Ian John Russell

Ian John Russell
  • PhD
  • University of Brighton

About

175
Publications
18,844
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,266
Citations
Current institution
University of Brighton

Publications

Publications (175)
Article
Full-text available
Sensory hair cells, including the sensorimotor outer hair cells, which enable the sensitive, sharply tuned responses of the mammalian cochlea, are excited by radial shear between the organ of Corti and the overlying tectorial membrane. It is not currently possible to measure directly in vivo mechanical responses in the narrow cleft between the tect...
Article
Outer hair cells (OHCs) of the organ of Corti (OoC), acting as bidirectional cellular mechanoelectrical transducers, generate, receive, and exchange forces with other major elements of the cochlear partition, including the sensory inner hair cells (IHCs). Force exchange is mediated via a supporting cell scaffold, including Deiters’ (DC) and outer p...
Preprint
Full-text available
Cochlear outer hair cells (OHCs), acting as bidirectional cellular mechanoelectrical-transducers, generate, receive, and exchange forces with other major elements of the cochlear partition, including inner hair cells (IHCs). Force exchange is mediated via a supporting cell scaffold, including Deiters’ (DC) and outer pillar cells (OPC), to enable th...
Preprint
Full-text available
Sensory hair cells, including the sensorimotor outer hair cells, which enable the sensitive, sharply tuned responses of the mammalian cochlea, are excited by radial shear between the organ of Corti and the overlying tectorial membrane. It is not currently possible to measure directly in vivo mechanical responses in the narrow cleft between the tect...
Article
Cochlear amplification enables the enormous dynamic range of hearing through amplifying cochlear responses to low- to moderate-level sounds and compressing them to loud sounds. Amplification is attributed to voltage-dependent electromotility of mechanosensory outer hair cells (OHCs) driven by changing voltages developed across their cell membranes....
Article
Full-text available
Male mosquitoes detect and localize conspecific females by their flight-tones using the Johnston's organ (JO), which detects antennal deflections under the influence of local particle motion. Acoustic behaviours of mosquitoes and their JO physiology have been investigated extensively within the frequency domain, yet the auditory sensory range and t...
Article
Cochlear sensitivity, essential for communication and exploiting the acoustic environment, results from sensory-motor outer hair cells (OHCs) operating in a structural scaffold of supporting cells and extracellular cortilymph within the organ of Corti (OoC). Cochlear sensitivity control is hypothesized to involve interaction between the OHCs and Oo...
Preprint
Full-text available
Cochlear amplification, whereby cochlear responses to low-to-moderate sound levels are amplified and compressed to loud sounds, is attributed to outer hair cell (OHC) electromotility driven by voltage changes across the OHC basolateral membranes due to sound-induced receptor-current modulation. Cochlear operation at high acoustic frequencies is eni...
Preprint
The cochlea's inaccessibility and complex nature provide significant challenges to delivering drugs and other agents uniformly, safely and efficiently, along the entire cochlear spiral. Large drug concentration gradients are formed along the cochlea when drugs are administered to the middle ear. This undermines the major goal of attaining therapeut...
Article
Full-text available
The cochlea’s inaccessibility and complex nature provide significant challenges to delivering drugs and other agents uniformly, safely and efficiently, along the entire cochlear spiral. Large drug concentration gradients are formed along the cochlea when drugs are administered to the middle ear. This undermines the major goal of attaining therapeut...
Preprint
Full-text available
We used optogenetics to investigate the control of auditory sensitivity by cochlear supporting cells that scaffold outer hair cells, which transduce and amplify cochlear responses to sound. In vivo and in vitro measurements of sound-induced cochlear mechanical and electrical responses were made from mice that conditionally expressed nonselective ca...
Preprint
Full-text available
Cochlear sensitivity, essential for communication and exploiting the acoustic environment, is due to the sensory-motor outer hair cells (OHCs) that operate in the structural scaffold of supporting cells and extracellular spaces in the cochlear organ of Corti (OoC). It is unclear whether supporting cells (e.g., Deiters cells [DCs] and outer pillar c...
Preprint
Full-text available
Cochlear sensitivity, essential for communication and exploiting the acoustic environment, is due to the sensory-motor outer hair cells (OHCs) that operate in the structural scaffold of supporting cells and extracellular spaces in the cochlear organ of Corti (OoC). It is unclear whether supporting cells (e.g., Deiters cells [DCs] and outer pillar c...
