Ian Daly

Ian Daly
University of Essex · School of Computer Science and Electronic Engineering

PhD, M.Eng

About

113
Publications
27,744
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,730
Citations
Additional affiliations
October 2016 - present
University of Essex
Position
  • Lecturer
April 2013 - September 2016
University of Reading
Position
  • PostDoc Position
May 2009 - December 2010
University of Reading
Position
  • Research Assistant
Education
October 2007 - July 2011
University of Reading
Field of study
  • Cybernetics

Publications

Publications (113)
Article
Full-text available
Neuroimaging studies have reported the possibility of semantic neural decoding to identify specific semantic concepts from neural activity. This offers promise for brain-computer interfaces (BCIs) for communication. However, translating these findings into a BCI paradigm has proven challenging. Existing EEG-based semantic decoding studies often rel...
Article
Objective: Event-related potentials (ERPs) reflect electropotential changes within specific cortical regions in response to specific events or stimuli during cognitive processes. The P300 speller is an important application of ERP-based brain-computer interfaces (BCIs), offering potential assistance to individuals with severe motor disabilities by...
Poster
Full-text available
Speech Imagery (SI) is considered an intuitive paradigm for Brain-Computer Interface designs in particular for communication applications. In this work, we use Electroencephalography (EEG) for offline SI decoding. We recorded covert speech from 17 participants. We tested two types of wavelet decomposition techniques. Specifically, we considered coe...
Article
Event-related potentials (ERPs) reflect neurophysiological changes of the brain in response to external events and their associated underlying complex spatiotemporal feature information is governed by ongoing oscillatory activity within the brain. Deep learning methods have been increasingly adopted for ERP-based brain-computer interfaces (BCIs) du...
Article
Brain-Computer interface (BCI) technology enables the control of external devices by recognizing user intentions. Steady-state visual evoked potential (SSVEP)-based BCI technology has been widely applied in the field of Internet of things (IoT) device control, including smart healthcare, smart homes, and robotics, and has achieved significant resul...
Article
Learning distinguishable features from raw EEG signals is crucial for accurate classification of motor imagery (MI) tasks. To incorporate spatial relationships between EEG sources, we developed a feature set based on an EEG graph. In this graph, EEG channels represent the nodes, with power spectral density (PSD) features defining their properties,...
Article
Full-text available
Motor imagery (MI) is a popular paradigm for controlling electroencephalogram (EEG) based Brain-Computer Interface (BCI) systems. Many methods have been developed to attempt to accurately classify MI-related EEG activity. Recently, the development of deep learning has begun to draw increasing attention in the BCI research community because it does...
Article
Full-text available
Neural decoding models can be used to decode neural representations of visual, acoustic, or semantic information. Recent studies have demonstrated neural decoders that are able to decode accoustic information from a variety of neural signal types including electrocortiography (ECoG) and the electroencephalogram (EEG). In this study we explore how f...
Article
Full-text available
Multi-channel electroencephalography (EEG) is used to capture features associated with motor imagery (MI) based brain-computer interface (BCI) with a wide spatial coverage across the scalp. However, redundant EEG channels are not conducive to improving BCI performance. Therefore, removing irrelevant channels can help improve the classification perf...
Article
Full-text available
Museums have widely embraced virtual exhibits. However, relatively little attention is paid to how sound may create a more engaging experience for audiences. To begin addressing this lacuna, we conducted an online experiment to explore how sound influences the interest level, emotional response, and engagement of individuals who view objects within...
Article
Background The performance of motor imagery electroencephalogram (MI-EEG) decoding systems is easily affected by noise. As a higher-order spectra (HOS), the bispectrum is capable of suppressing Gaussian noise and increasing the signal-to-noise ratio of signals. However, the sum of logarithmic amplitudes (SLA) and the first order spectral moment (FO...
Article
Objective Semantic concepts are coherent entities within our minds. They underpin our thought processes and are a part of the basis for our understanding of the world. Modern neuroscience research is increasingly exploring how individual semantic concepts are encoded within our brains and a number of studies are beginning to reveal key patterns of...
Article
Full-text available
It is difficult to identify optimal cut-off frequencies for filters used with the common spatial pattern (CSP) method in motor imagery (MI)-based brain-computer interfaces (BCIs). Most current studies choose filter cut-frequencies based on experience or intuition, resulting in sub-optimal use of MI-related spectral information in the electroencepha...
Article
Optimal feature extraction for multi-category motor imagery brain-computer interfaces (MI-BCIs) is a research hotspot. The common spatial pattern (CSP) algorithm is one of the most widely used methods in MI-BCIs. However, its performance is adversely affected by variance in the operational frequency band and noise interference. Furthermore, the per...
