 2ai,a33a21 (N2 — )
Mys = 2a1,a3, B2 B3 = 2ai,a3 1>
—2a%,a3, (N2 + N3)A 4 2a},a3, N2 N3,
M6 = 4apaziarasnPszfs = 4anaziarzani’
—danaziaxaz (N3 + Ne)r
+4aiaziazazr N3 Ne.

So,

—2a12Dy = —2apax x* + 2anax (N3 + N2 + Ns
+Ne)A? + [dapaazazsaz + 2at,a3, — 2a12a21 (N3N,
+N2Ns + NgNz + NgN3 + N3Ns + NsN)1A>
+[2a12a21 (N2N3Ns + NaN3Ne + N2NsNe + N3NsNe)

2 2
+2ay,aya01 — 4appaziazazz (N3 + Ne)
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—2a},a3 (N2 + N3) A + dapaziarzaz N3 Ne

+2a%2a§1 N> N3

—2aypar1 NyN3NsNg — 2a%2u§3a21N2
—2a1Ds = p12* + paA® + p3a% + pak + ps,

with,

p1 = —2aazi,
p2 = 2a2a21(N3 + N + N5 + Ng),

03 = 4anariarzaz; + 2a3,a3, — 2arpaz (N3N,
+NyN5 + NgNy + NogN3 + N3N5 + N5Ng),

04 = 2a12a21(N2N3N5 + Ny N3Ng
+NyN5Ng + N3N5sNg)

2 2
+2ai,ay3a21 — 4aizaz1a23a32(N3 + Ng)

—2aiaz; (N2 + N3),
ps = dappaziarzaz N3Ne 4 2ai,a3; NaN3
—2a12a21 Ny N3 NsNg — 2a122a§3a21N2.
We will have
det(M’ — AI) = A% + pA’
+(p1 + P + (02 + pg)
+(p3 + p9)A2 + (s + pro)A + ps + pi1,

where

p6 = m1 + may,

07 =M1 — 5 — 9 — 113 — 17 — K21,

08 = M3 + [he + 10 + M14 + (18 + 122,

P9 = U3 — (47 — K11 — 15 — [L19 — 123
—M25 — M27 + 29 — M31 + 133 + M35,

P10 = H12 — M4 + U16 + W20 + K24 + 126
TM28 — M30 + 32 — U34 — U36,

p11 = m3me — 2a12a21 N1 N3N5Ng
— 2a32a23N1N3N4Ng
— 2a3a23N1N2N4Ng
— dapaz1az3a3 Ny N3 — 2a3;3a3, N1 N3
— 2a%2a%1N1N3 + a%3a%2N1N2

+ 4aizaz1a23a3 N1 Ng,

with

ap =1, a1 = pg, az = p1 + p7,

az = p2+ ps, as = p3+ P9, as = p4 + P10,

ag = ps5 + p11-

arapy 0 0 0 O
azar ayag 0 0
as a4 az az ajg ag
0 0 0 aqaszan
00 0 O0asay
0000 0as

R =

Signof Ay =a:
Ay =ay = pe = —(m1 +my), withm; = Ny + Na +
N3, mg4 = N4+ N5 + Ng,
Ni =2ay; + o0}, Ny=ay +an
Ny =2ay + 0%, Ns=axn +as;
N3 =2a3; + 03, Ne=ai + as;
Then,
Ay =ay = pe = —(m1 +ma)
= — <4(a11 + ax + asz) + 012 + 022 +o32)

=— <4Tr(J) +ol+oy+ 032) : (A9)
Therefore, two possible case arise:

e A <0ifTr(J) >0,
e A; <0ifTr(J) <0and4Tr(J) < o405 +03.

2. Stability analysis around E3

The characteristic polynomial of a matrix M’ evaluated
at the equilibrium point E3 is written as

PO =20+ 161> + (r1 + )M + (1o + 19)A°
+(13 + 0)A% + (14 + T10)A + (5 + T11),

where

7 = —2apasy,

7 = 2a12a21 (N2 + N3 + N5 4+ Ng),

73 = dapasranayn + 2a%,a3, — 2aa21(N2N3 +
NyNs5 + NoNg + N3Ns5s + N3Ng + N5Ng),

T4 = 2aippaxi1(NoN3Ns + NyN3Ng + NoNsNg +
N3NsNe) + 2a3,a3,a21 — 2aya3,(N2 + N3)
—canceldayaziarzazy (N3 + Ng),