Article
Full-text available
The detection of different frequencies in sound is accomplished with remarkable precision by the basilar membrane (BM), an elastic, ribbon-like structure with graded stiffness along the cochlear spiral. Sound stimulates a wave of displacement along the BM with maximal magnitude at precise, frequency-specific locations to excite neural signals that...
Article
Full-text available
Sensing surfaces like a mosquito Although sonar or lidar are used by autonomous vehicles to detect nearby objects, these approaches incur significant equipment and signal-processing costs. Nakata et al. show that mosquitos detect surfaces using the flow fields caused by the movement of their own wings (see the Perspective by Young and Garratt). Nea...
Article
Full-text available
The mammalian cochlea is one of the least accessible organs for drug delivery. Systemic administration of many drugs is severely limited by the blood-labyrinth barrier. Local intratympanic administration into the middle ear would be a preferable option in this case, and the only option for many newly emerging classes of drugs, but it leads to the f...
Preprint
Full-text available
The mammalian cochlea is one of the least accessible organs for drug delivery. Systemic administration of many drugs is severely limited by the blood-labyrinth barrier. Local intratympanic administration into the middle ear would be a preferable option in this case and the only option for many old and newly emerging classes of drugs but it leads to...
Article
Full-text available
Intratympanic drug administration depends on the ability of drugs to pass through the round window membrane (RW) at the base of the cochlea and diffuse from this location to the apex. While the RW permeability for many different drugs can be promoted, passive diffusion along the narrowing spiral of the cochlea is limited. Earlier measurements of th...
Article
Full-text available
The ear of extant vertebrates reflects multiple independent evolutionary trajectories. Examples include the middle ear or the unique specializations of the mammalian cochlea. Another striking difference between vertebrate inner ears concerns the differences in the magnitude of the endolymphatic potential. This differs both between the vestibular an...
Article
Full-text available
Recent work has demonstrated that transmembrane channel-like 1 protein (TMC1) is an essential component of the sensory transduction complex in hair cells of the inner ear. A closely related homolog, TMC2, is expressed transiently in the neonatal mouse cochlea and can enable sensory transduction in Tmc1-null mice during the first postnatal week. Bot...
Conference Paper
Accelerated age-related-hearing-loss disrupts high-frequency hearing in inbred CD-1 mice. The p.Ala88Val (A88V) mutation in the gene coding for the gap-junction protein connexin30 (Cx30) protects the cochlear basal turn of adult CD-1Cx30A88V/A88V mice from degeneration and rescues hearing. Here we report the passive compliance of the cochlear parti...
Article
Full-text available
Hearing organs, being sound detectors, must obey the general laws of physics. In this sense, physics imposes limits for evolution but does not direct it as such or necessarily leads to the selection of one “optimum design.” Vertebrate hearing organs arose from preexisting vestibular sensory epithelia that, over hundreds of millions of years, were s...
Article
Full-text available
The mating behaviour of many mosquito species is mediated essentially by sound: males follow and mate with a female mid-flight by detecting and tracking the whine of her flight-tones. The stereotypical rapid frequency modulation (RFM) male behaviour, initiated in response to the detection of the female's flight-tones, has provided a means of invest...
Article
Full-text available
The sharp frequency tuning and exquisite sensitivity of the mammalian cochlea is due to active forces delivered by outer hair cells (OHCs) to the cochlear partition. Force transmission is mediated and modulated by specialized cells, including Deiters’ cells (DCs) and pillar cells (PCs), coupled by gap-junctions composed of connexin 26 (Cx26) and Cx...
Article
Full-text available
The origin of ripples in distortion product otoacoustic emission (DPOAE) amplitude which appear at specific DPOAE frequencies during f 1 tone sweeps using fixed high frequency f 2 (>20 kHz) in guinea pigs is investigated. The peaks of the ripples, or local DPOAE amplitude maxima, are separated by approximately half octave intervals and are accompan...
Article
The origin of ripples in distortion product otoacoustic emission (DPOAE) amplitude which appear at specific DPOAE frequencies during f1 tone sweeps using fixed high frequency f2 (>20 kHz) in guinea pigs is investigated. The peaks of the ripples, or local DPOAE amplitude maxima, are separated by approximately half octave intervals and are accompanie...
