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Abstract: In a recent work, the authors reported the experimental 
demonstration of wavelength tuning in a single birefringent plate of 
Ti:sapphire crystal based on its own birefringence properties. In that device, 
the thickness of the active plate, limited by the width of the single order 
tuning spectral region, imposed a strong constraint in the power 
performance of the laser. The aim of this work is to overcome this limitation 
by using a set of several identical birefringent plates so that the wavelength 
tuning of the laser is obtained by synchronously rotating the plates in their 
own plane. A discussion about the laser performance is presented. 
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1. Introduction 

The development of precise and reliable wide band tunable lasers emitting in both continuous 
or pulsed ways is important in many fields of science and technology. The tuning mechanism 
in most of these devices is based on intracavity frequency tuning by using tilted birefringent 
plates or diffraction gratings [see 1-5 as example], but these elements increase both 
complexity and cost, and decrease laser efficiency. Moreover, these devices are somewhat 
limited by the output energy due to optical damage. Recently the authors have reported a 
simple and powerful method for wavelength-selective tuning in different broad band emitting 
laser materials based on the crystal own birefringence [6-8]. Among these examples we have 
shown wavelength self-tuning of a pulsed Ti:sapphire laser, made of a single a-cut crystal 
plate, throughout half of its full spectral range [8].Unfortunately, the thickness of the 
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Ti:sapphire plate is fully limited by the optical passive properties of the material (ordinary and 
extraordinary refraction indices) and the broadness of the desired tuning band, since the use of 
a plate thicker than a certain value entails the presence of more than one interference order 
inside the tuning band. The problem with thickness implies a severe limitation in the power 
performance of the laser which, however, could be overcome by using several identical plates 
in series.  
     In this work we report, for the first time to our knowledge, an experimental demonstration 
of broadband wavelength self-tuning in a Titanium Sapphire laser based on a series of three 
active birefringent crystal plates. A 750-1000 nm wavelength tuning range has been attained 
by using two different sets of IR mirrors in the full spectral range spanned by the fluorescence 
of the Ti:Sapphire crystal. The measured slope efficiency of the laser is higher than 60%. 

 2. Theoretical grounds 

The wavelength selection can be reached by the combined effect of the plate surfaces and the 
crystal anisotropy because those surfaces act as partial polarizers. For an angle of incidence 
close to the Brewster’s angle, polarization in the plane of incidence is favored (pi 

polarization). On the other hand, the crystal anisotropy produces different retardations (δ1 and 

δ2) of the laser field components along the two principal directions, which changes the 
polarization of the wave inside the crystal. The relative retardation between the components 

Γ=δ1−δ2 depends on the plate thickness, the wavelength, and the tuning angle ϕ (see Fig. 1). 
As the second plate surface favors the same polarization as the first one, for a given tuning 

angle ϕ, the maximum transmittance of the system will correspond to that wavelength for 
which the polarization of the wave inside the crystal does not change, that is to say, the 

wavelength λmax for which the retardation in the plate is a multiple of 2π: Γ(λmax,ϕ,..)=2mπ  

(m∈Z).       

    The expression for the tuning curves can be straightforwardly obtained [9-10]: 

 

  
n

sin
1  n  

n

cos
  

n

sin
 sin -1   n  

m

e
 )(

2
o

i
2

o2
o

2

2
e

2

i
2

emax 











 θ
−−













 ϕ
+

ϕ
θ=ϕλ

                    (1) 

where λmax represents the maximal transmittance wavelength, e the plate thickness, θi  the 
incidence angle, and no and ne  the ordinary and the extraordinary principal refractive indices 
respectively. 
    In the case of an a-cut Ti:sapphire laser plate, no and ne are 1.762 and 1.770  respectively, 

the incidence angle θi is 60
o
, so the maximum  thickness of the plate to achieve single order 

tuning in a broad band of about 150 nm must be 500 micron approximately [8]. In this case, 
the interference order is m =5.  
   As the thickness of the birefringent crystal limits the gain attainable by the laser, a longer 

active medium is needed to improve the gain. Keeping in mind that no more than a 500 µm 
crystal plate can be used to cover a single tuning order in this material, we have chosen an 
amplifying medium made up of three identical crystal plates of 500 micron oriented with their 
optical axes parallel to each other. This device avoids the presence of three interference orders 
inside the gain band, and at the same time allows a significant gain increase. However, an 
increment of the spectral filter efficiency is not expected, because the effect of the adding 
several filter plates is counteracted by the lower number of round-trips needed for lasing, just 
a consequence of the higher gain of the laser. 