ts = 4ayyazsar5a533 Ne + 2a%ya3 Ny N3

—2ai2a31 NoN3NsNg — 2a%2a%3a21N2,

6 = —(m1 +my),

T7 = W1 — W5 — U9 — P43 — W17 — Yot

7§ = U3 + pe+ (1o + pid + ni1g + pag,

T9 = U3 — W7 — 11 — YA5 — 19 — Y23 — Yas — Uo7+
Ma9 — pat + pas + pas,

TI0 = M12 — M4 + Pt + Koo + pad + pas + tos —
W30 + Y37 — pad — p3e,

@ Springer



B. I. Camara et al.

T11 = m3mg — 2a12a1 N1N3N5Ng — 2a122a§1 N1N3.
The minor of matrix is written as follows:

Al =a; =1 =—(m; +myg), Ay =aAy,
Az = a3y, Ay = agA3,

As = asA\4, Ag = agAs. (A10)
Sign of Ay = ayAq:

ap = —3aaz) +ms +mimg + my

ar =3Tr(J)? =2(0f + 05 +o)Tr(J) + K,

with K = ajja0 +aazs +axass —Sanpaz + (an +
oi)(axn +o}).

The discriminant of 377 (J)?—2(0 7 +03+03)Tr(J)+
K =0is givenby A’ = (6} + 05 + 03)? — 3K.

If A" = 0, then Tr(J)* = (07 + 03 + 03). So,

Tr(J) |—o0 Tr(J)* oo
sign of ap + 0 +

If A" > 0, then (Tr(J)) = %(012 +0}+0}—A)

and (Tr(J))2 = 3(0 + 07 + 07 +VA).
Therefore,

Tr(J) |—o0  (Tr(I)  (Tr(J)))2 +00
sign ofay + 0 - 0 +

Sign of Az = azAy:

We have a3 = 1) + 13, with

7 = 2a12a21 (N2 + N3 + N5 + Ng) and 13 = u3 +
K10 + H1s,

W3 = mime + mams + mamy,

10 = 2a12a21 (N1 + N3 + Ns + Ne),

18 = ajpaz) (Ng +my),

my = Ny + Ny + N3, myg = N4+ N5+ Ng,

my = N{N+NN3+NyN3, ms = NyN5+N4Neg+
N5 Ng,

m3 = Ni{N,N3, mg= N4NsNg,

mimg = N1N4N5Ng + N2 NyN5sNg + N3N4N5Ng,
mpms = N{NpN4Ns + NiN2N4Ng + N1 NyN5Ng +
Ni1N3N4N5 + N1N3N4Ng + N1N3NsNg

+ NyN3N4Ns + Ny N3Ny Ng + No N3 N5 N,

m3m4 = N1N2N3N4 + N1NaN3 N4 + N1 NoN3Ne,
NiN4NsNg = asNiTr?(J) + (ar1a2aN1 — az;Ny)
Tr(J) — araxnasNi,

NyN4NsNe = azsNoTr?(J) + (a11an N2 — a33Na)
Tr(J) — anaxpaszzNa,

N3N4NsNg = azzsN3Tr*(J) + (a11a22N3 — a33N3)
Tr(J) —anaxnazNs,

N1NaNyNs5s = N1Nz(axnTr(J) + ar1ass),
NiNa2NyNg = N1Na(anTr(J) + axnass),
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N1N2NsNg = NiNa(a33Tr(J) + ajran),
N1N3N4Ns5 = N1N3(axnTr(J) + arrass),
N1N3N4Ng = N1N3(anTr(J) + axnass),
N1N3Ns5Ng = N1N3(a33Tr(J) + aiax),
NaN3NyNs = NyN3(axnTr(J) + ajiass),
NyN3NyNe = NoN3(a1Tr(J) + axasz),
NaN3N5Ng = NaN3(az3Tr(J) + aran),
Ni1N2N3Ngy = N1NoN3(Tr(J) — azz),

N1N2N3Ns5s = N1NoN3(Tr(J) —ar),

NiN>2N3Ng = N{NoN3(Tr(J) —ap). So

az =1y + 18
=9aiax Tr(J) + anaz (2ay; + 2ax
+9a33 4 307 + 305 + 503) 4+ mymg
+moms + mamy

= (N1 + Ny 4 N3)azsTr?(J) + (9a12a21

+aiaxnNy — a§3N1 +aiianNy — a§3Nz
+ai1axn N3 — a33N3 + NiNrax + Ny Naaig
+N1Naazz + NiNzax + NiNzag
+N1N3asz + N2N3ax + NaNzap
+N2Nsazs + 3N, N2N3)Tr(J)