Article
Full-text available
Nature Communications 8 : Article number: 14530 10.1038/ncomms14530 ( 2017 ); Published 21 February 2017 ; Updated 21 March 2017 The financial support for this Article was not fully acknowledged.
Article
Full-text available
Accelerated age-related hearing loss disrupts high-frequency hearing in inbred CD-1 mice. The p.Ala88Val (A88V) mutation in the gene coding for the gap-junction protein connexin30 (Cx30) protects the cochlear basal turn of adult CD-1Cx30A88V/A88V mice from degeneration and rescues hearing. Here we report that the passive compliance of the cochlear...
Article
Full-text available
We reveal that males of two members of the Anopheles gambiae s.l. species complex, Anopheles coluzzii and Anopheles gambiae s.s. (hereafter A. gambiae), which are both malaria vectors, perform a stereotypical acoustic behaviour in response to pure tones at frequencies that encompass the frequency range of the female's flight-tones. This behaviour r...
Article
Full-text available
We describe a new stereotypical acoustic behaviour by male mosquitoes in response to the fundamental frequency of female flight-tones during mating sequences. This male-specific free-fight behaviour consists of phonotactic flight beginning with a steep increase in wing-beat frequency (WBF) followed by Rapid Frequency Modulation (RFM) of WBF in the...
Article
The tectorial membrane (TM) of the mammalian cochlea is a complex extracellular matrix which, in response to acoustic stimulation, displaces the hair bundles of outer hair cells (OHCs), thereby initiating sensory transduction and amplification. Here, using TM segments from the basal, high-frequency region of the cochleae of genetically modified mic...
Conference Paper
Full-text available
The round window membrane (RW) provides pressure relief when the cochlea is excited by sound. While normal function of the RW is important for effective stimulation of the cochlea through the conventional oval window route, the cochlea can be stimulated successfully in non-conventional ways (e.g. through bone conduction, through the RW, and through...
Conference Paper
The remarkable sensitivity, frequency selectivity, and dynamic range of the mammalian cochlea relies on longitudinal transmission of minuscule amounts of energy as passive, pressure-driven, basilar membrane (BM) traveling waves which are actively amplified at frequency-specific locations. Transmission of passive waves through viscous tissue situate...
Article
Full-text available
The round window (RW) membrane provides pressure relief when the cochlea is excited by sound. Here, we report measurements of cochlear function from guinea pigs when the cochlea was stimulated at acoustic frequencies by movements of a miniature magnet which partially occluded the RW. Maximum cochlear sensitivity, corresponding to subnanometre magne...
Chapter
This chapter is centered on the proposal that evolutionary changes in prestin provide the basis for the amplifying, impedance-matching, molecular link that harnesses the outer hair cells (OHCs) of the mammalian cochlea, via specialized supporting cells of the organ of Corti, to the enormous frequency range of the mechanically tuned basilar membrane...
Article
The remarkable sensitivity, frequency selectivity, and dynamic range of the mammalian cochlea relies on longitudinal transmission of minuscule amounts of energy as passive, pressure-driven, basilar membrane (BM) traveling waves. These waves are actively amplified at frequency-specific locations by a mechanism that involves interaction between the B...
Article
Full-text available
The gene causative for the human nonsyndromic recessive form of deafness DFNB22 encodes otoancorin, a 120-kDa inner ear-specific protein that is expressed on the surface of the spiral limbus in the cochlea. Gene targeting in ES cells was used to create an EGFP knock-in, otoancorin KO (Otoa(EGFP/EGFP)) mouse. In the Otoa(EGFP/EGFP) mouse, the tector...
Article
Full-text available
Our current understanding of the mating game for many mosquito species is that males aggregate in noisy mating swarms and listen with their Johnston's organs (JOs) for the deeper flight tones of approaching females, to which they are attracted. As has been demonstrated, at least for the most intensely studied vector species, the mechanical resonanc...
Article
Full-text available
We demonstrate that in Otoa −/− mice, in which the inner‐ear‐specific protein otoancorin is absent, excitation of the outer hair cells and cochlear amplification is normal. This finding is remarkable because the tectorial membrane (TM), although remaining functionally attached to the outer hair cell bundles, is completely detached from the spir...
