
1.  Introduction
Since September 1997, high quality records in satellite ocean color have continuously revealed spatio-temporal 
variations in chlorophyll concentration, a proxy for phytoplankton biomass, at a near-global scale. The chloro-
phyll concentration data set has been a focal point in estimating myriad properties, including but not limited 
to global marine primary production (Carr et  al.,  2006; Falkowski,  1994), phytoplankton bloom dynamics 
(Ardyna et al., 2014; Arrigo, 2003; Henson et al., 2009; Yamaguchi et al., 2022), light attenuation coefficients 
in ocean layers (Manizza et al., 2005; Morel, 1988), carbon export (Dunne et al., 2007; Henson et al., 2012), fish 
species distribution (Cheung et al., 2010; Hazen et al., 2018) and fisheries catch (Chassot et al., 2010; Friedland 
et al., 2012; Park et al., 2019). The variation of chlorophyll concentration has also played a crucial role in vali-
dating predictive physical-biogeochemical models and is being assimilated into biogeochemical state estimates 
(Dutkiewicz et al., 2020; Fennel et al., 2019).

Abstract  For over two decades, satellite ocean color missions have revealed spatio-temporal variations in 
marine chlorophyll. Seasonal cycles and interannual changes of the physical environment drive the nutrient 
and chlorophyll variations. In order to identify contributions of seasonal and interannual components on 
chlorophyll, the present study investigates total chlorophyll variance (TCV) of a 24 year records (September 
1997 to December 2021) across satellite generations. First-order contributions of the seasonal cycle in the 
mid-latitude (25°–35°) oceans in the Northern and Southern Hemispheres explain 59.5% and 69.9% of 
TCV, respectively. In contrast, the contribution of seasonal cycle only explain 30.9% in the tropical oceans 
(20°N–20°S). Both seasonal cycle- and climate-driven variability (26.3%) explain 57.2% on TCV in the 
tropical oceans. A multiple linear regression model was forced by instantaneous and delayed effects of oceanic 
memory of eight climate indices based on sea surface temperature anomalies to reconstruct chlorophyll 
anomalies. Delayed climate effects generally boost the anomaly correlation coefficients (ACC) between the 
observed and reconstructed chlorophyll timeseries (ACC skills: 0.64 to 0.72 in the Indian Ocean, 0.74 to 0.82 in 
off-equatorial Northern Pacific, and 0.58 to 0.71 in the off-equatorial Southern Pacific). Such delayed climate 
effects provide a source of predicted chlorophyll ACC (ACC_predic) skills one season ahead in some ocean 
regions (ACC_predic skill: 0.63 in the overall tropical ocean, 0.67 in the tropical Pacific, and 0.60 in the Indian 
Ocean). The attribution of chlorophyll variability indicates promising avenues for improving marine ecosystem 
predictions with Earth system models by incorporating delayed climate effects.

Plain Language Summary  Surface ocean color detected by satellites can be used to estimate 
the photosynthetic pigment chlorophyll used by phytoplankton at the base of ocean food chains. Satellites 
show that chlorophyll varies in space and time. In this study, we identify chlorophyll time variation as it is 
influenced by two components: (a) the seasonal cycle, (b) interannual variations. We find that the seasonal 
cycle dominates chlorophyll variance in the mid latitudes. However, the seasonal cycle explains less than a 
third of tropical chlorophyll variance. The addition of interannual climate-driven changes explains over half 
of tropical chlorophyll variance. We used a statistical model of chlorophyll based on eight different indices of 
year-to-year climate fluctuations in sea surface temperature to further understand the influence of current and 
past conditions on its variance. Delayed effects of sea surface temperature from prior seasons improve model 
estimates of chlorophyll in the equatorial Pacific and Indian Oceans. Thus, ocean “memory” of sea surface 
temperature variability can be a source of substantial skill in tropical chlorophyll predictability for future 
seasons.
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The variation in chlorophyll concentration is closely associated with the oceanic physical environment. The highly 
productive regions are located in areas of strong upwelling, boundary currents, and/or mid-to high-latitudes 
systems (Banse, 1992; Everett et al., 2014; Falkowski & Woodhead, 2013; Kämpf & Chapman, 2016; Murray 
et al., 1992). In contrast, the least productive regions, so-called oligotrophic waters, are located in the subtropical 
gyres (Laws et al., 1987; Polovina et al., 2008; Sarmiento et al., 2004; Signorini et al., 2015). These regions have 
unfavorable physical conditions for the supply of nutrients due to stabilized ocean layers, negative windstress 
curl, and downwelling (Talley et al., 2011). Seasonal changes in light, stratification and nutrient supply (Dave 
et  al.,  2015; Signorini et  al.,  2015) also drive the migration of chlorophyll fronts at the boundaries between 
mesotrophic and oligotrophic waters (Polovina et al., 2017; Vantrepotte & Mélin, 2009; Yoder & Kennelly, 2003) 
and the seasonal dependency of chlorophyll extremes driven by marine heatwaves (Noh et al., 2022).

Despite the prominence of seasonal drivers of chlorophyll variability, the year-to-year (i.e., interannual) changes 
of the physical environment in some regions may drive a more substantial chlorophyll variation. In the tropi-
cal Pacific, the El Niño–Southern Oscillation (ENSO) (McPhaden et al., 2006), the most prominent mode of 
climate variability, strongly alters the equatorial Pacific thermocline, nutrient upwelling, and chlorophyll (clima-
tology: 0.2 ug/L) fluctuations from lowest record 0.05 μg/L (four-fold smaller than climatology) to about 1 μg/L 
(five-fold larger than climatology) (Behrenfeld et al., 2001; Chavez et al., 1999; Murtugudde et al., 1999). ENSO 
is a major contributor in global chlorophyll fluctuation associated with changes in physical and biological envi-
ronments (Chavez et al., 2011). The evolution of ENSO modulates the tropical Pacific chlorophyll responses from 
a basin-wide pattern in boreal winter to 6 month delayed tri-polar pattern in boreal summer, positive anomalies 
along the equator and negative anomalies in off-equator in El Niño events (Park et al., 2011). In the equatorial 
Pacific, the ENSO-chlorophyll evolution in boreal summer is associated with post-El Niño iron rebound (Lim 
et al., 2022).

In addition to ENSO, the Pacific Decadal Oscillation (PDO) (Mantua et al., 1997) and the North Pacific Gyre 
Oscillation (NPGO) (Di Lorenzo et al., 2008) are leading modes of the extra-tropical Pacific climate that interact 
with the tropical Pacific via atmospheric (Alexander et al., 2002; Trenberth & Hurrell, 1995; Vimont, 2005; Yeh 
et al., 2018) and oceanic (Amaya, 2019; Di Lorenzo et al., 2010; Joh & Di Lorenzo, 2019; Vimont et al., 2009; 
Walker & Bliss, 1932) teleconnections. Linear model reconstruction with combined large-scale Pacific climate 
variabilities (ENSO, PDO, and NPGO) explains the variance of chlorophyll anomalies in the Pacific ocean basin, 
locally upto 70% estimated by 13-year satellite ocean color (Di Lorenzo et al., 2013).