+anax (2a + 2ax + a3z + 3o
+303 +503) — ar1anazz(Ny + Ny + N3)
+N1Na(ariass + axnass + ajan)
+N1N3(ai1a33 + axazz + ajjaxn)
+N2N3(ar1a33 + axpasz + arjan)

We pose A = (N| + Ny + N3)ass,
B = (9a12a21 + ajjanNi — a3 Ny + ajjanN, —

a33 N2 +ai1anNs — a3y N3 + NiNaax + Ny Naaiy +
NiNyaz3+NiN3ax+NiNiaj +NiN3azz+NyNiax
+ NaNzaj; + NaNzazs + 3N1N2N3),

and C = ajpaz1(2aq1 + 2azy + 9azs + 30’12 + 30’22 +
503) — aianaz3 (N1 + N + N3) + NiNa(arjass +
axazz+ariaxp)+ NiNz(a1azz +axnasz +ayaxp) +
NaN3(aiiass + axpass + ajja).

So we canrewrite az asaz = ATr(J)2+BTr(J)+C.
The discriminant of the equation a3 = 0 is A = B> —
4AC.

If A=0,then Tr(J)* = —%. Therefore,

Tr(J) |—o0
sign of a3

Tr(J)* 400
signof A 0

sign of A
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If A > 0, then Tri(J) = (5¥2) and Try(J) =
(=858 5o

Tr(J) |—oo Tri(J) Tra(J) +oo
signof A 0

sign of a3 —signof A 0 signof A

Sign of Ay = asAz:

We have a4 = 13 + 19, With

3 = 211122051 — 2a12a21(NaN3 + NoNs + Na2Ng +
N3Ns + N3Ng + N5Ng),

T9 = (U3 — (11 — Y435 — 19 — U27 + Y33,

n3 = mime + moms + m3my,

11 = 2a12a21(N1Ng + N3Ng + NsNg + N1N3 +
N1Ns + N3Ns),

H19 = appaz;(my + miNyg),

pa7 = 2atya3,

So we can rewrite a3 as

as =13 + 19
= —ajpaz [2N2N3 + 2Ny N5 + 2N> Ng
+4(N3Ns + N5sNg + N3Ng)
+ 2N Ne + 2N1 N3 + 2N N5 + m» +m1N4]

+mime + moms + m3my,

with

NiNg = Ni(Tr(J)—a33); N1Ns = Ni(Tr(J)—ar1);
NiNg = Ni(Tr(J)—axn), NaNgy = No(Tr(J)—as3);
NoNs = No(Tr(J)—ai1); NaNe = No(Tr(J) —ax),
N3Ny = N3(Tr(J) — az3), N3Ns = N3(Tr(J) —
a11); N3Ng = N3(Tr(J) —ax); NsN¢ = az3Tr(J)+
apyaz; myme = N1N4gN5Ng + N2 NyNs5Ng

+ N3N4NsNg

moms = N{NoN4N5 + N{N»N4Ng + Ny NyNsNg +
N1N3N4N5+N{N3N4Ng+ N1 N3NsNg+ NrN3N4Ns
+ NoN3N4Ng + NaN3NsNg

m3m4 = N1N2N3N4g + NiNyN3Ngy + N1 NoN3Ng
N1N4N5Ng = az3sN1Tr*(J) + (a11aznNy — a3z N)
Tr(J) — anaxazzN

N2N4NsNg = az3sNoTr*(J) + (a11a N> — a;N2)
Tr(J) — anaxnaszzNy

N3N4N5Ng = az3sN3Tr*(J) + (a11azaN3 — a3z N3)
Tr(J) — anaxnaszzN3

NiN2N4Ns5s = NiNa(aaTr(J) + ar1as3)
NiN2N4Ng = NiNo(anTr(J) + axnas3)
N1N2N5sNg = NiNa(az3Tr(J) + ajran)
N1N3N4Ns = NiN3(axnTr(J) + ai1as3)
N1N3N4Ne = NiN3(anTr(J) + axnas3)
N1N3Ns5N¢ = N1N3(a33Tr(J) + arrazn)
NaN3N4Ns = NyN3(axnTr(J) + ajrass)

NaN3N4Ng = NoN3(anTr(J) + axass)
NoN3NsNg = NoN3(azzTr(J) + ajran)
NiNyN3Ny = N1NoN3(Tr(J) — az3)