Article
Full-text available
The round window membrane (RW) functions as a pressure relief valve in conventional hearing allowing structures of the middle ear to move. Investigations in recent years have shown that middle ear implants can be used to stimulate the cochlea via the RW. Isolated clinical uses of this technique have been applied but more thorough theoretical and e...
Article
Full-text available
It has been predicted that a nonfunctional prestin in the mammalian cochlea would produce a basilar membrane response at lower characteristic frequency, as we see in the prestin knock-out mouse, but with a reduced sensitivity that would reflect an enhanced coupling between basilar membrane and reticular lamina and inner hair cell stereocilia. We de...
Article
Full-text available
The visco-elastic properties of the tectorial membrane (TM) can be determined by measuring the propagation velocity of travelling waves over a range of frequencies. This study presents a new method using laser interferometry and compares the TM's material properties (sheer storage modulus, G' and viscosity, ɛ) at basal and apical locations in wild-...
Article
The sensory hair cells of amniote hearing organs are usually distributed in tonotopic array from low to high frequencies and are very sensitively and sharply tuned to acoustic stimulation. Frequency tuning and tonotopicity of non-mammalian auditory hair cells is due largely to intrinsic properties of the hair cells [1], but frequency tuning and ton...
Article
Full-text available
The mammalian inner ear contains sense organs responsible for detecting sound, gravity and linear acceleration, and angular acceleration. Of these organs, the cochlea is involved in hearing, while the sacculus and utriculus serve to detect linear acceleration. Recent evidence from birds and mammals, including humans, has shown that the sacculus, a...
Article
Full-text available
Mosquitoes are more sensitive to sound than any other insect due to the remarkable properties of their antennae and Johnston's organ at the base of each antenna. Male mosquitoes detect and locate female mosquitoes by hearing the female's flight tone, but until recently we had no idea that females also respond to male flight tones. Our investigation...
Article
Full-text available
The design principles and specific proteins of the dynein-tubulin motor, which powers the flagella and cilia of eukaryotes, have been conserved throughout the evolution of life from algae to humans. Cilia and flagella can support both motile and sensory functions independently, or sometimes in parallel to each other. In this paper we show that this...
Article
Full-text available
The primary auditory cortex (AI) of adult Pteronotus parnellii features a foveal representation of the second harmonic constant frequency (CF2) echolocation call component. In the corresponding Doppler-shifted constant frequency (DSCF) area, the 61 kHz range is over-represented for extraction of frequency-shift information in CF2 echoes. To assess...
Article
Full-text available
Anopheles gambiae, responsible for the majority of malaria deaths annually, is a complex of seven species and several chromosomal/molecular forms. The complexity of malaria epidemiology and control is due in part to An. gambiae's remarkable genetic plasticity, enabling its adaptation to a range of human-influenced habitats. This leads to rapid ecol...
Chapter
Recent observations have changed our understanding of tectorial membrane function. Transgenic mice have shown that the tectorial membrane is a structure that can influence the sensitivity and tuning properties of the cochlea in several ways. It ensures that the gain and timing of cochlear feedback are optimal; that the hair bundles of the inner hai...
Article
Sensory processing in the cochlea is initiated when the hair cells respond to excitation by generating receptor potentials. Sensory transduction takes place in the organ of Corti, a strip of sensory epithelium consisting of a single row of inner hair cells (IHCs) and three rows of outer hair cells (OHCs) sandwiched between two extracellular matrice...
Article
This review is concerned with experimental results that reveal multiple roles for the tectorial membrane in active signal processing in the mammalian cochlea. We discuss the dynamic mechanical properties of the tectorial membrane as a mechanical system with several degrees of freedom and how its different modes of movement can lead to hair-cell exc...
Article
Full-text available
Sexual recognition through wing-beat frequency matching was first demonstrated in Toxorhynchites brevipalpis, where wing-beat frequencies of males and females are similar. Here we show frequency matching in Culex quinquefasciatus, where the wing-beat frequencies of males and females differ considerably. The wing-beat frequencies converge not on the...
