About
289
Publications
166,149
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
17,110
Citations
Publications
Publications (289)
Tissue engineered bone scaffolds are potential alternatives to bone allografts and autografts. Porous scaffolds based on triply periodic minimal surfaces (TPMS) are good candidates for tissue growth because they offer high surface-to-volume ratio, have tailorable stiffness, and can be easily fabricated by additive manufacturing. However, the range...
Lattice structures are an important aspect of design for additive manufacturing (DfAM). They enable significant component light-weighting and the tailoring of a wide range of physical responses; mechanical, thermal, acoustic, etc. In turn, lattice design relies on fundamental research to uncover useful structure-property relationships, such as the...
In this work, we investigate tessellating cellular (or lattice) structures for use in a low 10 thermal expansion machine frame. We propose a concept for a lattice structure with tailorable ef-11 fective coefficient of thermal expansion (CTE). The design is an assembly of two parts; a lattice outer 12 part and a cylindrical inner part, which are mad...
Components manufactured by laser powder bed fusion (LPBF) are limited by their performance for use in critical applications. LPBF materials have microstructural defects, such as suboptimal grain size and morphology, and macroscale anomalies, such as lack of fusion. This results in LPBF components performing below their wrought counterparts for vari...
Laser Powder Bed Fusion (LPBF) enables complex structures to be manufactured, which is attractive to industries where augmented service performance can be achieved. However, the build time of LPBF can be slower than traditional manufacturing processes, especially for higher volumes of parts. Multi-laser machines have the potential to significantly...
The stiffness, anisotropy and structural deformation of three gyroid-based lattices was investigated, with particular focus on a newly proposed honeycomb gyroid. This honeycomb is based on a modified triply periodic minimal surface (TPMS) equation with reduced periodicity. Using the numerical homogenisation method, the anisotropy of the gyroid latt...
We present a phase field based MITC4+ shell element formulation to simulate fracture propagation in thin shell structures. The employed MITC4+ approach renders the element shear- and membrane- locking free, hence providing high-fidelity fracture simulations in planar and curved topologies. To capture the mechanical response under bending-dominated...
The aim of this work is to develop an optimised design for a machine frame, which minimises thermal expansion. The work presents a study of a design concept for a lattice structure with a tailorable coefficient of thermal expansion (CTE). The proposed design is an assembly of two parts: a lattice and a cylinder which fits inside the lattice (Figure...
Three alternative approaches, namely the extended/generalized finite element method (XFEM/GFEM), the scaled boundary finite element method (SBFEM) and phase field methods, are surveyed and compared in the context of linear elastic fracture mechanics (LEFM). The purpose of the study is to provide a critical literature review, emphasizing on the math...
An innovative research front for composites is their production by additive manufacturing (AM), also referred to as 3D printing. AM, which was previously mainly used for prototyping, is now evolving towards functional components. Part of the motivation in the search for AM developments to fibre composites is to explore the inherent flexibility of t...
In laser powder bed fusion (PBF-LB), material is continuously ejected from the melt pool, commonly
called spatter, and is distributed throughout the build chamber. There is a lack of understanding of
the nature of this spatter and the effect it may have on the integrity of the final part and the quality
of any recycled powder. This work reports a d...
Selective Laser Melting (SLM), a powder-bed Additive Manufacturing technology, can be used in combination
with high temperature post-annealing to produce high-silicon steel parts characterised by quasi-static magnetic
properties comparable to those of commercial electrical steel. However, the role of the as-built microstructure on
the magnetic prop...
Selective laser melting is an increasingly attractive technology for the manufacture of complex and low volume/high value metal parts. However, the inevitable residual stresses that are generated can lead to defects or build failure. Due to the complexity of this process, efficient and accurate prediction of residual stress in large components rema...
In this paper we present a numerical investigation into surface-based lattice structures with the aim of facilitating their design for additive manufacturing. We give the surface equations for these structures and show how they can be used to tailor their volume fractions. Finite element analysis is used to investigate the effect of cell type, orie...
Finite element analysis (FEA) is a widely used computer-based method of numerically solving a range of boundary problems. In the method, a continuum is subdivided into a number of well-defined elements that are joined at nodes, a process known as discretization. A continuous field parameter, such as displacement or temperature, is now characterized...