Investigation of climate variability modes has also revealed delayed relationships between the tropical ocean 
basins (Cai et al., 2019; Ham, Kug, Park, et al., 2013; Jiang et al., 2021; Kug & Kang, 2006; Park, Kug, et al., 2018) 
with implications for predictability and of potential practical utility to prediction systems (Izumo et al., 2010; 
Jeong et al., 2021; Luo et al., 2017). The climate variability in the Indian Ocean does not only alter the mixed 
layer depth, nutrients, and chlorophyll anomalies in the internal Indian Ocean (Murtugudde et al., 1999; Park 
& Kug, 2014), but also generates the delayed remote effect in the equatorial Pacific chlorophyll rebound (Tian 
et al., 2021). In addition, the Atlantic Niño has not only characterized positive sea surface temperature and sea 
surface height anomalies in the internal Atlantic Ocean (Vallès-Casanova et al., 2020; Zebiak, 1993), but also 
drives the delayed remote impact on ENSO variability in the tropical Pacific (Ham, Kug, & Park, 2013).

The attribution study of the chlorophyll variance from 10-years of satellite ocean color (Vantrepotte & 
Mélin, 2009) is in need of an update for the full 24-years record of global ocean color. In addition, the report for 
chlorophyll variance contribution using linear model reconstruction for 13-year chlorophyll anomalies based on 
instantaneous ENSO, PDO, and NPGO indices (Di Lorenzo et al., 2013) can be improved by considering delayed 
effects of climate indices. In this study, we revisit global ocean color estimates of chlorophyll for 24-years from 
September 1997 to December 2021 and investigate the contribution from the seasonal cycle and interannual 
climate components on TCV building upon previous studies. We first quantitatively estimate the importance of 
the seasonal cycle on TCV and subsequently estimate the role of climate variability, focusing on instantaneous 
and delayed responses to eight climate modes that are indicative of potentially predictable chlorophyll responses. 
Section 2 describes the data set and assessment metrics in seasonal and interannual components of global TCV. 
Sections  3.1–3.3 shows results of global TCV and decomposition approaches from seasonal and interannual 
components driven by climate variability. Section 3.4 uses the delayed components of climate states from prior 
seasons to assess the statistical predictability of chlorophyll. Section 4 summarizes the climate drivers of chlo-
rophyll variance, their implications for predictability, and related results herein to past findings on this topic. 
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Section 4 also discusses potential drivers of unexplained chlorophyll variance and their potential incorporation 
into predictive models.

2.  Methods
2.1.  Data Set

For the analysis, we used global ocean color satellite-derived chlorophyll concentration products from Septem-
ber 1997 to December 2021. For the main result, we used Garver, Siegel, Maritorena (GSM) model product in 
GlobColour (GlobColour-GSM) for Case 1 water (Maritorena et al., 2010). The bio-optical model procedure of 
GSM model and its general features are described in Maritorena et al. (2002) and Maritorena and Siegel (2005). 
This product uses normalized reflectances at the original sensor wavelengths of satellite generations, without 
intercalibration. GlobColour-GSM product (100 km horizontal resolution) was obtained from the GlobColour 
version 2021.1 (https://hermes.acri.fr). To use the full timeseries for monthly satellite coverage, our analysis was 
restricted to the open ocean, latitudes 50°N-50°S, excluding the seasonal sea ice cover areas.

In the supplemental results, we compare two different satellite product: (a) GlobColour satellite product merged 
by the simple average method model (GlobColour-AVM), obtained from https://hermes.acri.fr; (b) European 
Space Agency Ocean Colour Climate Change Initiative project version 5.0 (ESA-OC-CCI-v5.0), a blended 
version of combination of OCI, OCI2, OC2, and OCx algorithms (Sathyendranath et al., 2021). We obtained 
4 km horizontal resolution of ESA-OC-CCI-v5.0, obtained from https://climate.esa.int/en/projects/ocean-colour/ 
and ESA-OC-CCI-v5.0 data set was regridded by bilinear interpolation of climate data operators (remapbil) into 
100 km. GlobColour-AVM and ESA-OC-CCI-v5.0 were used to benchmark the robustness of main result of 
GlobColour-GSM.

For the calculation of major climate indices (Table 1), sea surface temperature (SST) data was obtained from the 
NOAA Extended Reconstructed SST version 5 (ERSST v5) (Huang et al., 2017).

Linear trends based on least-squares fitting over time in all datasets show global chlorophyll declines in tropical 
and midlatitude oceans (Figure S1 in Supporting Information S1), consistent with Boyce et al. (2014) but increas-
ing trends of chlorophyll occur in the Humbolt current near the westcoast of South America and in polar regions. 
In this study, we remove these linear trends over time from all data sets as attributions are challenging to interpret 
due to the inconsistency of patterns and magnitudes of linear trends between chlorophyll products (Figure S1 
in Supporting Information S1), which have sources of linear trend uncertainty in ocean optics of phytoplankton 
communities (Dutkiewicz et al., 2019). This choice also helps avoid the misinterpretation of multidecadal climate 
variation and climate change effects due to relatively short timeseries (∼24 years) relative to these signals. We 

Climate variability Index SSTa index domain Reference

Eastern Pacific (Cold Tongue) ENSO NINO3 (5°N–5°S, 150°W–90°W) Trenberth (1997); Kug et al. (2009); Yeh 
et al. (2009)

Central Pacific (Warmpool) ENSO NINO4 (5°N–5°S, 160°E–150°W)

Pacific decadal oscillation PDO EOF 1st PC (120°E–60°W, 20°N–60°N) Mantua et al. (1997)

North Pacific gyre oscillation (Victoria Mode) NPGO EOF 2nd PC (120°E–60°W, 20°N–60°N) Bond et al. (2003); Di Lorenzo et al. (2008)

Atlantic Niño ATL3 (20°W–0°, 3°S–3°N) Zebiak (1993); Vallès-Casanova et al. (2020)

Atlantic meridional mode AMM (5°–15°N, 50°–20°W) minus (5°–15°S, 20°W–10°E) Xie and Carton (2004); Doi et al. (2010)

Indian Ocean dipole mode DMI (50°E–70°E, 10°S–10°N) minus 
(90°E–110°E,10°S–0°)

Saji et al. (1999)

Indian Ocean basin mode IOBM (20°S–20°N, 40°–105°E) Klein et al. (1999); Hong et al. (2010)

Note. SSTa are obtained from SST by subtracting the monthly climatology of SST from 1951 to 2019. All climate indices were used from September 1997 to December 
2021 to match global ocean color datasets. Pacific Decadal Oscillation (PDO) and North Pacific Gyre Oscillation (NPGO)-like indices are generated by an Empirical 
Orthogonal Function (EOF) of North Pacific SSTa from 1951 to 2021 to capture long-term variabilities and only the first (PDO) and second (NPGO) Principle 
Component (PC) timeseries of the EOF from September 1997 to December 2021 were used in the MLR model.

