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Anyone for Tennis (Betting)?
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∗Centre for the Study of Gambling, University of Salford, Salford, Greater Manchester, UK, ∗∗Centre for Operational
Research and Applied Statistics, University of Salford, Salford, Greater Manchester, UK

ABSTRACT The most robust anomaly noted in the literature on wagering markets is (positive) longshot
bias: over a period of 50 years, it has been well documented in horse betting that higher expected returns
accrue to short- than to long-odds bets. However, a few examples of betting markets with zero or negative
bias have been found, for example in certain American sports. The understanding of longshot bias is likely to
be informed by comparing and contrasting conditions in markets displaying positive, zero, and negative bias
but, to date, relatively few markets have been examined. This paper employs a large data set on professional
men’s tennis matches and a new econometric approach to the estimation of the relationship between returns
and odds. It finds positive bias throughout the range of odds. It discusses this finding in the context of
the debate on why biases exist and persist in wagering markets, focusing particularly on bettors’ attitudes
towards risk and skewness.

KEY WORDS: Sports betting, longshot bias, risk preference

1. Introduction

Wagering markets are specialist financial markets where bettors purchase state-contingent assets.
As in other financial markets, most studies (Sauer (1998) and Vaughan Williams (1999) provide
excellent surveys) indicate that, broadly, prices are efficient but, again as in other financial markets,
anomalies have been noted. The most celebrated and robust of these is termed longshot bias: in
American, British, and Australian horse-betting markets, whether organized by bookmakers or on
a pari mutuel (tote) basis, superior returns accrue to a strategy of placing short-odds bets relative to
a strategy of placing long-odds bets. This stylized fact has been repeatedly confirmed by empirical
studies dating as far back as Griffiths (1949), and a similar pattern has been shown to characterize
dog-race-betting markets (Cain et al. (1996) for the UK; Terrell and Farmer (1996) for the USA).
It represents an anomaly because in most conventional financial markets, expected return is higher
in respect of assets associated with greater risk. In horse- and dog-betting markets, the opposite
occurs.

A number of explanations have been proposed to account for the anomaly; for a survey, see
Vaughan Williams (1999). Many start from the notion that the market is inefficient because of
the presence of noise traders and high transactions costs that discourage arbitrage.1 But, in the
present paper, we are concerned principally with explanations based on bettors’ risk preferences.
Golec and Tamarkin (1998) suggest that bettors might be risk-averse but “skewness-loving”.
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In this explanation, the assumption made in most economic analysis, namely that investors are
risk-averse, is retained; but it is hypothesized that at some level of wealth, the utility function
would become risk-loving, and so betting at sufficiently long odds would be attractive. On this
view, longshots provide evidently poor value (low expected return, high variance in return) in
equilibrium, but bettors still accept the odds because they are compensated by high positive
skewness. One of the implications of risk-aversion, combined with a taste for skewness, is that
there should be a non-monotonic relationship between odds and returns. The present paper tests
whether this implication of the Golec and Tamarkin approach is supported by the data from a
betting market with a very wide range of odds.

One doubt that may be raised concerning this approach is that, in the case of sports betting,
most wagers are observed to be small. Therefore, neither winning nor losing would take the bettor
far from initial wealth. With a narrow range of wealth outcomes from the bet, the shape of the
utility of wealth function is unlikely to be perceptibly different from linear, yet the explanations in
the literature refer to concave and convex segments when accounting for the pattern in returns and
indeed for the act of betting itself. However, if we accept that there are recreational benefits from
betting, participants may have preferences over the amount they win and then a utility function
defined over payoffs from a unit bet may conceivably be characterizable as having the shape of the
Freidman–Savage utility function. In this paper, the focus is on whether such bettor preferences
over the amounts won account for the presence of longshot bias in betting markets.

Any hypothesis needs to account not just for the dominant stylized fact of positive longshot
bias in horse- and dog-betting markets, but also for any exceptions to the general rule that bets on
short-odds events are financially superior to bets on long-odds events. And exceptions have been
found. For example, no bias has been detected in Asian racetrack markets (Busche, 1994; Busche
and Hall, 1988; Busche and Walls, 2000), and Vaughan Williams and Paton (1998) found bias
absent also in the case of wagering on “higher-grade handicap” races in Britain. Beyond racing,
Forrest et al. (2005) reported unbiased odds from examining bets available on nearly 10 000
English football matches, and Woodland and Woodland (1994, 2001, 2003) have even identified
a reverse, i.e. negative, bias in respect of betting on the American team sports of baseball and
(ice) hockey.2 As noted by Vaughan Williams and Paton (1998), a successful general theory of
wagering markets would explain any contrast in the pattern of returns as observed in different
sub-sectors of betting.

This paper tests for the direction of bias in a hitherto unexplored betting market, that on men’s
professional tennis. This adds to the existing taxonomy of which markets display a positive
and which a negative bias. Evidence to date relates to horse and dog betting and certain team
sports. Attempts to account for different directions of bias have been based mainly on contrasting
conditions in the horse- and baseball-betting markets. To be convincing, such explanations should
be able to predict the direction of bias in other sub-sectors, such as tennis. Hence, evidence is
needed from markets not previously studied in order to discipline the debate on longshot bias. We
seek to provide such evidence for tennis and to examine the extent to which it is consistent with
previous attempts (particularly, those linked to specific hypotheses about bettor risk preferences)
to explain why bias is positive and negative in different markets. We argue below that tennis is
an especially valuable source of evidence because of the very wide range of odds available on
singles bets.