Article
Full-text available
The motor imagery (MI) based brain-computer interfaces (BCIs) have been proposed as a potential physical rehabilitation technology. However, the low classification accuracy achievable with MI tasks is still a challenge when building effective BCI systems. We propose a novel MI classification model based on measurement of functional connectivity bet...
Article
Brain–computer interface (BCI) systems decode electroencephalogram signals to establish a channel for direct interaction between the human brain and the external world without the need for muscle or nerve control. The P300 speller, one of the most widely used BCI applications, presents a selection of characters to the user and performs character re...
Article
Background P300-based brain-computer interfaces provide communication pathways without the need for muscle activity by recognizing electrical signals from the brain. The P300 speller is one of the most commonly used BCI applications, as it is very simple and reliable, and it is capable of reaching satisfactory communication performance. However, as...
Article
Objective Simultaneous recording of the electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) allows a combination of eletrophysiological and haemodynamic information to be used to form a more complete picture of cerebral dynamics. However, EEG recorded within the MRI scanner is contaminated by both imaging artifacts and physi...
Article
The common spatial patterns (CSP) algorithm is one of the most frequently used and effective spatial filtering methods for extracting relevant features for use in motor imagery brain–computer interfaces (MI-BCIs). However, the inherent defect of the traditional CSP algorithm is that it is highly sensitive to potential outliers, which adversely affe...
Article
Objective: In the last decade, the advent of code-modulated brain-computer interfaces (BCIs) has allowed the implementation of systems with high information transfer rates (ITRs) and increased the possible practicality of such interfaces. In this paper, we evaluate the effect of different numbers of targets in the stimulus display, modulation sequ...
Article
Full-text available
The common spatial patterns (CSP) algorithm is the most popular spatial filtering method applied to extract electroencephalogram (EEG) features for motor imagery (MI) based brain-computer interface (BCI) systems. The effectiveness of the CSP algorithm depends on optimal selection of the frequency band and time window from the EEG. Many algorithms h...
Article
Objective: Semantic decoding refers to the identification of semantic concepts from recordings of an individual's brain activity. It has been previously reported in fMRI and EEG. We investigate whether semantic decoding is possible with functional near-infrared spectroscopy (fNIRS). Specifically, we attempt to differentiate between the semantic ca...
Article
Full-text available
Background: Stroke is the leading cause of serious and long-term disability worldwide. Survivors may recover some motor functions after rehabilitation therapy. However, many stroke patients missed the best time period for recovery and entered into the sequela stage of chronic stroke. Method: Studies have shown that motor imagery- (MI-) based bra...
Article
Background Spatial filtering and source separation are valuable tools in the analysis of EEG data. However, despite the well-known spatial localisation of individual cognitive processes within the brain, the available methods for source separation, such as the widely used blind source separation technique, do not take into account the spatial distr...
Article
The performance of motor imagery (MI) based Brain-computer interfacing (BCI) is easily affected by noise and redundant information that exists in the multi-channel electroencephalogram (EEG). To solve this problem, many temporal and spatial feature based channel selection methods have been proposed. However, temporal and spatial features do not acc...
Article
The common spatial pattern (CSP) algorithm is a well-recognized spatial filtering method for feature extraction in motor imagery (MI)-based brain-computer interfaces (BCIs). However, due to the influence of nonstationary in electroencephalography (EEG) and inherent defects of the CSP objective function, the spatial filters, and their corresponding...
Conference Paper
The electroencephalogram (EEG) records a summed mixture of multiple sources of neural activity distributed throughout the brain. Source separation methods aim to un-mix the EEG in order to recover activity generated by the original sources. However, most current state-of-the-art source separation methods do not take into account the physical locati...
Conference Paper
We have uncovered serious flaws in handling EEG signals with a decreased rank in implementations of the common spatial patterns (CSP). The CSP algorithm assumes covariance matrices of the signal to have full rank. However, preprocessing techniques, such as artifact removal using independent component analysis, may decrease the rank of the signal, l...
Article
Full-text available
Music provides a means of communicating affective meaning. However, the neurological mechanisms by which music induces affect are not fully understood. Our project sought to investigate this through a series of experiments into how humans react to affective musical stimuli and how physiological and neurological signals recorded from those participa...
Chapter
Emotion is a core part of the human experience. Many artistic and creative applications attempt to produce particular emotional experiences, for example, films, games, music, dance, and other visual arts. However, while emotional states are ubiquitous, they are also complex, proving difficult to describe to others by conventional psychometric means...