Article
The driver responsible for spontaneous oscillations of the mosquito (Culex quinquefasciatus) antennae was investigated. The activation energy derived from the temperature dependence of the spontaneous oscillation frequency is 30 kJ/mol suggesting a dynein ATPase is responsible. Colchicine application abolished spontaneous oscillations but left tran...
Article
A tenet of cochlear physiology is that sharp tuning and sensitivity are directly interrelated. Here we show a reciprocal interdependence between tuning and sensitivity in the mammalian cochlea from measurements of basilar membrane (BM) mechanical tuning and neural suppression tuning curves of wild-type (Tectb+/+) and beta-tectorin mutant (Tectb-/-)...
Article
The sensitivity, large dynamic range and narrow frequency tuning of the mammalian cochlea is determined by the passive mechanical properties of the basilar membrane (BM) and active feedback from the outer hair cells (OHCs). Two mechanisms have been proposed to provide amplification: Hair bundle motility, and OHC somatic-motility. Acoustically- and...
Article
The motor protein prestin in the outer hair cells is a prime candidate for the molecular amplifier that ensures the sensitivity, frequency tuning and dynamic range of the mammalian cochlea. Absence of prestin results in a 40-60 dB reduction in cochlear neural sensitivity. Here we show that sound-evoked basilar membrane (BM) vibrations in the basal...
Article
The review is both timely and relevant, as recent findings have shown the tectorial membrane plays a more dynamic role in hearing than hitherto suspected, and that many forms of deafness can result from mutations in tectorial membrane proteins. Main themes covered are the molecular composition, the structural organization and properties of the tect...
Article
Full-text available
Sensitivity, dynamic range and frequency tuning of the cochlea are attributed to amplification involving outer hair cell stereocilia and/or somatic motility. We measured acoustically and electrically elicited basilar membrane displacements from the cochleae of wild-type and Tecta(DeltaENT/DeltaENT) mice, in which stereocilia are unable to contribut...
Article
Full-text available
Electrically evoked otoacoustic emissions are sounds emitted from the inner ear when alternating current is injected into the cochlea. Their temporal structure consists of short- and long-delay components and they have been attributed to the motile responses of the sensory-motor outer hair cells of the cochlea. The nature of these motile responses...
Article
The remarkable power amplifier [1] of the cochlea boosts low-level and compresses high-level vibrations of the basilar membrane (BM) [2]. By contributing maximally at the characteristic frequency (CF) of each point along its length, the amplifier ensures the exquisite sensitivity, narrow frequency tuning, and enormous dynamic range of the mammalian...
Chapter
With notable exceptions such as the hair cells of the bullfrog amphibian papilla (Flock and Flock 1966), outer hair cells of the cochlea of the horseshoe bats (Rhinolophidae) and Hipposideros (Bruns and Schmieszek 1980; Vater et al. 1992), and the entire outer hair-cell region of the mole rat (Spalax ehrenbergi, Raphael et al. 1991), the mechanosen...
Article
It was first suggested by Gold in 1948 [1] that the exquisite sensitivity and frequency selectivity of the mammalian cochlea is due to an active process referred to as the cochlear amplifier. It is thought that this process works by pumping energy to augment the otherwise damped sound-induced vibrations of the basilar membrane [2-4], a mechanism kn...
Article
Full-text available
Frequency tuning in the cochlea is determined by the passive mechanical properties of the basilar membrane and active feedback from the outer hair cells, sensory-effector cells that detect and amplify sound-induced basilar membrane motions. The sensory hair bundles of the outer hair cells are imbedded in the tectorial membrane, a sheet of extracell...
Article
Mechanically coupled cochlear structures are likely to form a resonator with several degrees of freedom. Consequently one can expect complex, frequency-dependent relative movements between these structures, particularly between the tectorial membrane and reticular lamina. Shearing movement between these two structures excites the cochlear receptors...
Article
Mosquitoes hear with their antennae, which in most species are sexually dimorphic. Johnston, who discovered the mosquito auditory organ at the base of the antenna 150 years ago, speculated that audition was involved with mating behaviour. Indeed, male mosquitoes are attracted to female flight tones. The male auditory organ has been proposed to act...
Article
A laser-diode forms the basis of a displacement sensitive homodyne interferometer suitable for measurements from poorly reflective surfaces. The compact and cost-effective interferometer utilizes the self-mixing effect when laser light reflected from a moving target re-enters the laser cavity and causes phase dependent changes of the lasing intensi...