Table 1 
List of Climate Indices Using Sea Surface Temperature Anomalies (SSTa) Implemented in the Multiple Linear Regression (MLR) Model for Reconstructions of 
Chlorophyll Anomalies (rCHLa)
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also note that these trends contributed only a small fraction (2%–6% difference TCVs between with and without 
linear trends) to global TCV over the analysis period (not shown).

2.2.  Chlorophyll Variance Analysis

Using GlobColour-GSM, GlobColour-AVM, and ESA-OC-CCI-v5.0, we defined TCV at a given grid cell of 
chlorophyll timeseries (𝐴𝐴 CHL𝑡𝑡 ),

TCV = 1
�
∑�

�=1
(CHL� − �)2� (1)

where 𝐴𝐴 𝐴𝐴 is equal to degree of freedom of chlorophyll datasets (288 month for 24 years from September 1997 to 
August 2021), 𝐴𝐴 𝐴𝐴 is equal to the mean annual chlorophyll over the 24 year analysis period after detrending 𝐴𝐴 CHL𝑡𝑡 ,

� = 1
�
∑�

�=1
CHL�� (2)

TCV includes both seasonal and interannual components in chlorophyll. We note that the seasonal cycle of 
chlorophyll and interannual chlorophyll anomaly are independent. Correlation coefficient between seasonal and 
interannual chlorophyll timeseries is almost zero (not shown). Thus, TCV can be separated by seasonal and 
interannual components.

The first order component in TCV is the seasonal variation (Vantrepotte & Mélin, 2009; Yoder & Kennelly, 2003). 
We defined the variance in chlorophyll based on the seasonal cycle (SCV),

SCV = 1
�
∑�

�=1
(CHL SC� − �)2� (3)

where 𝐴𝐴 CHL SC𝑡𝑡 is chlorophyll climatology of all calendar month from September 1997 to August 2021 and 
repeating monthly values of calculated chlorophyll climatology with time. The observed patterns of TCV and 
SCV are shown in Section 3.1.

The residual variance after excluding SCV is referred to as the anomalous chlorophyll variance (ACV). That is,

ACV = TCV − SCV = 1
�
∑�

�=1
(CHLa�)2� (4)

where 𝐴𝐴 CHLa𝑡𝑡 is equal to chlorophyll anomalies. 𝐴𝐴 CHLa𝑡𝑡 is calculated by removing 𝐴𝐴 CHL SC𝑡𝑡 from the detrended 𝐴𝐴 CHL𝑡𝑡 .

2.3.  Reconstruction of Chlorophyll Variance

Identifying 𝐴𝐴 CHLa𝑡𝑡 allows us to associate the variance in 𝐴𝐴 CHLa𝑡𝑡 with dominant climate modes using their partial 
linear regression coefficients (𝐴𝐴 𝐴𝐴 ) in a multiple linear regression (MLR) model for 𝐴𝐴 CHLa𝑡𝑡 , as shown in Equation 5. 
First, we define climate indices simply using only SST anomalies obtained from ERSSTv5, as shown in Table 1. 
All climate indices were normalized by their standard deviation. Then, 𝐴𝐴 𝐴𝐴 is forced by each instantaneous and 
delayed climate mode against satellite chlorophyll time series observed at each grid cell, with the relationships 
quantifying “delayed effects” indicative of predictability in the system. Using 𝐴𝐴 𝐴𝐴 and climate indices, we calcu-
lated reconstructed chlorophyll anomaly timeseries (𝐴𝐴 rCHL𝑡𝑡

′ ):

rCHLa� =
∑4

�=0
(�1,�−� ⋅ NINO3�−� + �2,�−� ⋅ NINO4�−� + �3,�−� ⋅ PDO�−�

+ �4,�−� ⋅ NPGO�−� + �5,�−� ⋅ ATL3�−� + �6,�−� ⋅ AMM�−�

+ �7,�−� ⋅ �OBM�−� + �8,�−� ⋅ DMI�−� )
�

(5)

where 𝐴𝐴 𝐴𝐴 is the timescale of instantaneous climate indices (𝐴𝐴 𝐴𝐴  = 0) and lagged seasons of climate indices to consider 
delayed effects (𝐴𝐴 𝐴𝐴 = 1 − 4) . We tested that considering monthly averaged SSTa climate indices as predictors led 
the MLR model to be overfitted (not shown). In the present study, we use seasonally averaged SSTa climate 
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indices as predictors on MLR model. In this case, 𝐴𝐴 𝐴𝐴  = 1 means 1–3 lag month average, 𝐴𝐴 𝐴𝐴 = 2 means 4–6 lag 
month average, 𝐴𝐴 𝐴𝐴 = 3 means 7–9 lag month average, 𝐴𝐴 𝐴𝐴 = 4 means 10–12 lag month average.

We performed the MLR model based on “leave-one-out cross-validation” (hereafter cross-validation). The 
cross-validation is a broadly applied metric of the statistical models to assess the skills with avoiding the overfit-
ted results (Jeong et al., 2021). For this validation method, a time step (1 month) of observation is omitted from 
CHLa data sets and climate indices, and rest of time steps (291 month) from CHLa and climate indices are resa-
mpled. This resampled data is used to calculate MLR coefficients and reconstructions for an omitted timestep out 
of resamples. Thus, rCHLa timeseries are generated by the MLR model during multiple times (total 292 times; 
from September 1997 to December 2021) for every CHLa timeseries by resampled CHLa and climate indices. 

𝐴𝐴 𝐴𝐴 is not sensitive to omitted time during cross-validation. The correlation skills between CHLa and rCHLa are 
shown in Section 3.3.

Using 𝐴𝐴 rCHLa𝑡𝑡 reconstructed ACV related to major climate modes (𝐴𝐴 rACV ) is,

rACV = 1
�
∑�

�=1
(rCHLa�)2� (6)

and reconstructed TCV (𝐴𝐴 rTCV ) is,

rTCV = 1
�
∑�

�=1
(rCHLa� + CHL SC� − �)2� (7)

assuming the changes of 𝐴𝐴 CHL SC𝒕𝒕 are negligible in rTCV. All results of rCHLa, rACV, and rTCV shown in the 
Sections 3.2–3.4 are cross-validated estimate.

