Ian WallaceUniversity of Georgia | UGA · Complex Carbohydrate Research Center
Ian Wallace
PhD in Biochemistry and Molecular Biology, University of Tennessee, Knoxville
About
56
Publications
6,673
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,496
Citations
Introduction
Additional affiliations
November 2013 - May 2016
Publications
Publications (56)
Cellulose is an abundant component of plant cell wall matrices, and this para-crystalline polysaccharide is synthesized at the plasma membrane by motile Cellulose Synthase Complexes (CSCs). However, the factors that control CSC activity and motility are not fully resolved. In a targeted chemical screen, we identified the alkylated nojirimycin analo...
Cellulose is an abundant component of plant cell wall matrices, and this para-crystalline polysaccharide is synthesized at the plasma membrane by motile Cellulose Synthase Complexes (CSCs). However, the factors that control CSC activity and motility are not fully resolved. In a targeted chemical screen, we identified the alkylated nojirimycin analo...
Rhamnose is an essential component of the plant cell wall and is synthesized from uridine diphosphate (UDP)-glucose by the RHAMNOSE1 (RHM1) enzyme. RHM1 localizes to biomolecular condensates in plants, but their identity, formation, and function remain elusive. Combining live imaging, genetics, and biochemical approaches in Arabidopsis and heterolo...
Cellulose is an essential component of plant cell walls and an economically important source of food, paper, textiles, and biofuel. Despite its economic and biological significance, the regulation of cellulose biosynthesis is poorly understood. Phosphorylation and dephosphorylation of cellulose synthases (CESAs) were shown to impact the direction a...
During angiosperm sexual reproduction, pollen tubes must penetrate through multiple cell types in the pistil to mediate successful fertilization. Although this process is highly choreographed and requires complex chemical and mechanical signaling to guide the pollen tube to its destination, aspects of our understanding of pollen tube penetration th...
Cellulose is an economically important source of food, paper, textiles, and biofuel. As an essential component of plant cell walls, cellulose is critical for plant cell growth. Despite its economic and biological significance, the regulation of cellulose biosynthesis is poorly understood. Phosphorylation and dephosphorylation of cellulose synthases...
Posttranslational modifications (PTMs) are critical regulators of protein behavior, and over 200 different types of PTMs have been identified. Recent developments in mass spectrometry technology and sample enrichment approaches have led to a massive expansion in the number of identified PTM types and sites within eukaryotic proteins. As these types...
The common ancestor of seed plants and mosses contained homo-oligomeric cellulose synthase complexes (CSCs) composed of identical subunits encoded by a single CELLULOSE SYNTHASE (CESA) gene. Seed plants use different CESA isoforms for primary and secondary cell wall deposition. Both primary and secondary CESAs form hetero-oligomeric CSCs that assem...
In angiosperms, double fertilization requires pollen tubes to transport non-motile sperm to distant egg cells housed in a specialized female structure known as the pistil, mediating the ultimate fusion between male and female gametes. During this journey, the pollen tube encounters numerous physical barriers that must be mechanically circumvented,...
Background:
Phytohormones are small molecules that regulate virtually every aspect of plant growth and development; from basic cellular processes, such as cell expansion and division, to whole plant environmental responses. While the phytohormone levels and distribution thus tell the plant how to adjust itself, the corresponding growth alterations...
Double-fertilization in angiosperms requires precise communication between the male gametophyte (pollen), the female tissues, and the associated female gametophyte (embryo sac) to facilitate efficient fertilization. Numerous small molecules, proteins, and peptides have been shown to impact double-fertilization through the disruption of pollen germi...
Herbivorous insects can defend themselves against pathogens via an immune response, which is influenced by the nutritional quality and phytochemistry of the host plant. However, it is unclear how these aspects of diet interact to influence the insect immune response and what role is played by ingested foliar microbes. We examined dietary protein, p...
Post‐translational modifications (PTMs) are critical regulators of protein function, and nearly 200 different types of PTMs have been identified. Advances in high‐resolution mass spectrometry have led to the identification of an unprecedented number of PTM sites in numerous organisms, potentially facilitating a more complete understanding of how PT...