Article
Full-text available
Objective. Tactile P300 brain-computer interfaces (BCIs) can be manipulated by users who only need to focus their attention on a single-target stimulus within a stream of tactile stimuli. To date, a multitude of tactile P300 BCIs have been proposed. In this study, our main purpose is to explore and investigate the effects of visual attention on a t...
Article
Objective. Tactile P300 brain-computer interfaces (BCIs) can be manipulated by users who only need to focus their attention on asingle-target stimulus within a stream of tactile stimuli. To date, a multitude of tactile P300 BCIs have been proposed. In this study,our main purpose is to explore and investigate the effects of visual attention on a tac...
Article
Full-text available
Objective Previous studies have shown that combing with color properties may be used as part of the display presented to BCI users in order to improve performance. Build on this, we explored the effects of combinations of face stimuli with three primary colors (RGB) on BCI performance which is assessed by classification accuracy and information tra...
Article
P300-based brain-computer interfaces (BCIs) provide an additional communication channel for individuals with communication disabilities. In general, P300-based BCIs need to be trained, offline, for a considerable period of time, which causes users to become fatigued. This reduces the efficiency and performance of the system. In order to shorten cal...
Article
Full-text available
The ability of music to evoke activity changes in the core brain structures that underlie the experience of emotion suggests that it has the potential to be used in therapies for emotion disorders. A large volume of research has identified a network of sub-cortical brain regions underlying music-induced emotions. Additionally, separate evidence fro...
Article
Multi-channel EEG data are usually necessary for spatial pattern identification in motor imagery (MI)-based brain computer interfaces (BCIs). To some extent, signals from some channels containing redundant information and noise may degrade BCI performance. We assume that the channels related to MI should contain common information when participants...
Article
Full-text available
Background: Due to the redundant information contained in multichannel electroencephalogram (EEG) signals, the classification accuracy of brain-computer interface (BCI) systems may deteriorate to a large extent. Channel selection methods can help to remove task-independent electroencephalogram (EEG) signals and hence improve the performance of BCI...
Article
Mathematical mindset theory suggests learner motivation in mathematics may be increased by opening problems using a set of recommended ideas. However, very little evidence supports this theory. We explore motivation through self-reports while learners attempt problems formulated according to mindset theory and standard problems. We also explore ne...
Article
Full-text available
The dynamic nature of functional brain networks is being increasingly recognized in cognitive neuroscience, and methods to analyse such time-varying networks in EEG/MEG data are required. In this work, we propose a pipeline to characterize time-varying networks in single-subject EEG task-related data and further, evaluate its validity on both simul...
Preprint
Stroke is the leading cause of serious and long-term disability worldwide. Some studies have shown that motor imagery (MI) based BCI has a positive effect in poststroke rehabilitation. It could help patients promote the reorganization processes in the damaged brain regions. However, offline motor imagery and conventional online motor imagery with f...
Article
The start of the cue is often used to initiate the feature window used to control motor imagery (MI)-based brain-computer interface (BCI) systems. However, the time latency during an MI period varies between trials for each participant. Fixing the starting time point of MI features can lead to decreased system performance in MI-based BCI systems. T...
Article
Brain-computer interface (BCI) systems can allow their users to communicate with the external world by recognizing intention directly from their brain activity without the assistance of the peripheral motor nervous system. The P300-speller is one of the most widely used visual BCI applications. In previous studies, a flip stimulus (rotating the bac...
Article
Full-text available
Brain-computer music interfaces (BCMIs) may be used to modulate affective states, with applications in music therapy, composition, and entertainment. However, for such systems to work they need to be able to reliably detect their user's current affective state.
Article
Full-text available
Objective: Brain-computer interfaces (BCIs) based on motor control have been suggested as tools for stroke rehabilitation. Some initial successes have been achieved with this approach, however the mechanism by which they work is not yet fully understood. One possible part of this mechanism is a, previously suggested, relationship between the stren...
Article
Full-text available
Beat perception is fundamental to how we experience music, and yet the mechanism behind this spontaneous building of the internal beat representation is largely unknown. Existing findings support links between the tempo (speed) of the beat and enhancement of electroencephalogram (EEG) activity at tempo-related frequencies, but there are no studies...
Article
Full-text available
Affectively driven algorithmic composition (AAC) is a rapidly growing field that exploits computer-aided composition in order to generate new music with particular emotional qualities or affective intentions. An AAC system was devised in order to generate a stimulus set covering nine discrete sectors of a two-dimensional emotion space by means of a...
Article
Objective: Brain-computer interfaces (BCIs) can help patients who have lost control over most muscles but are still conscious and able to communicate or interact with the environment. One of the most popular types of BCI is the P300-based BCI. With this BCI, users are asked to count the number of appearances of target stimuli in an experiment. To...