2.4.  Predicting Chlorophyll Anomaly

The analysis above quantifies the contributions of the seasonal cycle and various elements of climate variability 
to the overall chlorophyll signal. To explore chlorophyll predictability, we repeat the process of MLR model 
(Equation 5 in Section 2.3) but predicted rCHLa calculated from delayed climate effects only (rCHLa_predic), 
summarized in Table S1 in Supporting Information S1. In this case, the instantaneous (𝐴𝐴 𝐴𝐴 = 0 ) climate variabil-
ity is not considered. The calculation of MLR coefficients between delayed climate indices and CHLa on the 
target timeseries are cross-validated estimate. To resolve monthly lead time and reduce the number of degrees 
of freedom, we generate the MLR model based on 3-monthly averaged timeseries from 𝐴𝐴 𝐴𝐴  = 1 to 𝐴𝐴 𝐴𝐴  = 4. This 
predictability approach is similar to the above rCHLa calculations excepting for 𝐴𝐴 𝐴𝐴  = 0. To see the predictability 
with increased lead time of delayed effects of climate indices, 𝐴𝐴 𝐴𝐴 are removed step-wise a month (see Table S1 in 
Supporting Information S1).

2.5.  Anomaly Correlation Coefficient (ACC) Skill Assessment Metric

We calculated ACC skill for assessing the attribution of climate indices on CHLa and its predictability. The ACC 
calculation is based on the Pearson correlation coefficient to represent normalized covariance coefficient of 
rCHLa and rCHLa_predic against observed CHLa.

To attribute climate indices on CHLa, we calculate ACC between CHLa and rCHLa,

ACC =

∑𝑛𝑛

𝑡𝑡=1
CHLa𝑡𝑡 ⋅ rCHLa𝑡𝑡

√

∑𝑛𝑛

𝑡𝑡=1
CHLa𝑡𝑡

2
⋅

√

∑𝑛𝑛

𝑡𝑡=1
rCHLa𝑡𝑡

2
� (8)

To assess the predictability, we calculate predicted ACC (ACC_predic) between CHLa and rCHLa_predic,

ACC predic =

∑𝑛𝑛

𝑡𝑡=1
CHLa𝑡𝑡 ⋅ rCHLa predic𝑡𝑡

√

∑𝑛𝑛

𝑡𝑡=1
CHLa𝑡𝑡

2
⋅

√

∑𝑛𝑛

𝑡𝑡=1
rCHLa predic𝑡𝑡

2
� (9)
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3.  Results
Results are based on GlobColour-GSM (Figures  1–5). Supporting results are also provided based on 
GlobColour-AVM and ESA-OC-CCI-v5.0 in Supporting Information S1 (Figures S1–S7) to demonstrate consist-
ency with the GlobColour-GSM results.

3.1.  Impact of Seasonal Chlorophyll Variation on TCV

The spatial distribution in TCV (Equation 1) in GlobColour-GSM exhibits relatively high values in the tropical 
oceans, coastal, and subpolar oceans and relatively low values in subtropical oceans (Figure 1a). Overall, the 
spatial pattern of TCV in open oceans represents high-low-high patterns, characterized by prominent lows in the 
subtropical gyres bounded by equatorward and poleward highs. The skyblue line in Figure 1a denotes the edge of 
oligotrophic waters defined as below 0.07 mg/m 3 of mean annual chlorophyll (Polovina et al., 2008) suggesting 
that the high-low-high TCV transition is well matched with the transition zone between mesotrophic and olig-
otrophic waters.

The spatial distribution in SCV (Equation 3) in GlobColour-GSM shows that the absolute contribution of the 
seasonal cycle is strongest in highly productive coastal regions and high latitude oceans (Figure 1b). SCV exhibits 
relatively high values in subpolar regions compared to tropical and subtropical oceans. The seasonal variation 
of dynamic ocean features with physical and biological interaction near the western boundary currents and pole-
ward edges of subtropical gyres likely contribute to high SCV in these regions (Polovina et al., 2017; Signorini 
et al., 2015).

The percentage contribution of TCV explained by SCV indicates that, generally, the seasonal cycle dominates 
zonal bands of chlorophyll variance in the midlatitude at the front between subtropical and subpolar gyres in the 
Southern Indian Ocean and both hemispheres in the Pacific and Atlantic Oceans (Figure 1c), consistent with 
patterns described in previous assessments using shorter satellite records (Vantrepotte & Mélin, 2009; Yoder & 
Kennelly, 2003). The maxima in the percentage contribution often do not coincide with the absolute SCV maxima 
(Figures 1b and 1c). The contribution of seasonal components is 41.8% averaged in 50°N–50°S, maximized in 
poleward edges of subtropical gyres in mid-latitudes which are 59.5%, zonally averaged in 25°N–35°N, and 
69.9%, zonally averaged in 35°S–25°S. In contrast, chlorophyll variance in the tropical ocean basins explained by 
seasonal components is much less, explaining only 30.9% of TCV, zonally averaged in 20°N–20°S, and imply-
ing that other components drive TCV in these regions. GlobColour-AVM and ESA-OC-CCI-v5.0 (Figure S2 in 
Supporting Information S1) also represent the high contribution of SCV on TCV with high-low-high patterns, 
which are consistent with the patterns of the Glob-Colour-GSM result (Figure 1c).

3.2.  Interannual Variation Components of TCV Associated With Climate-Driven Variability

The global distribution of ACV (Equation  4) in GlobColour-GSM demonstrates that while ACV is minimal 
in oligotrophic waters, highly productive regions in coastal areas and high latitude oceans generally have high 
ACV values (Figure 2a). ACV also exhibits a distinctive horseshoe pattern of high values in the tropical Pacific 
and high values in the equatorial Indian and Atlantic Oceans. Since long-term satellite-derived ocean color has 
informed historical seasonal and interannual chlorophyll estimates, many of these prominent regional patterns 
have been described previously (Chavez et al., 1999, 2011; Di Lorenzo et al., 2013; Gorgues et al., 2010; Grodsky 
et al., 2008; Kang et al., 2017; Lee et al., 2014; Messié & Chavez, 2012; Murtugudde et al., 1999; Park et al., 2011; 
Park & Kug, 2013; Tian et al., 2021; Zhang et al., 2018), indicating that climate variability may provide mecha-
nisms for ACV attribution (i.e., rACV).

To quantify the role of climate-driven variability in ACV, we applied the MLR approach by fitting climate 
effects on CHLa to generate rCHLa (Equation 5) and rACV (𝐴𝐴 𝐴𝐴 = 0 − 4 in Equation 6). Note that rACV shown in 
Figure 2b considers not only instantaneous (𝐴𝐴 𝐴𝐴 = 0 ) effects but also delayed effects (𝐴𝐴 𝐴𝐴 = 1 − 4 ) of climate variabil-
ity due to their memory effects from prior seasons to CHLa next seasons. Attribution of delayed effects of climate 
variability is further described in Section 3.3.

The general features of rACV (Figure 2b) exhibit patterns similar to ACV (Figure 2a): High explainable chlo-
rophyll variability is apparent in the equatorial ocean and low explainable chlorophyll variability is apparent 
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in oligotrophic waters. As we quantify below, much of the unresolved TCV in tropical oceans based on SCV 
(Figure 1c) can be explained by the physical and biological responses to interannual climate variation.