Article
Full-text available
Alpha-tectorin (encoded by Tecta) is a component of the tectorial membrane, an extracellular matrix of the cochlea. In humans, the Y1870C missense mutation in TECTA causes a 50- to 80-dB hearing loss. In transgenic mice with the Y1870C mutation in Tecta, the tectorial membrane's matrix structure is disrupted, and its adhesion zone is reduced in thi...
Article
Distortion product otoacoustic emissions (DPOAEs) were recorded from guinea pigs in response to simultaneous increases in the levels of high frequency primary tones in the presence of a low frequency biasing tone of 30 Hz at 120 dB SPL. The DPOAE amplitudes plotted as functions of the biasing tone phase angle show distinctive repeatable minima, whi...
Article
Up to four link types are found between the stereocilia of chick vestibular hair bundles: tip links, horizontal top connectors, shaft connectors and ankle links. A fifth type, the kinocilial link, couples the hair bundle to the kinocilium. Brownian-motion microinterferometry was used to study the mechanical properties of the hair bundle and investi...
Article
Full-text available
Distortion product otoacoustic emissions (DPOAE) were recorded from wild-type mice and mutant Tecta(deltaENT/deltaENT) mice with detached tectorial membranes (TM) under combined ketamine/xylaxine anesthesia. In Tecta(deltaENT/deltaENT) mice, DPOAEs could be detected above the noise floor only when the levels of the primary tones exceeded 65 dB SPL....
Article
Full-text available
Cochlear microphonic potentials (CMs) were recorded from the sharply tuned, strongly resonant auditory foveae of 1- to 5-week-old mustached bats that were anesthetized with Rompun and Ketavet. The fovea processes Doppler-shifted echo responses of the constant-frequency component of echolocation calls. During development, the frequency and tuning sh...
Article
Full-text available
Cochlear microphonic potential (CM) was recorded from the CF2 region and the sparsely innervated zone (the mustached bat's cochlea fovea) that is specialized for analyzing the Doppler-shifted echoes of the first-harmonic (approximately 61 kHz) of the constant-frequency component of the echolocation call. Temporal analysis of the CM, which is tuned...
Article
Full-text available
Postnatal development of the mustached bat's cochlea was studied by measuring cochlear microphonic and compound action potentials. In adults, a cochlear resonance is involved in enhanced tuning to the second harmonic constant frequency component (CF2) of their echolocation calls at approximately 61 kHz This resonance is present immediately after bi...
Article
Full-text available
Adult mustached bats employ Doppler-sensitive sonar to hunt fluttering prey insects in acoustically cluttered habitats. The echolocation call consists of 4-5 harmonics, each composed of a long constant frequency (CF) component flanked by brief frequency modulations (FM). The 2nd harmonic CF component (CF2) at 61 kHz is the most intense, and analyze...
Article
Full-text available
The mammalian cochlea is a structure comprising a number of components connected by elastic elements. A mechanical system of this kind is expected to have multiple normal modes of oscillation and associated resonances. The guinea pig cochlear mechanics was probed using distortion components generated in the cochlea close to the place of overlap bet...
Article
2f1-f2 DPOAEs were recorded from guinea pigs during the first 500-ms of stimulation. DPOAEs showed complex time dependence, decreasing or increasing, depending on both the frequencies and levels of the primary tones. These changes are closely associated with a shift of the amplitude minima (notches) of the DPOAE I/O functions. Temporal changes in D...
Article
Full-text available
2f1-f2 distortion product otoacoustic emissions (DPOAEs) were recorded from guinea pigs. DPOAEs showed complex time dependence at the onset of stimulation. The DPOAE, measured during the first 500 ms, can either decrease or increase at the onset depending on both the frequencies and levels of the primary tones. These changes are closely associated...
Article
Full-text available
Distortion product otoacoustic emissions (DPOAE) elicited by tones below 60-70 dB sound pressure level (SPL) are significantly more sensitive to cochlear insults. The vulnerable, low-level DPOAE have been associated with the postulated active cochlear process, whereas the relatively robust high-level DPOAE component has been attributed to the passi...