Adhesive joints with structural adhesives are weakened significantly in air at high humidity, and the rate of decline is controlled by water diffusion into the adhesive. There appears, however, to be a critical relative humidity, and only if this is exceeded are joints significantly weakened; evidence is that this is about 65%. The most harmful eff...
Periodic honeycombs have been used for their high strength, low weight and multifunctionality. The quasi-static and dynamic compressive responses of three types of additively manufactured AlSi10Mg honeycomb structures, specifically a single-scale honeycomb and two hierarchical honeycombs with two and three levels of hierarchy, respectively, have be...
A novel type of metallic feedstock material for powder-bed additive manufacturing (AM) processes is proposed that enables the manufacture of cellular structures without the time consuming and computationally intensive step of digitally representing the internal geometry of a part. The feedstock is a blend of metal and salt particles and, following...
Material extrusion additive manufacturing is widely used for porous scaffolds in which polymer filaments are extruded in the form of log-pile structures. These structures are typically designed with the assumption that filaments have a continuous cylindrical profile. However, as a filament is extruded, it interacts with previously printed filaments...
Additive manufacturing (AM) opens up a design freedom beyond the limits of traditional manufacturing techniques. Electrical windings created through AM could lead to more powerful and compact electric motors, but only if the electrical properties of the AM printed part can be shown to be similar to conventionally manufactured systems. Until now, no...
We investigate the effect of annealing on the properties of Fe-6.9wt% Si produced by Selective Laser Melting (SLM), a powder-bed additive manufacturing technology. Results show that annealing at 1150 °C for 1 h produces a recrystallized microstructure characterised by predominantly equi-axed grains with sizes of up to 300 μm. Importantly, annealing...
Iso-XFEM method is an evolutionary optimization method developed in our previous studies to enable the generation of high resolution topology optimised designs suitable for additive manufacture. Conventional approaches for topology optimization require additional post-processing after optimization to generate a manufacturable topology with clearly...
Three-dimensional lattices have applications across a range of fields including structural lightweighting, impact absorption and biomedicine. In this work, lattices based on triply periodic minimal surfaces were produced by polymer additive manufacturing and examined with a combination of experimental and computational methods. This investigation e...
Using additive manufacturing (AM) techniques for end user parts is quite attractive for performance enhancement and product customization since designs are less constrained via this technique. The extent to which this could influence design is still to be determined. An interesting way to exploit AM capabilities for mechanical components is to embe...
This research investigates the applicability of non-parametric structural optimisation algorithms for the optimisation of structural adhesive joints. Three types of adhesive joint; single lap, double lap and double lap strap, were used for the structural optimisation. Evaluation of the non-parametric solver was carried out by first optimising the a...
A number of strategies that enable lattice structures to be derived from Topology Optimisation (TO) results suitable for Additive Manufacturing (AM) are presented. The proposed strategies are evaluated for mechanical performance and assessed for AM specific design related manufacturing considerations. From a manufacturing stand-point, support struc...
A major factor limiting the adoption of powder-bed-fusion additive manufacturing for production of parts is the control of build process defects and the effect these have upon the certification of parts for structural applications. In response to this, new methods for detecting defects and to monitor process performance are being developed. However...
Material jetting is a process whereby liquid material can be deposited onto a substrate to solidify. Through a process of progressive additional layers, this deposition can then be used to produce 3D structures. However, the current material jetting catalogue is limited owing to the constraints on the viscosity of inks that can be deposited. Most i...
The aim of this paper is to investigate the design optimization and additive manufacture of automotive components. A Titanium brake pedal processed through Selective Laser Melting (SLM) is considered as a test case. Different design optimisation techniques have been employed including topology optimization and lattice structure design. Rather than...
The production of electronic circuits and devices is limited by current manufacturing methods that limit both the form and potentially the performance of these systems. Additive Manufacturing (AM) is a technology that has been shown to provide cross sectoral manufacturing industries with significant geometrical freedom. A research domain known as M...
Innovative Additive Manufacturing (AM) technologies like Selective Laser Melting (SLM) could prove to be efficient for the processing of brittle silicon steel (Fe-Si) with high silicon content. This research elucidates the effects of heat-treatment on the microstructure of SLM-built high silicon steel, with particular emphasis on the formation of o...
Support structures and materials are indispensable components in many Additive Manufacturing (AM) systems in order to fabricate complex 3D structures. For inkjet-based AM techniques (known as Material Jetting), there is a paucity of studies on specific inks for fabricating such support structures. This limits the potential of fabricating complex 3D...