3. Experimental results and discussion 

The laser experiments were performed with a 0.1% Ti
3+

 doped, a-cut Ti
3+

:Al2O3 set of three 
crystal plates. The thickness and diameter of plates were 0.476 mm and 15 mm respectively. 
Each one of them was put up and glued within a one mm thick steel ring with a central 
aperture diameter close to 15mm and external diameter of 50mm, so that the distance between 
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consecutive plate faces was 0.5mm approximately. The parallelism between the optical axes 
was ensured with the aid of a polarization microscope. The achieved tolerances between 
different plates have been 1 micron for thickness and 1

o
 for the relative orientation of the 

direction of the optical axes. The combined effect of these tolerances is to lower the 
transmittance by a few percent. 

The set of three disks was placed in a holder which allowed the simultaneous rotation of 

the three plates in their own respective planes (angle ϕ  in Fig. 1), with a fixed incidence angle 

θi = 60
o
. 

    The set was pumped by using a quasi-longitudinal scheme, shown in Fig. 1, with a 
frequency-doubled Nd:YAG laser (9 ns pulse width). The pumping beam was compressed by 
means of a telescopic system to a diameter of 3 mm, and its incidence slightly oblique to 
avoid damaging the mirrors. To prevent potential dependence of the tuned wavelength on the 
pumping energy, owing to nonlinear effects on refraction index caused by high internal 
emission intensity in the resonator [8], we strived to extend the size of the spatial mode by 
increasing the length of the resonator and using mirrors with radius of curvature longer than 
those of a confocal resonator. In our setup, the resonator was 45 cm long, with a concave rear 
mirror of 3 m radius of curvature and a flat output coupler with 90% reflectivity, aimed to 
obtain an acceptable mode and output energy. 
 
 
 

 

 

 

 

 

Fig. 1. Experimental set-up for the self-tuned Al2O3:Ti3+ laser. 

 
    Spectral detection of the laser output pulse was performed by using a Jobin Ivon TRIAX 
190 monochromator with a Hamamatsu InGaAs array, providing a resolution of 0.2 nm.     

    Varying the ϕ angle, the laser emission can be spectrally tuned in a range from about 760 
nm to 890 nm, closely corresponding to the high reflectivity region of the mirrors.  In Fig. 2 
we present the experimental tuning curves obtained with our setup for an absorbed pumping 

energy of 20 mJ. Two different tuning orders are present with m=4 for low ϕ angles and m=5 

for higher ϕ angles. It is noticeable that for ϕ  angles around 30
o
, the tuning wavelengths of 

both orders m=4 and m=5 lie near the border of the reflecting band of the mirrors, implying 
that there is no laser emission around that orientation angle. This results from the use of plates 
some thinner than intended, which increases the spectral broadness of each order.  
    On the other hand, and independently of plate thickness, for angles very close to 0 or 90

o
  

the interference contrast of the two polarization components is too low, and the system is not 

able to tune, giving rise to an invariant laser spectrum under changes in the ϕ rotation angle; 

these emission spectra are centered around 805 nm for ϕ =0º  and 820 nm for ϕ =90º, 
(polarizations parallel and perpendicular to the optical axis respectively), and are spectrally 
much broader than the tuned radiation (30 nm FWHM against 3 nm FWHM of tuned 
radiation). 
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Fig. 2. Tuning range of Ti:sapphire laser as a function of the orientation angle ϕ between the 
optical axis and the polarization plane. The plates thickness was 476 microns. 

 
    Figure 3 shows the measured intensity of laser emission versus tuned wavelength. The 

intensity is clearly greater for low ϕ angles. This is a consequence of the greater cross-section 
of both absorption and emission for polarization parallel to the optical axis [5].  
 