Article
Full-text available
For low and medium sound pressure levels (SPLs), the amplitude of the distortion product otoacoustic emission (DPOAE) recorded from guinea pigs at the 2f1-f2 frequency is maximal when f2/f1 approximately 1.23 and decreases for lower and higher f2/f1 ratios. The high-ratio slope of the DPOAE dependence on the ratio of the primary frequencies might b...
Article
This paper provides theoretical estimates for the forces of electrostatic interaction between adjacent stereocilia in auditory and vestibular hair cells. Estimates are given for parameters within the measured physiological range using constraints appropriate for the known geometry of the hair bundle. Stereocilia are assumed to possess an extended,...
Article
This paper is based on our model [Dolgobrodov et al., 2000. Hear. Res., submitted for publication] in which we examine the significance of the polyanionic surface layers of stereocilia for electrostatic interaction between them. We analyse how electrostatic forces modify the mechanical properties of the sensory hair bundle. Different charge distrib...
Article
alpha-tectorin is an extracellular matrix molecule of the inner ear. Mice homozygous for a targeted deletion in a-tectorin have tectorial membranes that are detached from the cochlear epithelium and lack all noncollagenous matrix, but the architecture of the organ of Corti is otherwise normal. The basilar membranes of wild-type and alpha-tectorin m...
Article
In the mammalian cochlea, the basilar membrane's (BM) mechanical responses are amplified, and frequency tuning is sharpened through active feedback from the electromotile outer hair cells (OHCs). To be effective, OHC feedback must be delivered to the correct region of the BM and introduced at the appropriate time in each cycle of BM displacement. T...
Article
This paper describes the pattern of f2-f1 and 2 f1-f2 components at the output of the nonlinear hair cell mechanoelectrical transducer when the input consists of two sinusoidal signals. The mechanoelectrical transducer was represented by a second-order Boltzmann function. It is shown that some experimental observations, which have been cited to pro...
Article
Mormoopid bat species have their echolocation system adapted to different hunting strategies. To study the corresponding mechanical properties of their inner ear, we measured distortion-product otoacoustic emissions to assess cochlear sensitivity and tuning. Mormoops blainvillii, Pteronotus macleayii and P. quadridens use frequency-modulated echolo...
Article
Electromotile outer hair cell (OHC) feedback provides the sensitivity and sharp frequency tuning of the cochlea. Basilar membrane displacements in response to characteristic frequency (CF) tones were measured with an interferometer at up to 15 locations across the basilar membrane width in the basal turn of the guinea pig cochlea. For CF tones, bas...
Article
Full-text available
An extended region of the greater mustached bat's cochlea, the sparsely innervated (SI) zone, is located just basally to the frequency place of the dominant 61-kHz component of the echolocation signal (CF2). Anatomic adaptations in the SI zone are thought to provide the basis for cochlear resonance to the CF2 echoes and for the extremely sharp tuni...
Article
Electromotile outer hair cell (OHC) feedback provides the sensitivity and sharp frequency tuning of the cochlea. Basilar membrane displacements in response to characteristic frequency (CF) tones were measured with an interferometer at up to 15 locations across the basilar membrane width in the basal turn of the guinea pig cochlea. For CF tones, bas...
Article
An extended region of the greater mustached bat's cochlea, the sparsely innervated (SI) zone, is located just basally to the frequency place of the dominant 61-kHz component of the echolocation signal (CF2). Anatomic adaptations in the SI zone are thought to provide the basis for cochlear resonance to the CF2 echoes and for the extremely sharp tuni...
Article
The large dynamic range of the auditory system is due to processes within the cochlea which amplify low?level and compress high?level signals. Both the amplification and compression are associated with outer hair cell function and are reflected in their voltage responses to tones. Outer hair cells control the mechanical properties of the cochlear p...
Article
This paper describes a model for generating the hair cell receptor potential based on a second-order Boltzmann function. The model includes only the resistive elements of the hair cell membranes with batteries across them and the series resistance of the external return path of the transducer current through the tissue of the cochlea. The model pro...
Article
The fast outer hair cell (OHC) electromotility is voltage dependent and is driven by changes in the OHC transmembrane potential. Those changes include the receptor potential generated by the variable conductance of the mechanoelectrical transducer (Evans and Dallos, 1993). In the experiments described here, we show that the voltage dependence of th...

Network

Cited By