N1N2N3Ns = NiNoN3(Tr(J) — arr)

Ni1Ny;N3Ng = N{NyN3(Tr(J) — app) From where,
we have:

ag = —a126121[2N2N3 + 2(N2(Tr(J) — an)) +
2(No(Tr(J)—ax)) +4(N3(Tr(J)—ai)+azTr(J)+
ayjapn + N3(Tr(J) — ax)) +2N(Tr(J) — axn) +
2N1N3+2N1(Tr(J)—a11)+m2+m1N4]+m1m6+
mams + m3my,

as = (Ni + N2 + N3)azsTr?(J) + BNiN2N3 +
a1 NiNy+a Ny Ny +a33 Ny Ny+ax Ny N3+a11 Ny N3
+a33sN1N3 + axxNaN3 + aj1NaN3 + azzNoN3 —
Sapaz1 Na— 9aipa21 N3 — Saipaz N1 — 4apaziass +
ayanNi — a3y N1+ arjan Ny — a3 No+ ajjan N3 —
a33N3)Tr(J) + ai1aszNiNa + anazzsNiNa + ajjax
N1Nz +ana33 N1 N3 +axaszz N1 N3 +aran N1 N3 +
ayazzNaN3+anaz3NaN3 +ayjaxn NyN3—ayjaxas;s

(N1+N2+N3)—(ai1+ax+azz) NYNa N3 —ajpa21 (2N N3 —

2a11 N2 — 2a Ny — 4a11N3 + 4ayaxp — 4an N3 —
2ay N1+ 2N{N3—2a;1 N1 +Ni N+ Ny N3+ NyN3—
az3Ny — a3z Ny — azzN3).

By setting new changes to variables, we have:

A = (N1 + N2 + N3)ass,

B = BN NaN3+ai NNy +anNiNy+azzNiNa+
a N1 N3 +ai1 N1 N3

+ a33NiN3 +anNaoN3 + aj1NaN3 + azzNaN3 —
Sapaz1 N2 — 9aipaz1 N3 —5aipaz N1 — 4apaziass +
arianNi — a3 Ni +aianNy —a3; Ny +ajjan Nz —
az;N3),

C = ajas3sNiNy + anazzsNi Ny + ajjanNiNy +
ayas3N1N3 + axaszz N1 N3 +ajjanNiN3 + ajrass
NoN3+axaszzNoN3 +ajaxaNaN3 —ajaxnasz(Ny+
No+N3)—(ar1+axn+aszz) N{N2 N3 —aipa21 (2N2 N3 —
2a11 N2 — 2a2 Ny — 4a11 N3 + 4ajax —4an N3 —
2a)pN1+2NiN3—2a11N1+ NN+ N1 N3+ NyN3 —
az3Ny — a3z Ny — azzN3).

Asay = ATr2(J) + BTr(J) + C, the associate dis-
criminant is given by A = B2 —4A x C. So,

If A =0,then Tr(J)* = —%. Therefore,

Tr(J) |—o0 Tr(J)* 400

sign of as signof A 0 signof A

If A >0, then (Tr(J))1 = (ZB=Y2) and (Tr(J)), =
(%). Therefore,

Tr(J) |—o0 (Tr(J)Nn (Tr(J))2 +00

sign of as sign of A 0 —signof A 0 sign of A
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Sign of As = asAy:

We will now study the sign of the coefficient as. To
do this, we transform as in the form of a quadratic

equation. We have as = 119 + w4, with
74 = 2ay2a21 (N2N3Ns + N2 N3 Ng
+NyNegNs + NgN3Ns)
+2a7,a3,a01 — 2aiya3) (N2 + Na) .
T10 = K12 — M4 + 120 + (28,
12 = N1N3Ng + N1 NgNs + N1 N3Ns + NgN3Ns,

H20 = —aizazy (m3 +myNy),
pas = —2aha3; (Ny + N3),
M4 = — (mameg + m3ms) ,

my = N{Np + NiN3 + N3N,
ms = N4yNs + N4sNg + N5Ne,
m3 = N1 N2 N3,
me = —N4N5Ng.
NyNeNs + N¢N3N5s = NeNs (N2 + N3)
= (N2 + N3) (an +aszz +ay —arn)
(a1 +asz3 +axn —axn)
= N2+ N3)(Tr(J) —an) (Tr(J) —axn)
= (N2 + N3)az3Tr(J) + (N2 + N3) ar1ax,
N2N3N5 + NaN3Ne = NaN3 (Ns + Ne)
= NoN3 (ax +azs + ary + asz)
= NaN3 (Tr(J) + as3)
= NoN3Tr(J) + NaN3azs,
Ny + N3 =N;+No+ N3 — N
= 2ay1 + 2a + 2a33 — 2a11 — 012
+ 612 + 022 + 032
=2Tr(J) + 05 +05 —2a; .
N