2. Width of Odds

One reason for contrasting patterns between different areas of betting may be that different widths
of odds are observed in different markets (Woodland andWoodland, 1999). Consider some relevant
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facts, first from racing. Vaughan Williams and Paton (1998) found no bias in English horse-racing
odds when their sample was confined to handicap races. By design, runners in a handicap race are
intended to have fairly equal chances of winning, and the odds range may be expected therefore
to be relatively narrow; this is indeed the case. We recently reviewed odds data collected on
31 037 runners in British (jumps) races. The proportion of runners who were strong favourites,
defined as having odds of evens or shorter, was much lower in handicap than in non-handicap
races (0.7% compared with 2.8%). The reason for the failure of an odds bias to emerge in handi-
cap races might be that one observes only a compressed range of odds compared with other
racing.

In sports-betting markets, one does not generally find extreme favourites or rank outsiders. In
English soccer and in the American team sports, all contests are prospectively quite close because
the sport is organized to promote competitive balance. So, true probabilities of a particular team
winning will almost never justify odds such as 10/1, which are available routinely in, say, the
British racing programme. And whereas, in our large sample of British (jumps) races, much less
than 3% of runners had starting odds at evens or shorter, it is not unusual in a sports fixture to
find both teams quoted at odds-on. In this setting of team sport where all bets are in a short range
either side of evens, positive longshot bias is not found.

In contrast to most sports leagues, Singapore’s S-League (soccer) is spectacularly unbalanced,3

and extreme odds are often available. For example, one team was recently 1/20 to win, notwith-
standing that it was playing away. Forrest and Simmons (2001) found that odds on S-League
games did display a marked positive bias in contrast to the difficulty in establishing any bias in the
odds on English football and the clear negative bias in American team sports. Moreover, within
English football, betting on exact scores (rather than on the home/draw/away result) does offer
the possibility to wager on highly unlikely events (such as a scoreline of 6–5), and in this sector,
a positive bias has again been reported (Cain et al., 2000).

A pattern appears to emerge. Where odds cover a wide range, as in betting on a typical horse
race or the exact score in a soccer game, then positive longshot bias characterizes the odds. Where
the odds range is narrow, as in betting on the winner in most team sports, findings are of zero or
negative bias. This picture is consistent with the role accorded to skewness in returns in Golec and
Tamarkin (1998). In their model, bettor utility is related positively to expected return, negatively
to variance, and positively to skewness. If only odds in a range around evens are available, as in
markets on the winner of team sports events, skewness is close to zero on all bets, and risk-aversion
then yields a positive relationship between the mean and variance of returns, i.e. “negative” or
reverse longshot bias occurs. Where some outcomes that are very unlikely become available for
betting, as in many horse races and all exact-score soccer betting, such wagers attract bettors with
a preference for high skewness. Bets where low returns coexist with high risk still sell because
they offer high skewness: “positive” or traditional bias is then observed in the general pattern of
returns.

The “love of skewness” attributed to bettors by Golec and Tamarkin may be interpreted in
the context of a function relating utility to the payoff, X, from a successful unit bet. A taste for
skewness implies that such a utility function will display less risk-aversion, as higher values of
X are considered (i.e. the third derivative of utility with respect to X will be positive). Thus,
the utility function could display risk-aversion for low values of X but become risk-loving in a
range corresponding to higher values of X. In this case, the utility function would resemble that
of Friedman and Savage (1948).4 Such a utility function could permit the reconciliation of the
positive longshot bias found in horse-betting markets with the negative bias reported for baseball.
Because baseball is relatively competitively balanced, all bets carry a (low) return, with X quite
close to one. If the utility function is concave for the relevant range of X, bettors will act as if
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risk-averse in choosing between bets and require a risk premium for backing the underdog: there
will be a negative longshot bias. In contrast, bets on genuine outsiders are regularly available in
horse races. The bettor can choose between bets offering low and high values of X. If X for the
longshot lies beyond the value at which the point of inflection of the utility function occurs (it
changes from concave to convex), the longshot bet may be preferred by the representative bettor:
odds will then evolve so that in equilibrium, the longshot bet is associated with lower expected
returns, i.e. there is a standard (positive) longshot bias.

The evolution of odds to reflect bettor preferences is consistent with a model in which book-
makers seek to maximize their expected winnings from bettors. Such bookmakers will exploit
bettor preferences when they determine the odds. For example, if bettors prefer longshots over
favourites at odds that deliver the same expected return, bookmakers will shorten the odds, that
is, make them more unfavourable (Levitt, 2004). Profit-maximizing behaviour in odds setting
therefore permits the relationship between the odds and expected bettor returns to reveal bettor
preferences.

Consistent with this approach, Cain and Peel (2004) offered empirical evidence that findings for
racing and baseball are not necessarily contradictory. They noticed that one large data set employed
in a racing study had a range of implicit probabilities (derived from the odds) of 0.003 to 0.5,
whereas the range of favourite odds in the baseball data analysed by Woodland and Woodland
(1994) was roughly 0.52 to 0.7. The overlap of odds ranges was therefore limited. Utility functions
may be such as to generate a negative return–risk (mean–variance) relationship in one range of
odds but a positive relationship in another. That horse and baseball betting exhibited opposite
biases was not necessarily an anomaly given the different ranges used in the estimation. Cain and
Peel therefore advocated merging data from different betting markets to cover as wide a range of
odds as possible and then estimating the relationship between return and probability (i.e. odds),
allowing for the possibility of a turning point.

In their illustration, Cain and Peel created composite data sets from US and Hong Kong horse
racing and US baseball markets and found some evidence of a turning point in the relationship
between odds and expected return, consistent with a Friedman–Savage shaped utility function. But
such a meta-study has drawbacks. Some approaches to longshot bias, such as taken by Vaughan
Williams and Paton (1998), account for differences in results as between racing and baseball by
differences in transactions costs and differences in the proportions of informed and uninformed
bettors. If these factors are important, aggregation of the data may not permit legitimate inferences
to be drawn concerning underlying bettor utility functions. Indeed, if Hong Kong and American
racetracks and sports books on American baseball attract different types of bettor, there might not
be a common representative utility function at all.

