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INJECTIVE MODULES OVER w-NOETHERIAN RINGS, II

Jun Zhang, Fanggui Wang, and Hwankoo Kim

Abstract. By utilizing known characterizations of w-Noetherian rings in
terms of injective modules, we give more characterizations of w-Noether-
ian rings. More precisely, we show that a commutative ring R is w-
Noetherian if and only if the direct limit of GV -torsion-free injective R-
modules is injective; if and only if every R-module has a GV -torsion-free
injective (pre)cover; if and only if the direct sum of injective envelopes of
w-simple R-modules is injective; if and only if the essential extension of
the direct sum of GV -torsion-free injective R-modules is the direct sum
of GV -torsion-free injective R-modules; if and only if every Fw,f (R)-
injective w-module is injective; if and only if every GV-torsion-free R-
module admits an i-decomposition.

1. Introduction

For the last few decades, characterizing Noetherian rings in terms of injective
modules has drawn considerable attention from many algebraists. Matlis ([19]),
Papp ([20]), Bass ([2]), Faith and Walker ([8]), Kurshan ([18]), Goursaud and
Valette ([11]), Beidar and Ke ([4]), and Beidar, Jain and Srivastava ([3]) have
done much meaningful work in this field. Since the birth of the theory of star
operations, heavy concentration has been put on ideal theory. Even so, we still
hope that the theory of star operations can play a role in researching the direct
sum representations of injective modules and related topics [14]. Inspired by
the study on injective modules over Noetherian rings, some researchers have
paid attention to the studies on injective modules over w-Noetherian rings.
In [26], Yin et al. defined a w-Noetherian ring as a commutative ring which
satisfies the ascending chain condition of w-ideals. As for the integral domain, a
w-Noetherian ring actually is a strong Mori domain. In 2005, Fuchs proved that
the integral domain R is a strong Mori domain if and only if E(Q/R) is a Σ-
injective module [9]. According to the Cartan-Eilenberg-Bass-Papp Theorem,
R is a Noetherian ring if and only if the direct sum of injective modules is
injective. In 2008, Kim et al. proved that the integral domain R is a strong
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Mori domain if and only if the direct sum of co-semi-divisorial (namely, GV -
torsion-free) injective modules is still injective [15]. In 2010, Wang and Zhang
further proved thatR is a w-Noetherian ring if and only if the direct sum of GV -
torsion-free injective R-modules is injective; if and only if every GV -torsion-free
injective module is Σ-injective [25]. In 2011, Kim and Wang characterized w-
Noetherian rings as the w-analogue of the Matlis-Papp Theorem [17], that is,
R is a w-Noetherian ring if and only if every GV -torsion-free injective module
is the direct sum of indecomposable GV -torsion-free injective modules. These
results not only deepened our understanding of characterizations of injective
modules over w-Noetherian rings, but also of equivalent characterizations from
the module-theoretic point of view.

It is well-known that R is a Noetherian ring if and only if the direct limit
of injective modules is injective. Thus a natural question is whether the w-
theoretic analogue of this theorem holds true. For this purpose, we try to
give much richer and more complete characterizations of w-Noetherian rings in
terms of injective modules or of a weaker condition than injectivity.

In Section 2, we prove that R is a w-Noetherian ring if and only if the
direct limit of the GV -torsion-free injective modules is injective. The main
challenge in proving this result is to prove isomorphism theorems about Ext
functors. According to the classic homological theory, Ext functors work on
exact sequences. As for a w-Noetherian ring, finite type and finitely presented
type modules are defined through w-exact sequences [22], and Ext functors
cannot work on w-exact sequences directly. However, inspired by [17] and [25],
we work to find that the direct limit of w-modules over w-Noetherian rings is
a w-module and to find other meaningful results. Many researchers are very
interested in characterizing some classes of rings in terms of precovers and
covers in ring and module theories. Based on the theorem mentioned above,
we prove that R is a w-Noetherian ring if and only if every R-module has a
GV -torsion-free injective precover; if and only if every R-module has a GV -
torsion-free injective cover.

From the works of Kurshan and Beidar-Ke, we can see that the direct sum
of injective envelopes of simple modules plays an important role in charac-
terizations of Noetherian rings. According to the Kurshan Theorem, R is a
Noetherian ring if and only if every countable direct sum of injective envelopes
of simple modules is injective [18, Theorem 2.4]. Inspired by this result, in
Section 3, we define w-simple modules and illustrate the difference between w-
simple modules and simple modules. Through the new concept, we prove that
R is a w-Noetherian ring if and only if every countable direct sum of injective
envelopes of w-simple R-modules is injective; if and only if every direct sum of
injective envelopes of w-simple R-modules is injective. Moreover, we prove that
R is a w-Noetherian ring if and only if the essential extension of the direct sum
of GV -torsion-free injective R-modules is the direct sum of GV -torsion-free in-
jective modules; if and only if for each GV -torsion-free injective R-module M
and each index set Γ, every essential extension of M (Γ) is the direct sum of



INJECTIVE MODULES OVER w-NOETHERIAN RINGS, II 1053

GV -torsion-free injective modules. This theorem extends the result in [25] by
Wang and Zhang. Lastly, we give characterizations of w-Noetherian rings in
terms of a weaker condition than injectivity and i-decomposition respectively.
It is shown that R is a w-Noetherian ring if and only if every Fw,f (R)-injective
w-module is injective; if and only if every GV-torsion-free R-module admits an
i-decomposition.