The performance of the MLR approach can be evaluated with the spatial pattern of explained TCV based on 
rTCV (Equation 7) (Figure 2c). Comparing Figures 1c and 2c, we can see that much of the observed TCV pattern 
averaged in 50°N–50°S can be explained by climate-driven effects reflected in rTCV increased from 41.8% in 
seasonal component to 60.9% (+19.1%) after including both seasonal and climate variability components. 
Especially, TCV in the tropical ocean averaged in 20°N–20°S increased from 30.9% in seasonal component to 
57.2% (+26.3%) after adding climate-driven variability to seasonal patterns. Even considering the dominant 

Figure 1.  Seasonal cycle controls first order total chlorophyll variance (TCV) in the mid latitude. (a) Log10-transformed TCV from September 1997 to August 
2021 (Equation 1), (b) Log10-transformed seasonal cycle (SCV) from September 1997 to August 2021 (Equation 3). TCV and SCV are calculated in original scale 
of chlorophyll (mg/m 3) and then transformed to log10 to represent in global as shown in figures. (c) Explained TCV by seasonal cycle (SCV/TCV*100), which is 
calculated based on original scale of chlorophyll (mg/m 3). Black contour line denotes the edge of oligotrophic waters defined as below 0.07 mg/m 3 of mean annual 
chlorophyll.
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seasonal component of TCV in the frontal regions between subtropical and subpolar gyres, adding interannual 
climate variability elevates the explained variance of TCV from 69.9% to 77.3% (+7.4%) in 35°S–25°S and 
from 59.5% to 71.3% (+11.8%) in 25°N–35°N. The general pattern of climate effects in GlobColour-AVM and 
ESA-OC-CCI-v5.0 (Figure S3 in Supporting Information S1) also represents the indispensable high contri-
bution of climate-driven variability on TCV in the tropical oceans, compared to seasonal components only 
(Figure S2 in Supporting Information S1). rTCVs in GlobColour-AVM and ESA-OC-CCI-v5.0 are varied in 
regional scales but consistent in general within merging algorithms with the pattern of Glob-Colour-GSM result 
(Figure 2c).

Figure 2.  Climate-driven interannual variation subsequently contributes total chlorophyll variance (TCV) in the tropics. (a) Log10-transformed anomalous chlorophyll 
variance (ACV) from September 1997 to August 2021 (Equation 4), (b) Log10-transformed reconstructed ACV (rACV) obtained from reconstructed chlorophyll 
anomalies (rCHLa) using Multiple Linear Regression (MLR) method based on predictors in instantaneous and delayed climate effects (Equations 5 and 6), ACV and 
rACV are calculated in original scale of chlorophyll (mg/m 3) and then transformed to log10 to represent in global as shown in figures. (c) Explained TCV by rTCV 
(Equation 7). Black contour line denotes the edge of oligotrophic waters defined as below 0.07 mg/m 3 of mean annual chlorophyll.
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3.3.  Delayed Effects of Climate-Driven Variability on the Anomalous Chlorophyll Variability in the 
Tropical Oceans

The previous section attributed TCV explained by rTCV obtained from rCHL by considering metrics of both 
instantaneous and delayed effects in climate-driven variability. While the seasonal cycle contribute large portion 
of global TCV, rCHLa also contributes 26.3% of TCV in the tropical oceans. To explore the role of delayed effects 
on rCHLa, this section compares the ACC skill (Equation 8) between CHLa and rCHLa for two variants of the 
chlorophyll reconstruction: (a) A reconstruction that considers only instantaneous climate effects (𝐴𝐴 𝐴𝐴  = 0 in Equa-
tion 5); (b) A reconstruction that includes both instantaneous and delayed climate effects (𝐴𝐴 𝐴𝐴 = 0 − 4 in Equation 5).

The ACC skill of rCHLa using only instantaneous responses (𝐴𝐴 𝐴𝐴  = 0 in Equation 5) shows a strong positive relation-
ship in the tropical ocean, ACC = 0.63 averaged in 20°S–20°N (Figure 3a). rCHLa associated with instantaneous 
climate effects captures nearly half of the tropical chlorophyll variability with rCHLa timeseries correlations with 
CHLa of ACC = 0.64 in the Indian Ocean (40°E–100°E, 20°S–10°N) and ACC = 0.68 in the tropical Pacific Ocean 
(120°E–80°W, 20°S–20°N). Inspection of the instantaneous chlorophyll signals associated with each of the climate 
modes (left column of Figure 4) reveals that this arises primarily from ENSO and Pacific meridional mode (Di Lorenzo 
et al., 2013), with contributions from Atlantic (Grodsky et al., 2008) and Indian oceans (Park & Kug, 2013).

Adding delayed climate effects (𝐴𝐴 𝐴𝐴 = 0 − 4 in Equation 5) elevates correlation skill (Figure 3b). The addition of delayed 
responses slightly increases the anomaly correlation between CHLa and rCHLa, from ACC = 0.63 to 0.67 in the tropi-
cal ocean, averaged in 20°S–20°N. We note that more marked impacts of the delayed climate variability are seen in the 
high correlation between CHLa and rCHLa in the off-equatorial Pacific and Indian Ocean, which was far more muted 
in the instantaneous response (Figure 3a). Delayed climate effects increase rCHLa skills (Figure 3c), from ACC = 0.64 
to 0.72 in the Indian Ocean (40°E–100°E, 20°S–10°N), from ACC = 0.74 to 0.82 in off equatorial Northern Pacific 
(180°–90°W, 5°N–15°N), and ACC = 0.58 to 0.71 in the off equatorial Southern Pacific (160°W–90°W, 20°S–5°S).

rCHLa skill in the off-equatorial Pacific arise from ∼12  month delayed CHLa response to ENSO evolution 
(Figures 4a and 4b). ENSO-CHLa evolution is revealed as the principle components of tropical Pacific chlo-
rophyll (Park et al., 2014) that evolve ENSO timescales across early summer to next summer (Hu et al., 2017) 
by oceanic and atmospheric drives of iron supply (Lim et  al.,  2022) and meridional nitrate advection in the 
off-equatorial Pacific (Ham et al., 2021). In addition, rCHLa skill in the Southern Indian Ocean is also related to 
ENSO evolution (Figures 4a and 4b). Jeon et al. (2022) demonstrated that wind stress forcing caused by ENSO 
to Indian Ocean teleconnections generates skillful chlorophyll prediction up to 2 years arise from off-equatorial 
Rossby waves and supplies nutrients in the Indian Ocean.