In the present paper, we analyse the relationship between odds and returns in the betting market
on a single sport, men’s professional tennis. Without the need to aggregate across sports, this
market allows the analysis of wagering opportunities across almost the complete odds range
from zero to one probability-odds. This arises from the way in which tennis tournaments are
structured. In early rounds, the seeding system ensures a large proportion of matches that pitch
the best players against those with much lower rankings and sometimes against players who have
barely qualified to participate at all. In such matches, odds for favourites can be shorter than any
found in racing and odds against underdogs very long. In later rounds, the best players typically
play each other and odds on offer resemble those found in most team sports. The opportunity
to observe return–risk patterns over a wide range of odds in the betting market on a single
sport motivates our study of tennis. Given the range of odds on offer, it will be possible to test
whether there is a central maximum in the relationship between odds and yield, as Cain and Peel
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found, without the danger that the result is spurious because of aggregation across heterogeneous
markets.

This betting market has other advantages to the analyst seeking illumination as to the sources
of longshot bias in betting markets generally. In contrast to team sports, individual players
seldom attract committed fans whose allegiance may be reflected in betting volumes; such “sen-
timent” has the potential to distort odds in the betting market (Avery and Chevalier, 1999;
Forrest and Simmons, 2002). Indeed, sentiment bias could conceivably have created a mis-
diagnosis of reverse bias in American team sports, because the stronger teams serve larger
markets and their greater resources make them favourites disproportionately often; the rela-
tively unfair odds, which are, on an average, posted with respect to favourites, could then be
designed to exploit preferences for backing particular teams rather than to cater for return–risk
preferences.

Compared with horse racing, tennis betting is also less characterized by factors, other than
bettors’ risk preferences, that have been linked to longshot bias in some of the previous literature.
First, it is a highly specialized betting field, and prices will not have the potential to be distorted
by noise traders to the same extent as at the racetrack where money from casual, relatively
uninformed visitors can be influential: casual betting appears to be rare in tennis (for example, all
British mainstream newspapers list racing and football odds, but one has to purchase the specialist
betting daily to find listings for tennis odds). Second, any biases that do emerge from the presence
of noise traders are more likely to be arbitraged away because transactions costs in the form of
bookmaker commissions were less than half of those in racing (in our data set, introduced in the
next section, the mean over-round across all matches was approximately 1.075).

An additional point of contrast between horse racing and tennis is that there is less complex
information to process in the latter field. Tennis has only two competitors who compete relatively
frequently, whereas a horse race has numerous runners and jockeys.

There is no prior evidence, based on large data sets, regarding longshot bias in betting markets
for individual as opposed to team sports. This is despite the fact that it would be likely to discipline
the debate on sources of the longshot anomaly by adding to the taxonomy of sectors according to
whether they display a positive, zero, or a negative bias. Cain et al. (2003) tabulated returns on
bets in different odds ranges in boxing, snooker, and tennis. In each case, very poor returns were
associated with betting on rank outsiders but, otherwise, no clear pattern emerged in respect of
the relationship between odds and returns. This is unsurprising because the samples, particularly
for boxing and tennis, were very small. For tennis, they considered only bets available on 91
matches in the 1996 Wimbledon tournament. The standard deviation on the return to a unit bet is
very high since its value is always either −1 or a positive number. Finding statistically significant
relationships between odds and return therefore requires large data sets. Shmanske (2005) studied
the golf-betting market. Again, the sample was limited in size, but evidence was found for an
apparent positive bias in the sense that short odds outcomes (such as any unspecified outsider
winning the tournament) yielded the highest returns to bettors; but the small sample size makes
the conclusion tentative.

The availability of a large data set for tennis permits us to offer a potentially more reliable
analysis of the return–risk relationship in the context of an individual sport and one where odds
on offer cover a wider range than in team sports or even horse racing. The motivation is to further
understanding of longshot bias and width of odds. Specifically, we test for whether Cain and Peel’s
finding that there is a central maximum in the relationship between odds and return is replicated
when one employs a data set from the cleaner environment represented by a single rather than an
array of sports.
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3. Data

We obtained odds for each competitor in each of over 8500 men’s singles tennis matches (i.e. in
respect of over 17 000 possible bets) played in international tournaments between June 2002 and
August 2005. The source was the archive section of the website www.tennis-data.co.uk.5 Odds
are listed for eight bookmakers6 (though the set of matches covered differed slightly across the
firms). All eight enjoy a high reputation and are known as tennis specialists, willing to accept
wagers into the thousands of euros (some other bookmakers may offer tennis betting only as a
service to their clients and will have low betting limits). Of those listed, we choose to report
analysis based on the odds offered by Bet365, a firm with high recognition in all sectors, not
just tennis. However, we checked and found that findings were robust regardless of whichever
bookmaker’s set of odds was selected for the study. At the end of the paper, we explore the extent
to which betting returns can be improved by wagering at the best odds available on a particular
bet across the eight firms. For all firms, odds recorded on the website are generally closing odds.
As Woodland and Woodland (1999) pointed out, closing odds have the advantage of having been
modified by betting volumes. They therefore represent more genuine market prices, influenced by
bettor preferences, than odds available earlier in the betting period. It should be noted that odds
movements tend to be smaller than in horse-race markets. For example, if decimal odds (defined
below) were to move from 1.50 to 1.55 or 1.45, this would be regarded as normal. However, a
move from 1.50 to 1.75 or 1.30 would be wholly exceptional and would indicate significant news
such as of a player injury.