 
 

Fig. 3. Relative intensity of the laser emission as a function of the tuned wavelength. 

 
    With the aim of investigating the laser energy performance, we measured the output energy 

for different values of input energy at a fixed orientation of the plates ϕ  =15
o
. The outcome is 

presented in Fig. 4, showing a threshold of 9 mJ and a slope greater than 60% in terms of the 
absorbed input energy. The laser beam remains transverse monomode up to an input energy of 
about twice the threshold. As an example Fig. 5 shows a picture of the mode profile for an 
absorbed pump energy of 15 mJ. Under these conditions, the typical delay respect to the 
pumping pulse was about 100 ns, and the FWHM of laser pulses about 30 ns. 
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Fig. 4. Laser output energy as a function of the absorbed pumping energy. The orientation 

angle ϕ between the optical axis and the polarization plane was fixed at 15o (λmax = 860 nm). 

 
    Finally, we tested tuning in the longer wavelengths region of the emission band, by using 
HR mirrors in the 850-1050 nm band. Tuned laser emission was obtained between 860 and 
1000 nm, as shown in Fig. 6. These results demonstrate that in spite of the quick fall of gain 
towards longer wavelengths,  our method allows tuning over most of the spectral range of the 
Ti:sapphire crystal.  
 

 
 

Fig. 5. Spatial mode of the laser output beam. 

 
     A fundamental question that remains to be addressed is the effect on laser operation of the 
actual tolerances in the relative orientation between the optical axes of the plates, the 
incidence angles and above all, the thickness of the plates. We have confirmed that the 
threshold pumping energy of the laser with our set of three plates, with 1 micron of width 
tolerance, is about 0.4 times the single plate threshold, and higher than the ideal factor of one 
third. Another effect of tolerances is the broadening of the tuned emission spectra. In our case, 
the measured spectral FWHM of the output laser pulses with an input energy twice the 
threshold was close to 3 nm, whereas with a single plate in equivalent conditions [8] it was 
close to 2 nm, which shows a spectral broadening effect, surely due to these tolerances.  

With the aim of setting the limits of the tuning system, we have tested a set of two plates 
with a thickness difference of 3 microns.  This value of the tolerance is high enough to give 

rise to differences in λmax in expression (1) which are comparable to the spectral width of the 
output laser pulses in some zones of the tuning band. The experimental results when using this 
set  show a very low quality tuning, only achieved over a very narrow band (less than 50 nm) 
and with no laser emission outside, due to high transmission losses. As expected, laser 
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operation was normal for ϕ  angles close to 0 and 90
o
 (untuned emission), since for those 

orientations there is no tuning effect and the sample thickness is irrelevant.   
 

 

Fig. 6. Tuned wavelength of Ti:sapphire laser as function of the orientation angle ϕ between 
the optical axis and the polarization plane in the extended IR zone. The thickness of the plates 
was 476 microns. 

 
 4. Conclusions 

Tuning based on its own birefringent properties, has been demonstrate in a Ti:sapphire pulsed 
laser by rotation of a set of three identical crystal plates. The use of a multi-plate set allows for 
a higher output energy while preserving a good quality tuning performance all over the 
spectral emission band. From a practical point of view this is an important approach since it 
allows the design of Ti:sapphire lasers with no additional intracavity tuning elements, while 
increasing  laser efficiency and reducing complexity and cost. A full characterization of the 
multi-plate laser system performances was carried out. Firstly, the tuning operation and tuned 
wavelength as a function of the crystal axis orientation (Figs. 2 and 6), and secondly, the 
output energy as a function of both the emission wavelength (Fig. 3) and the input energy 
(Fig. 4) were investigated. The effect of thickness tolerance has been studied, and the 
importance of its minimization in order to increase the system efficiency has been shown. 
Although there is a slight decrease in the filter spectral resolution, the laser threshold of the 
device is about 0.4 times the mono-plate threshold in equivalent conditions.  

This compact setup can be easily used for injection-locking in more complex Ti:sapphire 
lasers and it can be very useful for CW lasers, where the tuning function is usually 
implemented by means of birefringent intracavity filters. 
     This device has been patented: patent application number 20080271.  
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