Article
Full-text available
We report on a player evaluation of a pilot system for dynamic video game soundtrack generation. The system being evaluated generates music using an AI-based algorithmic composition technique to create score in real-time, in response to a continuously varying emotional trajectory dictated by gameplay cues. After a section of gameplay, players rated...
Article
Full-text available
Many recent studies have focused on improving the performance of event-related potential (ERP) based brain computer interfaces (BCIs). The use of a face pattern has been shown to obtain high classification accuracies and information transfer rates (ITRs) by evoking discriminative ERPs (N200 and N400) in addition to P300 potentials. Recently, it has...
Article
Objective: We aim to develop and evaluate an affective brain-computer music interface (aBCMI) for modulating the affective states of its users. Approach: An aBCMI is constructed to detect a user's current affective state and attempt to modulate it in order to achieve specific objectives (for example, making the user calmer or happier) by playing...
Article
Full-text available
Visual brain-computer interfaces (BCIs) are not suitable for people who cannot reliably maintain their eye gaze. Considering that this group usually maintains audition, an auditory based BCI may be a good choice for them. In this paper, we explore two auditory patterns: (1) a pattern utilizing symmetrical spatial cues with multiple frequency beeps...
Article
Brain-computer interfaces (BCIs) based upon event-related potentials (ERPs) can allow fast and accurate communication. The performance of this type of BCI may be improved by the use of images of faces to evoke ERPs. We suggest that using facially encoded emotions may further improve the performance of this BCI. We also investigate how different fac...
Article
Full-text available
Background: Some studies have proven that a conventional visual brain computer interface (BCI) based on overt attention cannot be used effectively when eye movement control is not possible. To solve this problem, a novel visual-based BCI system based on covert attention and feature attention has been proposed and was called the gaze-independent BCI...
Article
It is widely acknowledged that music can communicate and induce a wide range of emotions in the listener. However, music is a highly-complex audio signal composed of a wide range of complex time- and frequency-varying components. Additionally, music-induced emotions are known to differ greatly between listeners. Therefore, it is not immediately cle...
Article
Full-text available
Brain computer Interface (BCI) development encapsulates three basic processes: data acquisition, data processing, and device control. Since the start of the millennium the BCI development cycle has undergone a metamorphosis. This is mainly due to the increased popularity of BCI applications in both commercial and research circles. One of the focuse...
Conference Paper
An affectively driven music generation system is described and evaluated. The system is developed for the intended eventual use in human-computer interaction systems such as brain-computer music interfaces. It is evaluated for its ability to induce changes in a listeners affective state. The affectively-driven algorithmic composition system was use...
Article
Affective algorithmic composition is a growing field that combines perceptually motivated affective computing strategies with novel music generation. This article presents work toward the development of one application. The long-term goal is to develop a responsive and adaptive system for inducing affect that is both controlled and validated by bio...
Article
Full-text available
Interferences from the spatially adjacent non-target stimuli evoke ERPs during non-target sub-trials and lead to false positives. This phenomenon is commonly seen in visual attention based BCIs and affects the performance of BCI system. Although, users or subjects tried to focus on the target stimulus, they still could not help being affected by co...
Article
The electroencephalogram (EEG) may be described by a large number of different feature types and automated feature selection methods are needed in order to reliably identify features which correlate with continuous independent variables. A method is presented for the automated identification of features that differentiate two or more groups in neur...
Chapter
While music is widely understood to induce an emotional response in the listener, the exact nature of that response and its neural correlates are not yet fully explored. Furthermore, the large number of features which may be extracted from, and used to describe, neurological data, music stimuli, and emotional responses, means that the relationships...
Article
The feedback mechanism used in a brain-computer interface (BCI) forms an integral part of the closed-loop learning process required for successful operation of a BCI. However, ultimate success of the BCI may be dependent upon the modality of the feedback used. This study explores the use of music tempo as a feedback mechanism in BCI and compares it...
Data
Full-text available
Functional near infrared spectroscopy (fNIRS) is an emerging technique for the in-vivo assessment of functional activity of the cerebral cortex as well as in the field of BCI research. A common challenge for the utilization of fNIRS in these areas is a stable and reliable investigation of the spatio-temporal hemodynamic patterns. However, the recor...
Article
Full-text available
There has been a significant amount of work implementing systems for algorithmic composition with the intention of targeting specific emotional responses in the listener, but a full review of this work is not currently available. This gap creates a shared obstacle to those entering the field. Our aim is thus to give an overview of progress in the a...