For Bet365, odds were available for 8233 matches.7 Odds in the archive are quoted in decimal
format. If odds are d , a successful bet with a stake of one unit would give a payout to the bettor
of d, yielding him a profit of (d − 1). For our purposes, we converted the decimal odds to the
alternative format of probability-odds, which would in this case be (1/d). For example, if decimal
odds are quoted as 3.50, a successful one unit bet would deliver a payout of 3.50 units and a profit
to the bettor of 2.50 units. Corresponding probability-odds are 0.286.

It is, of course, the case that the sum of the probability-odds in a match exceeds 1 to allow
for bookmaker profit. The margin by which it exceeds 1 is known as the “over-round” and is a
measure of transactions costs for bettors. In our data set, the mean over-round is 0.075, which
implies that, if the bookmaking firm held the same liabilities on each outcome, it would earn
a return of 0.075/1.075, or 7.0% of stakes. This is lower than in horse-race-betting markets
worldwide. There is very little variation in over-round across the matches in our data set; the
standard deviation is 0.008.

4. Odds and Return

In this and in the next section, we explore the relationship between odds and return. The general
pattern is summarized in Table 1, which shows the returns to placing a unit stake on every bet
available within each of 10 odds ranges. There is a close to monotonically increasing relationship
between probability-odds and return. In the 56 cases where the odds indicated that the player was
most unlikely to win (odds 0 to 0.1), not a single bet was successful, and the return was −1 to a
portfolio of all such wagers. As odds increase beyond 0.8, a negative return was still incurred, but
it became less than 0.02 of stakes.

The information in Table 1 is useful for indicating the presence of positive longshot bias in this
betting market. However, it is inadequate for estimating the precise relationship between odds
and return to the extent that groupings of odds have to be imposed on the data, and this process of
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Table 1. Mean returns by odds range for Bet365

Odds Number Mean t
range of bets return SD statistic

0.0–0.1 56 −1.000 0.000
0.1–0.2 834 −0.326 2.034 −4.622
0.2–0.3 1674 −0.257 1.567 −6.706
0.3–0.4 2060 −0.160 1.306 −5.557
0.4–0.5 2506 −0.065 1.124 −2.889
0.5–0.6 2601 −0.072 0.911 −4.038
0.6–0.7 2658 −0.061 0.750 −4.197
0.7–0.8 1850 −0.025 0.603 −1.814
0.8–0.9 1539 −0.018 0.451 −1.555
0.9–1.0 682 −0.017 0.296 −1.482
Total 16 460 −0.102 1.077 −12.194

aggregation risks introducing measurement bias. We therefore estimate the relationship between
odds and yield using data on individual bets.

Analysis here encounters the problem that within the set of 16 460 bets observed, returns are
not independent as between each of the two bets available in a single match. If one player wins,
the other loses. If the return on one bet in a match is positive, that on the other is necessar-
ily −1. Therefore, regression of yield on odds would generate downwardly biased standard
errors. We resolve the issue by randomly selecting one player in each match so that there
is only one observed bet for each event. This leaves us still with a sample size in excess
of 8000.

If the tennis-betting market were not subject to longshot bias, bets at any odds would be
associated with the same (negative) expected return. It would not be possible to improve returns
by adopting a strategy of betting, in particular odds ranges (and therefore there would be no
violation of strong efficiency, as defined by Thaler and Ziemba (1988), which rules out that
any betting plan is superior to any other). The hypothesis that there is no bias, and there is
strong efficiency, implies therefore that the relationship between odds and yield is linear with
a slope of zero. Because linearity is part of the null hypothesis, we first fitted a linear model,
return = α + β ∗ odds, to the data. In the absence of longshot bias, the constant term would be
negative (reflecting bookmaker win) and the coefficient on probability-odds would be zero. This
is akin to the widely employed test for efficiency in betting markets organized on a spread basis,
where the equation estimated is: actual points difference = α + β ∗ spread. However, in tests for
spread markets, efficiency implies α = 0 and β = 1, rather than α < 0 and β = 0 as in the present
setting of an odds-based market.

In our exercise for the odds-based, tennis-betting market, the intercept term was negative as
expected (bettors, on an average, lose money), but the estimated coefficient on probability-odds
exceeded zero (t statistic: 7.14), indicating superior returns to backing more heavily favoured
players, i.e. positive longshot bias. Absence of bias is therefore rejected even if, in statisti-
cal analysis, one imposes the restriction of linearity implicit in the null hypothesis (imposing
linearity, the relationship between probability-odds and return was estimated by the equation,
return = −0.280 + 0.351 ∗ probability-odds; the standard errors were 0.032 and 0.057, respec-
tively). Given bias as demonstrated, the case for imposing linearity collapses, and we therefore
base subsequent analysis on less-restrictive specification.
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In adopting a more flexible approach than imposing linearity, we also recognized that the
estimation exercise can, in fact, be reduced to relating the probability of losing/winning to quoted
probability-odds. This is because the relationship between yield and probability-odds is arithmetic:
conditional on a bet being successful, the return is determined only by the odds.

Let

Xi = 0, if bet i loses,

Xi = 1, if bet i wins.

Now, let ri represent the return to a unit bet. For any given probability-odds, pi , ri is deterministic
in the sense that if Xi is known, ri is known:

ri

∣∣
Xi=1 = 1

pi

− 1,

ri

∣∣
Xi=0 = −1.