Skillfull rCHLa in the off-equatorial Pacific arise from ∼12 month delayed CHLa response to delayed effects of 
the North Pacific climate variabilities (Figures 4c and 4d), with moderate delayed effects of the Indian and Atlantic 
climate variabilities (Figures 4e–4h). North Pacific climate variability exerted a long-term influence on rCHLa. 
The slow transition in PDO has persistently influenced on rCHLa (Figure 4c). rCHLa estimated by NPGO has high 
ACC skill in the tropical Pacific up to 12 months (Figure 4d). NPGO evolves from initial SSTa locally in the North 
Pacific and is propagated to the tropical Pacific SSTa next year, which can initiate the central Pacific–ENSO and 
Pacific meridional mode–like patterns (Amaya, 2019; Di Lorenzo et al., 2015; Stuecker, 2018). rCHLa estimated by 
the Indian and Atlantic Oceans are relatively low correlation skill with CHLa beyond 6 months (Figures 4e–4h). In 
contrast, delayed ATL3 and AMM effects augment the tropical Pacific rCHLa, representing significant ACC skills 
against CHLa around a year after (Figures 4g and 4h). ATL3 and AMM SSTa variabilities in the Atlantic Ocean 
potentially trigger ENSO events a year later via atmospheric teleconnection of Gill-type Rossby-wave response 
(Ham, Kug, & Park, 2013; Park, Kug, et al., 2018) that may contribute rCHLa correlation skill for up to a year.

Reconciling such delayed effects of climate-driven variability onto rCHLa (Figure 3b) can provide rTCV skill in 
GlobColour-GSM (Figure 2c), which is consistent in rTCV skills in GlobColour-AVM and ESA-OC-CCI-v5.0 
(Figure S3 in Supporting Information S1) elevated from the case considering the instantaneous climate-driven 
variability only (Figure S4 in Supporting Information S1). This result implies that delayed effects of climate-driven 
variability are indispensable components on explaining the contribution of TCV: temporal evolutions of ENSO 
(Lim et al., 2022; Park et al., 2011); the ENSO-Pacific meridional mode interaction (Di Lorenzo et al., 2013, 2015); 
and the pan-tropic interaction between ocean basins (Cai et al., 2019; Ham, Kug, & Park, 2013). The prominence 
of delayed effects also underpins the predictability of future chlorophyll fluctuations from the current climate 
state, which will be addressed in the next section.
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Figure 3.  Reconstructions of chlorophyll anomalies (rCHLa) skills based on climate-driven variability. The spatial distribution of anomaly correlation coefficients 
(ACC) skill (anomalous correlation coefficients between CHLa and rCHLa; Equation 8). rCHLa is based on (a) instantaneous only (𝐴𝐴 𝐴𝐴 = 0 in Equation 5) climate-driven 
variability, (b) both instantaneous and delayed effects (𝐴𝐴 𝐴𝐴 = 0 − 4 in Equation 5) of climate-driven variability, and their zonal mean averaged ACC skills by latitude. Dots 
in spatial maps indicate the Student's t-test statistical significance at 99% confidence level. Black contour line denotes 0.4, 0.6, and 0.8 ACC skills. Blue contour line 
denotes the edge of oligotrophic waters defined as below 0.07 mg/m 3 of mean annual chlorophyll. (c) timeseries comparison of rCHLa between (a) (blue) and (b) (red) 
cases, and their ACC skills against rCHLa in the Indian Ocean (40°E–100°E, 20°S–10°N), off-equatorial Northern Pacific (180°–90°W, 5°N–15°N), and off-equatorial 
Southern Pacific (160°W–90°W, 20°S–5°S) defined by the boxes in blue.
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3.4.  Statistical Predictability of Climate-Driven Chlorophyll Variability

In the previous section, we note that the evolution of climate-driven SSTa variability and its delayed effect from 
prior seasons are able to reconstruct surface chlorophyll in many ocean regions. This section quantifies the 
capacity of these same climate modes to anticipate future chlorophyll changes. In this section, rCHLa_predic is 
generated by empirical relationship between observed CHLa and the delayed effects of climate-driven SSTa vari-
ability up to 4 seasons in advance (𝐴𝐴 𝐴𝐴  = 1 to 𝐴𝐴 𝐴𝐴  = 4) with stepwise removal of delayed effects of climate depending 
on lead times and without the information of instantaneous effects of climate (𝐴𝐴 𝐴𝐴  = 0) in the spatio-temporal grid 
cells (Table S1 in Supporting Information S1).

The delayed response to climate variability yields skillful seasonal rCHLa_predic for some tropical regions 
(Figure 5). The spatially-resolved ACC_predic (Equation 9) for 2 month lead time shows overall predictability skills 
of ACC_predic = 0.63 in the tropical ocean (Figure 5a). In particular, the tropical Pacific (ACC_predic = 0.67) 
and Indian (ACC_predic = 0.60) Oceans are highly predictable, which is consistent pattern in ACC_predic skills 
of GlobColour-AVM (0.77, 0.58), ESA-OC-CCI-v5.0 (0.70, 0.69), and ensemble mean of all satellite datasets 
(0.73, 0.64) in the tropical Pacific and Indian Oceans, respectively (Figure S5 in Supporting Information S1).

Figure 4.  Anomaly correlation coefficients (ACC) skills between CHLa and rCHLa based on linear regression coefficients against each climate index of (a) NINO3, 
(b) NINO4, (c) PDO, (d) NPGO, (e) IOBM, (f) IOD, (g) ATL3, and (h) AMM depending on instantaneous (𝐴𝐴 𝐴𝐴 = 0) or delayed time (𝐴𝐴 𝐴𝐴 = 1 to 4) in GlobColour-GSM. 
Colors in figures indicate the Student's t-test statistical significance at 90% confidence level. Black boxes indicate the definition of regions for climate index as shown in 
Table 1. The longitude of each spatial map is centered on the region of climate indices (black box).
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The delayed effects of climate-driven variability from 6 month lead time also show promising multiple season predict-
ability (Figure 5b), with correlation between observed and predicted chloropyll maintained at ACC_predic = 0.51 
in the tropical ocean, ACC_predic = 0.59 in the tropical Pacific, and ACC_predic = 0.43 in the Indian Ocean.