In seed plants, cellulose is synthesized by rosette‐shaped Cellulose Synthesis Complexes (CSCs) that are obligate hetero‐oligomeric, comprising three non‐interchangeable Cellulose Synthase (CESA) isoforms. The moss Physcomitrella patens has rosette CSCs and seven CESAs, but its common ancestor with seed plants had rosette CSCs and a single CESA gen...
Bombolitins, a class of peptides produced by bees of the genus Bombus, target and disrupt cellular membranes, leading to lysis. Antimicrobial peptides exhibit various mechanisms of action resulting from the interplay between peptide structure, lipid composition, and cellular target membrane selectivity. Herein, two bombolitins displaying significan...
Diverse mixtures of plant natural products play an important role in plant-herbivore-parasitoid interactions. In the pursuit of understanding these chemically-mediated interactions, we are often faced with the challenge of determining ecologically and biologically relevant compounds present in complex phytochemical mixtures. Using a network-based a...
Cellulose, the most abundant biopolymer on the planet, is synthesized at the plasma membrane of plant cells by the cellulose synthase complex (CSC). Cellulose is the primary load-bearing polysaccharide of plant cell walls and enables cell walls to maintain cellular shape and rigidity. The CSC is comprised of functionally distinct cellulose synthase...
Putative protein O-fucosyltransferases (POFTs) represent a large family of Glycosyl Transferase family 65 domain-containing proteins in land plants, with at least 39 proposed members in the Arabidopsis thaliana genome alone. We recently identified a member of this family, AtOFT1 (At3g05320), in which loss-of-function mutants display impaired sexual...
During pollen-pistil interactions in angiosperms, the male gametophyte (pollen) germinates to produce a pollen tube. To fertilize ovules located within the female pistil, the pollen tube must physically penetrate specialized tissues. Whereas the process of pollen tube penetration through the pistil has been anatomically well-described, the genetic...
Studies of herbivores and secondary consumer communities rarely incorporate a comprehensive characterization of primary producer trait variation, thus limiting our understanding of how plants mediate community assembly of consumers.
We took advantage of recent technological developments for efficient generation of phytochemical, microbial and genom...
Recently, it has been shown that nitrile derivatized phenylalanines possess distinct fluorescent properties depending on the position of the cyano- group within the aromatic ring. These fluorophores have potential as probes for studying protein dynamics due to their sensitivity to local environment. Herein, we demonstrate that 2-cyanophenylalanine...
Significance
Cellulose is the most abundant biopolymer on Earth and is a critical component for plants to grow and develop. Cellulose is synthesized by large cellulose synthase complexes containing multiple cellulose synthase A (CESA) subunits; however, how cellulose synthesis is regulated remains unclear. In this study, we identify BRASSINOSTEROID...
Plants show a rapid systemic response to a wide range of environmental stresses, where the signals from the site of stimulus perception are transmitted to distal organs to elicit plant-wide responses. A wide range of signaling molecules are trafficked through the plant, but a trio of potentially interacting messengers, reactive oxygen species (ROS)...
Plant cell walls are extracellular matrices that surround plant cells and critically influence basic cellular processes, such as cell division and expansion. Cellulose is a major constituent of plant cell walls, and this paracrystalline polysaccharide is synthesized at the plasma membrane by a large protein complex known as the cellulose synthase c...
The monosaccharide L-fucose (L-Fuc) is a common component of plant cell wall polysaccharides and other plant glycans, including the hemicellulose xyloglucan, pectic rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II), arabinogalactan proteins, and N-linked glycans. Mutations compromising the biosynthesis of many plant cell wall polysaccha...
This chapter reviews the current technologies available for identifying protein kinase-substrate relationships on a proteome scale as well as resources that organize and analyze these data. Computational techniques have been widely implemented to predict potentially phosphorylated amino acids in proteins and protein kinase-substrate interactions. T...
This chapter summarizes current views of how plants synthesize cellulose, how the deposition of cellulose occurs, and the known factors that regulate cellulose biosynthesis. It discusses how these processes influence plant development and how they may be manipulated in useful ways. The identification of bacterial cellulose synthase genes led to the...
In plants, cellulose biosynthesis is an essential process for anisotropic growth and therefore is an ideal target for inhibition. Based on the documented utility of small-molecule inhibitors to dissect complex cellular processes we identified a cellulose biosynthesis inhibitor (CBI), named acetobixan, by bio-prospecting among compounds secreted by...