(1)

The expected value of the return, ri , is then given by:

E{ri} = θi

(
1

pi

− 1

)
+ (1 − θi)(−1) = θi

pi

− 1, (2)

where θi is Pr(X = 1). We use an estimate of θi , θ̂i , to be obtained from the estimation of the
relationship between the true probability of winning and probability-odds. Note that we do not
scale the probability in each match to sum to 1. The purpose of the analysis is to test whether it
is possible, merely from a study of past prices, to formulate trading strategies that earn superior
returns in the future. This would be a violation of strong efficiency according to the definition
of Thaler and Ziemba (1988). It would be a violation of even weak efficiency, according to their
terminology, if a strategy yielded positive returns. Examination of efficiency does not require the
scaling of odds found in some betting market studies.

The first step is to estimate the relationship between true win probability and bookmaker
probability-odds. To do this, we fit a semi-parametric regression model. This provides flexibility,
not present in previous studies, that implicitly or explicitly impose functional forms on the rela-
tionship. It means that we do not make any assumptions regarding the shape of the link function
used, as would be the case if a logit or probit link function were adopted. Indeed, we have found
that the familiar “S-shaped” curves of the logit and probit link functions are not appropriate for
the data. We fit a semi-parametric regression model given by:

θ = m(p) + ε, (3)

where θ is, as before, the true probability of a win and p the covariate, i.e. the bookmaker
probability-odds. In the semi-parametric regression, the function m effectively weights the average
values of the response variable locally. Just how locally this averaging occurs is governed by a
smoothing parameter, h. Since we are dealing with a binary variable, the model is adjusted and
we transform θ using the logit transformation, and hence m(p) is a function of the form:

m̂(p) = exp(α̂ + β̂p)

1 + exp(α̂ + β̂p)
, (4)

so as to ensure that the estimated probabilities lie between 0 and 1. m̂(p) is estimated using a local
likelihood procedure. At each value of the predictor variable p, α̂ and β̂ are calculated, resulting in
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the estimated function m̂(p). From this function, we can evaluate θ̂ . This semi-parametric model
and its estimation using a local likelihood approach are described in more detail by Bowman and
Azzalini (1997). The model was fitted and estimated in R (R Development Core Team, 2005).
The smoothing parameter, h, has been chosen so as to minimize the cross-validation function, the
optimal value of h being 0.04.

As in the linear estimation, we randomly selected one player from each match and then fit-
ted a semi-parametric regression model, relating the probability of winning a bet to the quoted
probability-odds, to the data on over 8000 wagers. The result is shown in Figure 1 where the
dashed lines represent the upper and lower 95% confidence interval for the fitted regression line.

It is however true that a different relationship will be fitted according to which set of players
has been included in the sample following a random selection of one bet per match. To satisfy
ourselves as to the robustness of the result, we repeated the exercise in 10 further trials. In each
case, the outcome was very similar to that reported here, with identical implications as described
below.

The relationship between expected return and probability-odds, derived from the semi-
parametric regression according to equation (2), is illustrated by Figure 2, which also shows
the corresponding 95% confidence band for the particular randomly selected sample of bets.
According to Cain and Peel (2004), a utility function such as that associated with Friedman and
Savage (1948), i.e. having both risk-averse and risk-loving sections, would be expected to gener-
ate a relationship with a central maximum. However, although the relationship between odds and
yield, as shown in Figure 2, is not perfectly monotonic, there is a clear and consistent positive

Figure 1. Fitted semi-parametric model. Note: The observations are represented by circles that have been
spread a little so as to help the reader view the distribution of points at zero and one. A 45◦ line has been

added to facilitate interpretation
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Figure 2. Expected yield and confidence intervals from the fitted semi-parametric model

longshot bias throughout the odds range, with no central maximum. Heavy losses are associated
with bets on rank outsiders, whereas expected yield is close to zero for the strongest favourites.

The pattern of returns was stable over time so that bettors could have used their observations
from one period to improve their returns in the next period. We illustrate this in Table 2, which
shows yields to betting in different odds ranges in the sub-periods 2002–2003 and 2004–2005.
For example, the smallest losses in 2002–2003 were for bettors focussing on the 0.7–1.0 odds
range, and in 2004–2005, these odds groupings again yielded the best returns.

Table 2. Returns by odds range for Bet365, 2002–2003 and 2004–2005

2002–2003 2004–2005

Odds Number of Mean t Number Mean t
range bets return SD statistic of bets return SD statistic

0.0–0.1 4 −1.000 0.000 52 −1.000 0.000
0.1–0.2 314 −0.272 2.124 −2.271 520 −0.358 1.979 −4.122
0.2–0.3 718 −0.295 1.526 −5.185 956 −0.228 1.597 −4.412
0.3–0.4 954 −0.129 1.321 −3.028 1106 −0.186 1.292 −4.787
0.4–0.5 1153 −0.089 1.122 −2.702 1353 −0.044 1.126 −1.439
0.5–0.6 1286 −0.068 0.906 −2.696 1315 −0.076 0.916 −3.010
0.6–0.7 1178 −0.052 0.745 −2.397 1480 −0.068 0.754 −3.480
0.7–0.8 839 −0.032 0.609 −1.529 1011 −0.020 0.599 −1.055
0.8–0.9 656 −0.006 0.441 −0.337 883 −0.027 0.458 −1.741
0.9–1.0 234 −0.030 0.329 −1.415 448 −0.010 0.276 −0.736
Total 7336 −0.097 1.071 −7.788 9124 −0.106 1.082 −9.391
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Our data pertain to a single sport with an even wider odds range than that available to Cain and
Peel; considerable numbers of wagers were available even towards the extremities (for example,
682 had odds in the 0.9–1 range). The pattern that is shown has similarities with those found by
Cain and Peel to the extent that the relationship between yield and odds is particularly steep in
the long odds range (where skewness in the distribution of returns changes rapidly) and relatively
flat around the odds of evens. However, there is no evidence of a turning point, and the findings
are therefore consistent with bettors behaving as if risk-loving over the whole range of possible
payoffs. As risk becomes very low, expected loss virtually disappears, as one would anticipate if
predicting on the basis of simply assuming a risk-loving utility function.