Therefore, we have
NoNgNs + N¢N3Ns = (N2 + N3) az3Tr(J)
+ (N2 + N3)anaz. (Al1)
After using (A11), we have
NyNgNs + NgN3Ns = 2a33Tr(J)?
+ 2ayiazn +axzN) Tr(J)
Finally, we get

7 = dapazaz Tr(J)?
————

H,

@ Springer

2 2
+ (ZalzazlN2N3+4a12a21a“a22+2 A ajpaz|asz —4a12a21)
Hy

Tr(J) + 2a%,a21a3; + 2a12a21a33N2 N3

Hj3

=H\Tr(J)> + HoTr(J) + Hs.

We transformed p17 as follows

N1N3Ng + N1 N3Ns = N1 N3 (N5 + Ne)
= N1N3 (axn + a3z + a1 + asz)
= NaN3 (Tr(J) + as3)
= NIN3Tr(J) + NiNzaszs,

NiNeNs + NeN3Ns = (N1 + N3) NsNg
= (N1 + N3)
(a2 +a33 +ai —an) (a1 + a3z +axn —an)
= N1+ N3)(Tr(J) —an) (Tr(J) —axn)
= (N1 + N3)az3Tr(J) + (N1 + N3) aj1a2,
(A12)

Ni 4 N3 = 2ay;1 + 2ax + 2a33 — 2ax + of + o

=2Tr(J) +of +0F —2an. (A13)
~—— ——
Al

Taking into account (A13) and (A12), we have

w2 = 2a3Tr(0)?* + | azs AL +N1 N3 + 2ar1a2 | Tr(J)
Hy
+ajjaxn A1 +N1N3ass . (Al4)

Hs

Namy = N1 (N2 4+ N3) Ny + N1NaNa
=N QTr(J) + A) (Tr(J) — az3)
+ NoN3 (Tr(J) — az3)
= 2N\ Tr(J)? + (Ny A +N2N3 — azzNy)

Tr(J) — a33(A + NaN3).
120 = —2Nyaraz Tr(J)?
— —

Hg
+ajpaz; (az3N1 — N1 A+NoN3) Tr(J)
Hy
+apazi (az3(A — NaN3) . (A15)

H
ms = N4Ns5 + 1§’4N6 + NgNs

= N4 (N5 + Ng) + N¢Ns

=Tr(J)* +anTr(J) +aaxn — ai,
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me = —N4N5Ng
= —a33Tr(J)2 + <a§3 — a11a22> Tr(J)
+azzaiaz,

my = N1 Ny + N1N3 + NaN3
= N1N2 + N3 (N1 + N2)

= NiNy + N3 | 2Tr(J) 4+ o} + 07 — 2a3;
N—
A2
=2N3Tr(J)+ NiNy+ N3 Ay

mame = —azzmaTr(J)? +my (a§3 — auazz) Tr(J)

+maazzaiiaz, (A16)

myms = m3Tr(J)* +m3a3Tr(J) + m3azzaraz.
(A17)

From (A16) and (A17), we have
pa = | axzma —m3 | Tr(J)?
[ —
Hy
+ | ma(aiiaxn — a§3) —azzms | Tr(J)
Hyo

+ a3y — m3aiaxn — myasanazn, (A18)

Hyy
pag = —2a7,a5; (N1 + Ny)

= —4a122c1%] Tr(J)+ Zalzza%l (2a22 - 012 + 032) .
N— —

Hia Hiz

(A19)
Finaly we get from (A19), (A18), (A15) and (A14),

as = (Hy + 2az3 — Ho + He) Tr(J)?