Plant cell walls are the most abundant biomaterials on Earth and serve a multitude of purposes in human society. These complex extracellular matrices are mainly composed of polysaccharides, including cellulose, hemicelluloses, and pectins, which cannot be cytologically examined using conventional techniques. Click chemistry, which exploits a bio-or...
Plant cell walls are composed of interlinked polymer networks consisting of cellulose, hemicelluloses, pectins, proteins, and lignin. The ordered deposition of these components is a dynamic process that critically affects the development and differentiation of plant cells. However, our understanding of cell wall synthesis and remodeling, as well as...
Polysaccharide-rich cell walls are a defining feature of plants that influence cell division and growth, but many details of cell-wall organization and dynamics are unknown because of a lack of suitable chemical probes. Metabolic labeling using sugar analogs compatible with click chemistry has the potential to provide new insights into cell-wall st...
Annotation of the recently sequenced genome of the pea aphid (Acyrthosiphon pisum) identified a gene ApAQP2 (ACYPI009194, Gene ID: 100168499) with homology to the Major Intrinsic Protein/aquaporin superfamily of membrane channel proteins. Phylogenetic analysis suggests that ApAQP2 is a member of an insect-specific clade of this superfamily. Homolog...
Plant nodulin-26 intrinsic proteins (NIPs) are members of the aquaporin superfamily that serve as multifunctional transporters of uncharged metabolites. In Arabidopsis thaliana, a specific NIP pore subclass, known as the NIP II proteins, is represented by AtNIP5;1 and AtNIP6;1, which encode channel proteins expressed in roots and leaf nodes, respec...
Nodulin 26 (nod26) is a major intrinsic protein that constitutes the major protein component on the symbiosome membrane (SM) of N(2)-fixing soybean nodules. Functionally, nod26 forms a low energy transport pathway for water, osmolytes, and NH(3) across the SM. Besides their transport functions, emerging evidence suggests that high concentrations of...
Boron (B) in soil is taken up by roots through NIP5;1, a boric acid channel, and is loaded into the xylem by BOR1, a borate exporter. Here, the function of Arabidopsis thaliana NIP6;1, the most similar gene to NIP5;1, was studied. NIP6;1 facilitates the rapid permeation of boric acid across the membrane but is completely impermeable to water. NIP6;...
The osmotic pressure of plant phloem sap is generally higher than that of insect body fluids. Water cycling from the distal to proximal regions of the gut is believed to contribute to the osmoregulation of aphids and other phloem-feeding insects, with the high flux of water mediated by a membrane-associated aquaporin. A putative aquaporin referred...
The nodulin 26-like intrinsic protein family is a group of highly conserved multifunctional major intrinsic proteins that are unique to plants, and which transport a variety of uncharged solutes ranging from water to ammonia to glycerol. Based on structure-function studies, the NIP family can be subdivided into two subgroups (I and II) based on the...
Major intrinsic proteins (MIPs) are a diverse class of integral membrane proteins that facilitate the transport of water and some small solutes across cellular membranes. X-ray structures of MIPs indicate that a tetrad of residues (the ar/R region) form a narrow pore constriction that constitutes the selectivity filter. In comparison with mammalian...
Major intrinsic proteins (MIPs) are a family of membrane channels that facilitate the bidirectional transport of water and small uncharged solutes such as glycerol. The 35 full-length members of the MIP family in Arabidopsis are segregated into four structurally homologous subfamilies: plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic...
Soybean nodulin 26 is expressed and targeted to the symbiosome membrane of nitrogen-fixing nodules, where it forms an aquaporin channel with a modest water transport rate. In this study, we show that the phosphorylation of nodulin 26 on Ser-262, which is catalyzed by a symbiosome membrane-associated calcium-dependent protein kinase, stimulates its...
The nodulin-like intrinsic protein (NIP) subfamily of water and solute channels in plants is named for nodulin 26 of legume nodules. Two NIPs, soybean nodulin 26 and Lotus japonicus LIMP2, show a distinct functional profile with a low intrinsic osmotic water permeability (P(f)) and the ability to flux uncharged polyols such as glycerol. NIPs have a...