Our findings (which appear to imply that tennis bettors love both risk and skewness) cast doubt
on whether bettors in all markets exhibit similar risk preferences capable of being represented by
a utility function shaped as in Friedman and Savage (1948). They are unsupportive of the notion
that focus on such a utility function can reconcile the differences in the direction of longshot bias
found in studies of wagering markets on different activities.

5. Microanalysis

It could be argued, if only speculatively, that the aggregation across the whole data set is in fact
inappropriate. Because of the way tennis tournaments are structured, matches where long odds are
available may take place on different days from those where odds are compressed. Hence, in one
sense, bets with very short or very long odds may not be made in the same market as those with
odds close to evens. We therefore review evidence on the return–risk relationships revealed by
considering, as Woodland and Woodland (1999) did for baseball, groups of observations defined
by how short odds the favourite was in an individual match.

The theoretical model in Woodland and Woodland is essentially similar to that underpinning
Cain and Peel’s search for a turning point in the overall relationship between odds and yield.
It is that utility functions are characterized by a distaste for risk and a preference for skewness.
Thus, a positive return–risk relationship should be observed in a market where neither outcome
was priced very far from the evens. This is because skewness, in such cases, is not a major
issue since it is quite close to zero and not very different between the alternative bets on the two
teams. In the betting markets for such games, negative longshot bias should be observed (such
that the yield on underdog bets exceeds that on favourite bets). However, as one moves towards
considering games with a very strong favourite and a very weak underdog, bettors will be attracted
by the increasingly positive skewness in the distribution of returns from the long-odds underdog
proposition. The degree of negative longshot bias should therefore fall as increasingly strong
favourites are considered and may eventually be reversed to become positive bias at sufficiently
extreme odds.Woodland andWoodland’s evidence was broadly consistent with these propositions,
though the lack of very strong favourites precluded complete testing (which was possibly why no
reversal of bias was in fact observed): only 3% of games offered odds over two. An advantage of
tennis is that over half of the matches featured such a bet so that there are very adequate numbers
of observations in odds ranges where there is large difference in skewness of returns as between
favourite and underdog. If bettors are risk-averse but skewness-loving, this should be manifest
in a tendency for longshot bias to be reversed when considering bets within matches where each
player has either very short or very long odds. This is what we test in this section.

Table 3 shows the return achieved by betting one unit on all wagers available in odds classes
defined by favourite odds.8 In order to examine more closely the relationships between odds
ranges, return, variance, and skewness, we also include columns for average variance and average
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Table 3. Returns to favourites and underdogs by favourite odds range

Favourite Underdog

Favourite Number of Mean t Average Average Mean t Average Average

odds range matches return SD statistic variance skewness return SD statistic variance skewness

0.55–0.60 1173 −0.053 0.857 −2.111 0.735 −0.185 −0.097 1.002 −3.300 1.004 0.199
0.60–0.65 1167 −0.051 0.787 −2.234 0.620 −0.354 −0.099 1.088 −3.107 1.187 0.353
0.65–0.70 1491 −0.069 0.720 −3.677 0.514 −0.568 −0.069 1.208 −2.209 1.450 0.566
0.70–0.75 1005 −0.051 0.642 −2.494 0.399 −0.891 −0.110 1.320 −2.636 1.701 0.860
0.75–0.80 1189 0.002 0.539 0.119 0.300 −1.256 −0.237 1.427 −5.721 2.076 1.269
0.80–0.85 448 −0.021 0.478 −0.941 0.222 −1.622 −0.229 1.585 −3.061 2.484 1.614
0.85–0.90 747 −0.022 0.407 −1.483 0.159 −2.079 −0.280 1.741 −4.395 2.982 2.019
0.90–0.95 496 −0.022 0.325 −1.479 0.102 −2.785 −0.314 2.087 −3.346 4.068 2.783
0.95–1.0 186 −0.004 0.198 −0.276 0.052 −4.201 −0.664 1.704 −5.314 4.263 4.365
Total 7902 −0.039 0.656 −5.318 0.429 −1.051 −0.166 1.381 −10.703 1.905 1.049
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skewness for bets in each odds class. The latter two quantities are calculated as follows. If, as
before, we let the true probability of winning bet i, be θi , estimated from our semi-parametric
regression as θ̂i , and the bookmaker probability-odds of bet i, be pi , then for a one unit bet the
expected return of bet i is given by equation (2). The variance of the return on each individual
bet, i, is given by

Var(ri) = θ̂i

p2
i

(1 − θ̂i ) = σ 2
ri

(5)

and the skewness of each return (the standardized third moment) is thus given by

Skew(ri) = θ̂i (2θ̂i − 1)(θ̂i − 1)

p3
i σ

3/2
ri

. (6)

Table 2 shows the average variance and average skewness of bets for favourites and underdogs in
odds classes defined by favourite odds.

Consistent with Woodland and Woodland, underdogs tend to become increasingly unfair betting
propositions, as more extreme odds are considered. However, in no odds range, even where
the two players’ odds are very close, does the expected return on the underdog exceed that
on the favourite. Indeed, in every group except one, where returns are equal, the data indicate
positive longshot bias. This suggests that risk-loving rather than risk-averse bettors dominate the
market. Again the pattern is consistent with typical bettors being risk- and skewness-loving (i.e.
they are risk-loving and become more risk-loving as they consider bets with higher and higher
payoffs).