A
+ | H2+Hy—Ho+H;,+Hpp | Tr(J)
B
+ H3 + Hs + Hy1 + Hi3 + Hg
c

as = ATr(J)> + BTr(J) + C. (A20)

The associate discriminant is given by A = B> —4AC.
So,

If A =0, then Tr(J)* = —£;. Thus,

Tr(J) [—o0
sign of as

Tr(J)* 400
signof A 0

sign of A

If A >0, then (Tr(J))1 = (=E5/2) and (Tr(J)), =

(=BEY2) Thus,

Tr(J) |-o0 (Tr()1 (Tr(J1)):2 +00

sign of as sign of A 0 —sign of A 0 sign of A

Sign of Ag = agAs:
We have ag = 15 + 111, With

2 2
75 = 2a1,a5; N2 N3 — 2a12a21 N2 N3 N5 Ng
2 2
— 2a12a236121N2,

2 2
T1] = msmeg — 2a12a21N1N3N5N6 — 2a12a21N1N3,

On other hand, we have m3 = N{N;N3 and mg =
N4N5Ns. So, NaN3NsNg = NaN3(azTr(J) +
aia)
me = NyNsNe = (ar1 +axn)(axn +aszsz)(ai +azz) =
anTr(J)? + (anass — a,)Tr(J) — ayjaxnass So,
11 = apm3Tr(J)* + (an1az3m;
— a3ym3 — 2a11a21a33N1N3)Tr(J)
—aiaxassmsz — 2apaz1a11a22N1 N3
ormsme = apm3Tr(J)*+(anass —az)msTr(J)—
ayaxpassms,
75 = —2apariazzNoN3Tr(J) + 2a%2a%1N2N3
— 2at,a33N> — 2a11a12a22a21 N2 N2 N3
Moreover,
ag = apm3Tr(J)* + <011a33Wl3 — alym;
—2a1az1a33N1 N3 — 2a12a21a33N2N3) Tr(J)
—ayjaxpazzms — 2appaziaiia NiN3
—2a},a3 N\ N3 + 2a},a3, NaN3 — 2a%2a%3N2
—2ay1aipa2a21 Ny Na N3
We pose A = axpm3, B = ajjazzms — a§2m3 —
2an1a21a33N1 N3 — 2apaz1a33N2N3, and C = —ay
amazyms — 2apazananNiN3 — 2a3,a3, NiN3 +
261%261%1 NyN3 — 2a%2a%3N2 —2ay1a12a2a71 No Ny N3.
So,a¢ = ATr(J)>+ BTr(J)+ C. Then, the associate
discriminant A = B* — 4AC.
If A =0, then Tr(J)* = — ;. So,

Tr(J) |—o0
sign of ag

Tr(J)* 400
signof A 0

sign of A

@ Springer
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If A > 0, then (Tr(J)); = (=Y2) and (Tr(J))s =
(=B:/A) Thus,

Tr(J) |—oo (Tr()) (Tr(J))2 +oo
sign ofag sign of A 0 —sign of A 0 sign of A

Appendix B: Algorithm for estimation of extinction
probabilities and mean extinction times

Algorithm 1 ALGORITHM FOR ESTIMATION OF
EXTINCTION PROBABILITIES AND MEAN EXTINCTION

TIMES

Require: Initialization of model parameters

Require: Initialization of FPT,, FPTy, FPT, matrix of 0 of size
n X RN : First passage Time matrix

Require: Initialization of Cy, Cy, C; matrix of 10~
: count of first passage Time matrix
fori =1,2,---,RN do

Require:  Start with the initial values x¢ , yp and zo

for j=0,1,--- ,n—1do
Require: Generate three random numbers By ;, By ;j and B3
normally distributed over N(0,1)

Xj+yj Xjyj
Xj+1:Xj+|:er<1— J 'J>—/3 R4 j|Al+

10 of sizen x RN

k xj+)7j+a

O'szj' (BIZ,J. — 1)
O’lxj'Bl‘j\/At-l-iAt
Y+ =y + [ﬁﬁ—m—ﬁym] At +
’ xj+yit+a ’ ’

2 2

o5y (Bzvvfl)
UQijQTj«/AI-‘r%AZ
w1 =z + [ryzj—az]ar + oszByVar +

”321.1' (332./' - 1)
—= At
if x;11 <0 then

FPT:ij=xjt1, Crij=1

end if
if yjy1 <0 then

FPTy;j=yj+1  Cyij=1
end if
if Zj4+1 < 0 then

FPT.ij=xjr1  Cyij=1
end if
end for
end for
for j=1,2,--- ,ndo

Ly, Sum(FPTy 1:rN, |
Lej = Sum (Cerrn j) Poj = i Eyj= ST = 2
_ Ly . _ Sum(FPTy1rN.j)
Lyj = Sum (Cy1rn.j) Pyj = Tif Eyj= Ly
_ _ L _ Sum(FPT.1.rN.;)
L;j=Sum (CZ~11RN~J') Py =%y Euj=

end for v
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