A hot melt 3D inkjet printing method with the potential to manufacture formulations in complex and adaptable geometries for the controlled loading and release of medicines is presented. This first use of a precisely controlled solvent free inkjet printing to produce drug loaded solid dosage forms is demonstrated using a naturally derived FDA approv...
We present an inverse method to identify the spatially varying stiffness distributions in 3 dimensions. The method is an extension of the classical Virtual Fields Method—a numerical technique that exploits information from full-field deformation measurements to deduce unknown material properties—in the spatial frequency domain, which we name the Fo...
The driver for this research is the development of multi-material additive manufacturing processes that provide the potential for multi-functional parts to be manufactured in a single operation. In order to exploit the potential benefits of this emergent technology, new design, analysis and optimization methods are needed. This paper presents a met...
The high thermal gradients experienced during manufacture via selective laser melting commonly result in cracking of high γ/γ′ Nickel based superalloys. Such defects cannot be tolerated in applications where component integrity is of paramount importance. To overcome this, many industrial practitioners make use of hot isostatic pressing to ‘heal’ t...
Lattice structures are excellent candidates for lightweight, energy absorbing applications such as personal protective equipment. In this paper we explore several important aspects of lattice design and production by metal additive manufacturing, including the choice of cell size and the application of a post-manufacture heat treatment. Key results...
An investigation into the depth and time dependent behavior of UV cured 3D ink jet printed objects – CORRIGENDUM - X. Chen, I.A. Ashcroft, C.J. Tuck, Y.F. He, R.J.M. Hague, R.D. Wildman
This work investigates the use of hierarchical mesh decomposition strategies for topology optimization using bi-directional evolutionary structural optimization (BESO) algorithm. The proposed method uses a dual mesh system which decouples the design variables from the finite element analysis mesh. The investigation focuses on previously unexplored...
Metal additive manufacturing (AM) processes, such as selective laser melting, enable powdered metals to be formed into arbitrary 3D shapes. For aluminium alloys, which are desirable in many high-value applications for their low density and good mechanical performance, selective laser melting is regarded as challenging due to the difficulties in las...
This paper discusses the effects of various ply-layup orientations on the bending stiffness of a composite T-joint by determining the in-plane and out-of-plane stress fields developed under three-point bending conditions. The failure load and crack development in the T-joints with selected ply-layups are also considered. A three dimensional finite...
This work investigates the use of hierarchical mesh decomposition strategies for topology optimisation using bi-directional evolutionary structural optimisation algorithm. The proposed method uses a dual mesh system that decouples the design variables from the finite element analysis mesh. The investigation focuses on previously unexplored areas of...
Finite element analysis (FEA) is a widely used computer-based method of numerically solving a range of boundary problems. In the method, a continuum is subdivided into a number of well-defined elements that are joined at nodes, a process known as discretization. A continuous field parameter, such as displacement or temperature, is now characterized...
Adhesive joints with structural adhesives are weakened significantly in air at high humidity, and the rate of decline is controlled by water diffusion into the adhesive. There appears, however, to be a critical relative humidity, and only if this is exceeded are joints significantly weakened; evidence is that this is about 65%. The most harmful eff...
An ultra-violet (UV) curable ink jet 3D printed material was characterized by an inverse finite element modeling (IFEM) technique employing a nonlinear viscoelastic–viscoplastic (NVEVP) material constitutive model; this methodology was compared directly with nanoindentation tests. The printed UV cured ink jet material properties were found to be z-...
Additive Manufacturing (AM) enables the production of geometrically complex parts that are difficult to manufacture by other means. However, conventional CAD systems are limited in the representation of such parts. This issue is exacerbated when lattice structures are combined or embedded within a complex geometry. This paper presents a computation...
Material properties such as hardness can be dependent on the size of the indentation load when that load is small, a phenomenon known as the indentation size effect (ISE). In this work an inverse finite element method (IFEM) is used to investigate the ISE, with reference to experiments with a Berkovich indenter and an aluminium test material. It wa...
Inkjet printing of multiple materials is usually processed in multiple steps due to various jetting and curing/sintering conditions. In this paper we report on the development of all inkjet-printed UV-curable electromagnetic responsive inks in a single process, and the electromagnetic characterization of the developed structure. The ink consists of...