6. Betting in High-Profile Tournaments

We have focussed on implications of evidence from tennis for theories of longshot bias based on
hypotheses concerning the utility functions of representative bettors. However, a separate strand
in the literature (initiated by Shin (1992)) represents the positive longshot bias as a defensive
reaction by bookmakers to the possible holding of private information by privileged bettors. In
support of this approach, Vaughan Williams and Paton (1998) claimed that there were differences
in whether a positive longshot bias existed according to how high profile the (racing) event was.
Here, therefore, we consider separately patterns of returns as between Grand Slam and non-Grand
Slam tournaments. Grand Slams are the highest profile events. Upsets should be fewer for two
reasons. First, matches are longer, played over five rather than three sets, making it less likely that
outcomes will be determined by random events such as poor umpire calls. Second, prize money
and prestige is much higher than in other tournaments. With incentives to effort greater, there is
less likelihood that a star player will be beaten because he is, for example, treating the event as
a practice or underperforming because he does not want to risk aggravating an injury. Therefore,
relevant private information concerning the event becomes much less likely to be a factor in the
betting market. One might then predict that the positive longshot bias we have found for tennis
might be mitigated in the case of Grand Slam tournaments.

In fact, Table 4, which displays mean returns by odds ranges, shows no difference between
the patterns for non-Grand Slam and Grand Slam sub-samples. There is no evidence here that
there is a role for inside information in accounting for the positive longshot bias we have
documented.
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Table 4. Mean returns by odds range, Grandslams only

Odds Number Mean t
range of bets return SD statistic

0.0–0.1 36 −1.000 0.000
0.1–0.2 299 −0.351 2.053 −2.958
0.2–0.3 365 −0.410 1.429 −5.478
0.3–0.4 328 −0.073 1.349 −0.984
0.4–0.5 348 −0.081 1.125 −1.345
0.5–0.6 335 −0.066 0.909 −1.320
0.6–0.7 364 −0.066 0.749 −1.691
0.7–0.8 337 −0.024 0.600 −0.721
0.8–0.9 345 0.018 0.412 0.805
0.9–1.0 265 −0.022 0.296 −1.195
Total 3022 −0.131 1.122 −6.426

7. Betting at “Best Odds”

Odds in tennis appear, then, to be biased such that a strategy of accepting only shorter odds wagers
yields a superior mean return. But in no odds group was there evidence that expected return was
consistently positive. This appears to imply that the market is weak, but not strong, efficient in the
Thaler–Ziemba sense. However, returns were examined using only odds offered by Bet365. In
the analysis of betting markets, it has sometimes been claimed that a profit could have been made
by identifying a bias and combining this knowledge with a strategy of shopping around, so as to
place bets at different bookmakers according to which had the best price quote for that particular
bet (Simmons et al., 2003). The eight bookmakers in our sample all enjoy a strong reputation and
operate internet accounts. Once accounts had been established, a serious bettor would therefore
have faced low transactions costs: current odds could be compared on a single site and the wager
then placed where prospectively there was the highest return. By definition, given heterogeneity
in odds, this must improve bettor return. The interest is whether a strategy with positive expected
returns emerges.

Table 5. Best odds return by odds range defined by Bet365

2002–2003 2004–2005

Odds Number t Number t
range of bets Mean SD statistic of bets Mean SD statistic

0.0–0.1 4 −1.000 0.000 52 −1.000 0.000
0.1–0.2 314 −0.249 2.191 −2.010 520 −0.216 2.490 −1.977
0.2–0.3 718 −0.265 1.597 −4.442 956 −0.145 1.785 −2.518
0.3–0.4 954 −0.092 1.381 −2.050 1106 −0.116 1.408 −2.743
0.4–0.5 1153 −0.058 1.162 −1.695 1353 0.023 1.210 0.700
0.5–0.6 1286 −0.037 0.938 −1.425 1315 −0.018 0.976 −0.684
0.6–0.7 1178 −0.025 0.767 −1.125 1480 −0.012 0.806 −0.555
0.7–0.8 839 −0.010 0.623 −0.472 1011 0.029 0.633 1.474
0.8–0.9 656 0.022 0.455 1.255 883 0.024 0.490 1.471
0.9–1.0 234 −0.011 0.337 −0.493 448 0.058 0.723 1.695
Total 7336 −0.068 1.112 −5.254 9124 −0.040 1.221 −3.129
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Table 5 shows returns to placing unit bets on all wagers in a given Bet365 odds range but using
the supplier offering the most generous price. The sample is for matches where Bet365 odds were
available: the best price may not necessarily have been the best from eight bookmakers since
there were missing odds in some cases (we used whatever odds were available). There is some
evidence of profitable trading opportunities that repeated from one sub-period to the next, i.e. of a
violation of weak efficiency. In 2003–2004, bets in the 0.8–0.9 odds range yielded a positive return
in excess of 2%. A bettor noting this could have accepted all such bets in 2004–2005 and again
enjoyed a positive return of more than 2%. However, in neither case was the return statistically
significant except at generous significance levels.

8. Closing Remarks

We have employed a new econometric approach to the estimation of the relationship between odds
and return in a betting market, using it to test for longshot bias in the context of wagering on men’s
professional tennis. The tennis-betting market we study appears to be conducted between well-
informed traders, and transactions costs are lower than in horse racing. The market we analyse
therefore lacks some features claimed by previous authors to play a significant role in generating
a bias. We find nevertheless that there is a positive longshot bias in the tennis-betting market.