We further decompose regional ACC_predic skills in each calendar month (Figures 5c–5e). The off-equatorial 
Pacific CHLa (Figures 5c and 5d) are strongly predictable during seasonal to multi-annual timescales, related 
to ENSO and Pacific meridional mode interactions (Figures 4a–4d) with marginal contributions of Indian and 
Atlantic modes (Figures 4e–4h). In particular, CHLa in the off-equatorial northern Pacific is mostly predictable 

Figure 5.  Spatially resolved ACC_predic (Equation 9) skills of rCHLa_predic based on delayed effects of climate-driven variability. rCHLa_predic is based on (a) 
average of 1–3 month lead times, (b) average of 5–7 month lead times in climate-driven variability. Skyblue contour line denotes the edge of oligotrophic waters 
defined as below 0.07 mg/m 3 of mean annual chlorophyll. ACC_predic skills as a function of month (x axis) and lead time (y axis) in (c) off-equatorial Northern Pacific 
(180°–90°W, 5°N–15°N), (d) off-equatorial Southern Pacific (160°W–90°W, 20°S–5°S) and (e) Indian Ocean (40°E–100°E, 20°S–10°N). Dots in figures indicate the 
Student's t-test statistical significance at 99% confidence level.
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from winter to summer (Figure 5c), which may be strongly connected with low-frequency ENSO and Pacific 
meridional mode (Di Lorenzo et al., 2015) as shown in its low-frequency fluctuations of time series (middle panel 
of Figure 3c). In addition, long-term delayed effects of ENSO and North Pacific climate variabilities influence 
CHLa in the Indian Ocean CHLa beyond 6 months (Figures 4a–4c) that elevate ACC_predic skill in the early 
boreal winter season from October to November (Figure 5e).

4.  Summary
The present study revisited previous works by assessing chlorophyll variance and its subsequent decomposition 
into seasonal and climate drivers based on the last 24 years of satellite chlorophyll. We find that the first-order 
contribution of the seasonal cycle dominates zonal bands of chlorophyll variance in the midlatitudes at the front 
between subtropical and subpolar gyres, locally maximized at 59.5% of variance in 25°N–35°N and 69.9% in 
35°S–25°S (Figure 1c).

In addition, we showed that the combination of the seasonal cycle and climate-driven variability (instantane-
ous + delayed effects) explains considerable chlorophyll variances in the tropical ocean 20°N–20°S of 57.2% 
(Figure 2c). This value is +26.3% greater than the explained variance by seasonal cycle solely (30.9%) (Figure 1c). 
The elevation of explained TCV in the tropical ocean basins can be achieved from reconciling multi-seasonal 
delayed effects of eight modes of climate variability onto CHLa.

We demonstrated that delayed climate effects elevates rCHLa skill (Figure 3b). The addition of delayed responses 
remarkably impacts on rCHLa skills in the off-equatorial Pacific and Indian Ocean, which was far more muted in 
the instantaneous response only (Figure 3a). Delayed climate effects increase correlation skills of rCHLa time-
series (Figure 3c), from ACC = 0.64 to 0.72 in the Indian Ocean (40°E–100°E, 20°S–10°N), from ACC = 0.74 
to 0.82 in off equatorial Northern Pacific (180°–90°W, 5°N–15°N), and ACC = 0.58 to 0.71 in the off equatorial 
Southern Pacific (160°W–90°W, 20°S–5°S).

The schematic in Figure 6 shows the major sources of global chlorophyll variation: 41.6% from Seasonal cycle 
only (Case 1), 49.1% from both seasonal cycle and instantaneous climate modes (Case 2), and 61.1% from all 
seasonal cycle, instantaneous and delayed climate modes (Case 3).

The implication of this study is that delayed climate effects can provide a source of chlorophyll predictability in 
the tropical oceans (Figure 5). The spatially-resolved ACC_predic skill between CHLa and rCHLa_predic that 
observed for 2 month lead time shows overall predictability skills of ACC_predic = 0.63 in the tropical ocean 
(Figure 5a). In particular, the tropical Pacific (ACC_predic = 0.67) and Indian (ACC_predic = 0.60) Oceans are 
highly predictable. The delayed effects of climate-driven variability from 6 month lead time also shows promising 
multiple season predictability (Figure 5b), with ACC_predic skill between CHLa and rCHLa_predic maintained 
at ACC_predic = 0.51 in the tropical ocean, ACC_predic = 0.59 in the tropical Pacific, and ACC_predic = 0.43 
in the Indian Ocean.

5.  Discussion
The spatio-temporal variations of satellite ocean color estimates of chlorophyll concentration have informed 
the role of variations of the physical environment in the marine phytoplankton changes with the availability of 
merged products combining algorithms of several satellite generations (Chavez et al., 1999, 2011; Di Lorenzo 
et  al.,  2008,  2013; Gorgues et  al.,  2010; Grodsky et  al.,  2008; Lim et  al.,  2022; Murtugudde et  al.,  1999; 
Park, Dunne, & Stock,  2018; Polovina et  al.,  2017; Tian et  al.,  2021; Vantrepotte & Mélin,  2009; Yoder & 
Kennelly, 2003; Zhang et al., 2018). We demonstrate that the climate variability defined by SSTa in ocean basins 
can provide a source of long-term chlorophyll predictability. In some cases, influences within an ocean basin 
combine with remote influences between ocean basins via atmospheric teleconnections (Alexander et al., 2002; 
Amaya, 2019; Cai et al., 2019; Capotondi et al., 2015; Di Lorenzo et al., 2010; Ham, Kug, Park, et al., 2013; 
Hong et al., 2022; Jacox et al., 2022; Kug & Kang, 2006; Park, Kug, et al., 2018; Tian et al., 2021; Timmermann 
et al., 2018; Vimont et al., 2003; Yeh et al., 2018). The fidelity of simulating the climate-driven SSTa variability 
in the earth system model may be further required to achieve the longer horizon of marine ecosystem predicta-
bility (Frölicher et al., 2020; Séférian et al., 2014; Taboada et al., 2019) and seasonal to multi-annual prediction 
skill (Ham et al., 2021; Ilyina et al., 2021; Park et al., 2019; Rousseaux et al., 2021; Rousseaux & Gregg, 2017).
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The statistical predictability results in the present study, built upon the demonstrated importance of time evolu-
tion of climate variability by comparing two approaches of rTCV between including delayed effects (Figure 2c 
and Figure S3 in Supporting Information S1) or disregarding them (Figure S4 in Supporting Information S1), 
suggests promising avenues for marine ecosystem prediction in the tropical Pacific and Indian Oceans. One weak-
ness of the present approach is only considered by SSTa based climate indices that could be improved by consid-
ering physical and biogeochemical reemergences from subsurface to the surface (Frölicher et  al.,  2020; Park 
et al., 2019; Séférian et al., 2014). Such potential predictors based on subsurface components may improve the 
present predictability skills as well as the upper ocean heat content that is a part of critical initialization compo-
nents on dynamical ENSO prediction model (Smith, 1995; Zebiak & Cane, 1987). Physical climate can also 
potentially extend the predictability horizon of ocean color based estimates for oceanic net primary production 
in off-equatorial Pacific oceans (Taboada et al., 2019) that may include delayed effects of climate variability as 
shown in the present work for CHLa predictability.