Stent geometries are obtained by topology optimization for minimized compliance under different stenosis levels and plaque material types. Three levels of stenosis by cross-sectional area, i.e., 30%, 40%, and 50% and three different plaque material properties, i.e., calcified, cellular, and hypocellular, were studied. The raw optimization results w...
Metal components with applications across a range of industrial sectors can be manufactured by selective laser melting (SLM). A particular strength of SLM is its ability to manufacture components incorporating periodic lattice structures not realisable by conventional manufacturing processes. This enables the production of advanced, functionally gr...
The driver for this research is the development of multi-material additive manufacturing processes that provides the potential for multi-functional parts to be manufactured in a single operation. To exploit the potential benefits of this emergent technology, new design, analysis and optimization methods are needed. This paper proposes a method in w...
The metallurgy of high-silicon steel (6.9%wt.Si) processed using Selective Laser Melting (SLM) is presented for the first time in this study. High-silicon steel has great potential as a soft magnetic alloy, but its employment has been limited due to its poor workability. The effect of SLM-processing on the metallurgy of the alloy is investigated in...
Selective laser melting (SLM) is being widely utilised to fabricate intricate structures used in various industries. Widening the range of applications that can benefit from such promising technology requires validating SLM parts in load bearing applications. Recent studies have mainly focussed on static loading, with minor attention to cyclic load...
Selective laser melting (SLM) is an attractive technology, enabling the manufacture of customised, complex metallic designs, with minimal wastage. However, uptake by industry is currently impeded by several technical barriers, such as the control of residual stress, which have a detrimental effect on the manufacturability and integrity of a compone...
One of the next avenues for Additive Manufacturing to develop is that of multi-material deposition in order to add functionality to the already complex geometries that are capable of being manufactured. However, for electronic applications the fidelity of the deposited electronic tracks is of utmost importance. The purpose of this study was to inve...
Selective laser melting (SLM) of aluminium is of research interest because of its potential benefits to high value manufacturing applications in the aerospace and automotive industries. In order to demonstrate the credibility of SLM Al parts, their mechanical properties need to be studied. In this paper, the nano-, micro-, and macro-scale mechanica...
Lattice structures are regarded as excellent candidates for use in lightweight energy absorbing applications, such as crash protection. In this paper we investigate the crushing behaviour, mechanical properties and energy absorption of lattices made by an additive manufacturing (AM) process. Two types of lattice were examined; body-centred-cubic (B...
The thermal ageing of an Ethylene-vinyl Acetate (EVA) polymer used as an adhesive and encapsulant in a photovoltaic module has been investigated. The EVA is used to bond the silicon solar cells to the front glass and backing sheet and to protect the photovoltaic materials from the environment and mechanical damage. Using a range of experimental tec...
This paper investigates the effect of surface wettability on the cross-sectional profiles of printed nanofluid inks which can have a significant role on conductivity of printed lines that are used in the production of printed electronics. Glass substrates were coated with heptadecafluorodecyltrichlorosilane, nonafluorohexyltrimethoxysilane and meth...
Additive manufacturing (AM) technology is capable of building up component geometry in a layer-by-layer process, entirely without tools, molds, or dies. One advantage of the approach is that it is capable of efficiently creating complex product geometry. Using experimental data collected during the manufacture of a titanium test part on a variant o...
Environmental awareness of the global waste problem has driven the development of new green composites made from either renewable or biodegradable materials. Among the variety of available green composites, natural composites based on poly-lactic acid (PLA) have shown noteworthy performance due to their short degradation time after disposal, good s...
Single track and single layer AlSi 10Mg has been produced by selective laser melting (SLM) of alloy powder on an AlSi12 cast substrate. The SLM technique produced a cellular-dendritic ultra-fined grained microstructure. Chemical composition mapping and nanoindentation showed higher hardness in the SLM material compared to its cast counterpart. Impo...
Multi-functional capabilities of Lattice materials allow them to be used in weight bearing applications, impact absorption and heat dissipation. Previously, the range of cellular materials was limited by constraints in traditional manufacturing technologies. This situation has been mitigated by advances in additive manufacturing (AM) techniques, wh...
This paper presents an overview of the possible micro and macrostructural effects that selective laser melting has on aluminium-based alloys. The paper will show how controlling the melt pool both in terms of delivered thermal energy and morphology can affect the state and composition o