Vaughan Williams and Paton (1998) offered a general theory of bias in betting markets, designed
to be consistent with the findings in American baseball and different categories of horse racing.
The danger in basing explanations of longshot bias on evidence from a limited range of betting
activities is underlined by our findings for tennis. First, Vaughan Williams and Paton predicted
that the positive bias would be eroded as the potential for insiders to hold the relevant information
diminished; but we found a positive bias even in Grand Slam events where effort is likely to be
maximized, and therefore inside knowledge concerning a player’s commitment to the upcoming
match likely to be less relevant. Second, they predicted that bias would be lessened or reversed
as the proportion of informed bettors in a market increased because informed bettors preferred
backing favourites; but, though tennis betting is a specialist rather than a mass market activity,
strong positive bias remains in the odds. Third, they related the negative bias in baseball odds to
the very low transactions costs compared with horse racing; but tennis betting, with its positive
bias, is also cheaper than racing in terms of bookmaker over-round, so low transactions costs in
themselves do not appear to lead to diminished or zero or reverse bias.

Some prior literature finds a negative longshot bias in particular markets but this has always
been in settings where only a narrow range of odds was available. Some authors have attempted to
reconcile the findings of positive and negative bias in different areas of betting by pointing to the
fact that different odds ranges comprise the sample in different studies. Across the whole possible
odds range, there might be positive or negative bias according to where in the range one looks.
Contrasting evidence in different sectors might then be explained not by the classic analysis of
market inefficiency (many noise traders, high transaction costs) but by reference to bettors’ risk
preferences, in particular the possibility that they are similar to those exhibited by a Friedman–
Savage utility function (which has been redefined here to relate to the size of the potential amount
won for a unit stake rather than total wealth). If it had this shape for the representative bettor, it
would be capable of generating either a negative or positive longshot bias according to where in
the odds range one looked. This was the point emphasized in Cain and Peel (2004).

The way tennis is organized offers an opportunity to study a complete range of odds on players
winning matches in the context of a single sport. Our evidence pointed to positive longshot bias
with no evidence of negative bias in any part of the odds range. This calls into question whether
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a focus on a Friedman–Savage-shaped utility function is the most appropriate approach in trying
to explain why a longshot bias is positive in some markets and negative in others. The evidence
for tennis is consistent with a simple assumption that bettors have risk-loving utility functions
rather than a Friedman–Savage-shaped function (it would also be consistent with the alternative
hypothesis that bettors prefer longshots because there is greater expected utility when bragging
rights could be won).

Risk-loving utility functions constitute the simplest story to account for why people bet at all.
But the story does not explain why a negative bias occurs in certain team sports betting markets.
One possibility is that in the absence of genuine longshots in such betting markets, bragging
rights accrue to those with the highest proportion of winning bets. In this case, bettors would
prefer to back favourites and therefore accept a lower rate of return than that on underdogs, hence
a negative bias. Another area for investigation might be the extent to which odds in such markets
are distorted by sentiment.

The longshot anomaly is unlikely to be explained fully from analysing only one betting sector.
Resolution will be more likely if additional sectors are examined for positive or negative bias
since a successful theory must account for heterogeneity of findings across racing and other
sports. While evidence has built on team sports, ours is the first study employing a large data
set to examine a betting market for an individual sport. It proved to be more like the market for
horse racing than those for team sports, with a positive relationship between odds and return
throughout an odds range that extended virtually from 0 to 1. This casts doubt on whether an
assumption that bettor utility functions display convex and concave segments can account for
heterogeneity in findings on longshot bias across betting sectors. It will be of interest whether the
finding is repeated in the future for other individual sports. If it is, the literature might wish to
explore alternative explanations than risk preference in accounting for the existence of positive
and negative longshot bias in different betting markets.
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Notes
1 See, for example, Terrell and Farmer (1996), Hurley and McDonough (1995), and Vaughan Williams and Paton (1998).
2 Longshot bias has not been subject to the same analysis in the betting markets on the other principal American team

sports, football, and basketball, since, in each of these cases, the primary offering of bookmakers is handicap betting,
i.e. bettors are asked to judge whether a team will “beat the spread” and bets on all teams carry the same odds, so there
is, in this case, no range of odds across which returns could vary.

3 The standard deviation (across clubs) of the proportion of matches won in the season (with draws counted as half a
win) is an often-used measure of the degree of balance in a sports league. In the S-League, it was 0.189 in 1999 and
0.184 in 2000. By way of comparison, the equivalent measure for the English Premier League in 1999–2000 was 0.141
and that for the supposedly uncompetitive Scottish Premier League was 0.148.

4 Friedman and Savage considered a utility of wealth function. Their function had risk-averse and risk-loving segments,
and this could “explain” why many individuals buy both insurance and lottery tickets. The focus on the marginal utility
of wealth was plausible, given that a house fire or a jackpot win would be associated with a move to a very different
level of wealth for most individuals. However, it is less clear that the analysis illuminates betting behaviour. Most bets
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are for a small stake and relate to a relatively small possible payoff. For most bettors, losing or winning would make
little difference to their level of wealth. The analysis of the decision to bet or not would then focus on a very narrow
segment of the utility of wealth function, which therefore may be taken as imperceptibly different from linear (i.e.
risk-neutral). Given that track or bookmaker commissions are positive, the bet would not be made. That people do bet
we therefore view as revealing a recreational value to betting. When we refer to the utility function, we have in mind
the utility attached to winning different amounts from a unit bet. This may have the shape of the Friedman–Savage
function but does not relate to total wealth.

5 Access to the site requires the payment of a subscription.
6 The eight were: Bet365, Bet & Win, Centrebet, Expekt, Gamebookers, Interwetten, Pinnacles, and Sportingbet.
7 There were six matches in which betting was not available on the “favourite”.
8 We excluded the 325 matches with no favourite (in each of these matches, odds on either player were quoted as 1.833

(11/12 in UK format)) and six matches where no betting was available on the favourite.
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