It has been reported that global marine chlorophyll is declining (Behrenfeld et  al.,  2006; Boyce et  al.,  2014; 
Henson et al., 2010; Polovina et al., 2008). We note that linear trends of 24-years of satellite ocean color in the 
tropical and midlatitude oceans are regionally diverse depending on merging algorithms (Figure S1 in Supporting 
Information S1). While GlobColour-GSM and GlobColour-AVM exhibits negative trends of chlorophyll within 

Figure 6.  Schematic figure for the summary of the present study. The source of total chlorophyll variation (TCV): 41.6% from seasonal cycle only (Case 1), 49.1% 
from both seasonal cycle and instantaneous climate modes (Case 2), and 61.1% from all seasonal cycle, instantaneous and delayed climate modes (Case 3). All cases of 
figures are based on GlobColour-GSM (Case 1: Figure 1c, Case 2: Figure S4a in Supporting Information S1, Case 3: Figure 2c). Black contour line denotes the edge of 
oligotrophic waters defined as below 0.07 mg/m 3 of mean annual chlorophyll.
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30°N–30°S (Figures S1a and S1b in Supporting Information S1), ESA-OC-CCI-v5.0 shows a somewhat mixed 
pattern of negative and positive trends in 30°N–30°S and strong positive trends in high latitudes beyond 30° of 
both hemispheres (Figure S1c in Supporting Information S1). In addition, Polovina et al. (2008) pointed out the 
expansion of oligotrophic waters from 1998 through 2006 using an early 9-year timeseries of SeaWiFS. We revis-
ited the areal extent of oligotrophic water using 24-year timeseries of all datasets including seasonal cycles (Figure 
S6 in Supporting Information S1). Variations of oligotrophic water area represent a good agreement of first-order 
contributions of the seasonal cycle in all datasets. However, deseasonalized trends of oligotrophic water areas are 
diverse with noticeable expansion in GlobColour-GSM while insignificant expansion in GlobColour-AVM and 
ESA-OC-CCI-v5.0 (Table 2), supporting the result that all data sets to provide a consistent contribution of the 
seasonal cycle contribution on TCV in the present study despite of their inconsistency of linear trends.

The remaining question unanswered in the present TCV analysis is what other mechanisms may drive the currently 
“unexplained” spatio-temporal TCV as shown in the residual of explained TCV by rTCV (Figure S7 in Support-
ing Information S1). These unanswered sources in TCV may constitute a quarter of midlatitude variability and 
nearly less than half of the tropical variabilities (Figure S7 in Supporting Information S1). Potential sources of 
explanation go far beyond the simple physical climate metrics discussed in the present work and include previ-
ously identified mechanisms such as: internal dynamics of biogeochemical and ecological cycling on zooplankton 
grazing pressures on phytoplankton (Gorgues et al., 2010; Tian et al., 2021); anomalous phytoplankton blooms 
driven by volcanic ash increases in iron supply (Achterberg et al., 2013; Hamme et al., 2010); high contribution of 
the Amazon and Orinoco river plumes into the tropical Atlantic (Grodsky et al., 2008); widespread phytoplankton 
blooms triggered by Australian wild fires in the Southern Pacific (Tang et al., 2021); diversity and asymmetry 
of ENSO (Lee et al., 2014; Park et al., 2014); ENSO-driven freshwater flux (Tian et al., 2020); nonlinearity of 
horizontal nitrate advection (Ham et al., 2021); nonlinear statistical approach (Martinez et al., 2020); and tropical 
instability wave driven nutrient supply (Evans et al., 2009) in the tropical Pacific phytoplankton variation.

6.  Conclusion
Successful achievements of climate prediction systems reflect long term investments in the observational evalua-
tions and model developments onto next generation marine ecosystem prediction systems. This work takes advan-
tage of the multi-decade satellite chlorophyll record to characterize variability and demonstrates that delayed 
effects of sea surface temperature from prior seasons improve model estimates of chlorophyll in the equatorial 
Pacific and Indian Oceans. Our results point to several directions to better constrain regional discrepancies and 
the importance of both the seasonal cycle and interannual variation of chlorophyll to understand interactions 
between climate and marine ecosystem as observed by satellites and simulated in earth system models. Along 
with developments for comprehensive marine biogeochemical dynamics (Séférian et  al.,  2020), the achieve-
ments of dynamical Earth system modeling development efforts are illustrated with the growing the fidelity 
to better benchmarks of the mean state climate system. ENSO for example, (Planton et al., 2021), appears to 
provide a promising avenue for better predictions of the marine ecosystem with application for living resources 
management (Tommasi et al., 2017) because of its close connection between climate and chlorophyll variability. 

Ocean 1998 mean area, 10 6 km 2 Increase in area, 10 6 km 2/yr, p-value

North Pacific GSM: 11.53, AVM: 21.93, ESA: 18.71, P08: 
16.22

GSM: 0.68, AVM: 0.23, ESA:0.15, P08: 0.35 GSM:0.032, AVM:0.070, ESA:0.17, 
P08:2.48 −08

South Pacific GSM: 14.59, AVM: 22.92, ESA: 18.88 P08: 
18.04

GSM: 0.18, AVM:-0.04, ESA:-0.08, P08: 0.25 GSM:0.13, AVM: 0.41, ESA:0.11, P08:1.47 −06

North Atlantic GSM: 5.23, AVM: 5.78, ESA: 6.20 P08: 4.01 GSM: 0.16, AVM:0.06, ESA:0.01, P08:0.17 GSM:0.060, AVM:0.18, ESA:0.58, P08:1.41 −09

South Atlantic GSM: 5.02, AVM: 7.47, ESA: 6.44 P08: 6.10 GSM:0.10, AVM:0.002, ESA:-0.05, P08:0.05 GSM:0.077, AVM:0.93, ESA:0.11, P08:2.61 −02

Total areas GSM: 36.92, AVM: 60.08, ESA: 51.28 P08: 
44.38

GSM:1.15, AVM:0.25, ESA:0.05, P08:0.82 GSM:0.067, AVM:0.21, ESA:0.66, P08: N/A

Note. Each value of oligotrophic water areas calculated from different datasets is denoted with acronym GSM, AVM, ESA, and P08 (i.e., Polovina et al., 2008).

Table 2 
Area of Oligotrophic Waters by Removing the Seasonal Cycle Estimated in GlobColour-GSM, AVM, and ESA-OC-CCI-v5.0 With Previous Report Polovina 
et al. (2008) Calculation
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Our analysis with satellite ocean color demonstrates a key role of delayed effects of physical climate variability 
strongly on chlorophyll variance that may provide a key source of marine ecosystem predictability in the Earth 
system model.

Data Availability Statement
GlobColour version 2021.1 merged by Garver, Siegel, Maritorena model (GlobColour-GSM) and merged by 
the simple average method model (GlobColour-AVM) are available online https://hermes.acri.fr or https://
www.globcolour.info. European Space Agency Ocean Colour Climate Change Initiative project version 5.0 
(ESA-OC-CCI-v5.0) is available online https://climate.esa.int/en/projects/ocean-colour/. NOAA Extended 
Reconstructed SST version 5 (ERSST v5) is available online https://psl.noaa.gov/data/gridded/data.noaa.ersst.
v5.html.
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