Next we introduce some definitions and notations from [22] and [26]. Throug-
hout this paper, we let R be a commutative ring with identity. A finitely
generated ideal J of R is called a GV -ideal if the natural homomorphism R →
J∗ = HomR(J,R) is an isomorphism. This definition is consistent with that in
[23] when R is a domain. Denote by GV (R) the set of GV -ideals of R. It is
proved in [26] that GV (R) is a multiplicative system of ideals. Let M be an
R-module and define

gv.Tor(M) = {x ∈ M | Jx = 0 for some J ∈ GV (R)}.

Then M is said to be GV -torsion (resp., GV -torsion-free) if gv.Tor(M) = M
(resp., gv.Tor(M) = 0). It is known that a module M is GV -torsion if and
only if HomR(M,N) = 0 for any GV -torsion-free module N [26, Theorem 1.4].
As in [22] and [26], a module M is called a w-module if it has the following
two properties: (1) M is GV -torsion-free, (2) Ext1R(R/J,M) = 0 for each
J ∈ GV (R), or equivalently, Ext1R(N,M) = 0 for each GV -torsion module
N . This is consistent with that in [23] when R is a domain and M is torsion-
free. From the definition of w-modules, it is clear that every GV -torsion-free
injective module is a w-module. Let M be a GV -torsion-free module. In [26],
the w-envelope of M is defined by

Mw = {x ∈ E(M) | Jx ⊆ M for some J ∈ GV (R)},

where E(M) is the injective envelope of M . In [26], it is shown that for a
GV -torsion-free R-module M , M is a w-module if and only if Mw = M .

Refer to [22, 25, 26] for more information on w-modules and w-Noetherian
rings. For any unexplained terminologies and notations, we refer to [5, 7]

2. Direct limits of GV -torsion-free injective modules

Firstly, we recall several concepts from [22]. A sequence A → B → C is
said to be w-exact if Am → Bm → Cm is exact for any maximal w-ideal m
of R. A homomorphism f : M → N is called a w-monomorphism (resp.,
w-epimorphism, w-isomorphism) if fm : Mm → Nm a monomorphism (resp.,
epimorphism, isomorphism) for any maximal w-ideal m of R. An R-module M
is said to be of finite type if there exists a w-exact sequence F → M → 0, while
an R-module M is said to be of finitely presented type if there exists a w-exact
sequence F1 → F → M → 0, where F and F1 are finitely generated and free.
Denote by lim−→Ni the direct limit of a direct system {Ni, ϕ

i
j} of R-modules.
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Lemma 2.1. Let M be a finitely presented R-module. Then

lim−→HomR(M,Ni) ∼= HomR(M, lim−→Ni).

Proof. The proof is similar to that of [7, Lemma 3.1.16]. �

Proposition 2.2. Let {Ni} be a family of GV -torsion-free R-modules. Then

lim−→Ni is also GV -torsion-free.

Proof. Let 0 → J → R → R/J → 0 be an exact sequence, where J ∈
GV (R). Then R/J is finitely presented. By Lemma 2.1, for any J ∈ GV (R),
HomR(R/J, lim−→Ni) ∼= lim−→HomR(R/J,Ni) = 0. Thus lim−→Ni is also GV -torsion-

free. �

Lemma 2.3. Let {Ni} be a family of GV -torsion-free R-modules. If M is a

finite type R-module, then

τ : lim−→HomR(M,Ni) → HomR(M, lim−→Ni)

is a monomorphism. In particular, if M is finitely generated, then τ is a

monomorphism.

Proof. Since M is of finite type, F
f
→ M → 0 is w-exact, where F is a finitely

generated free module. Thus F → M → M/Imf → 0 is exact and M/Imf is
GV -torsion. By Proposition 2.2, we have the following commutative diagram
with exact rows:

0 = lim−→HomR(M/Imf,Ni) // lim−→HomR(M,Ni) //

τ

��

lim−→HomR(F,Ni)

∼=
��

0 = HomR(M/Imf, lim
−→

Ni) // HomR(M, lim
−→

Ni) // HomR(F, lim−→
Ni)

So τ is a monomorphism by the Five Lemma. �

Theorem 2.4. Let {Ni} be a family of GV -torsion-free R-modules. If R is a

w-Noetherian ring and M is a finitely generated R-module, then

lim−→HomR(M,Ni) ∼= HomR(M, lim−→Ni).

Proof. If M is finitely generated, then 0 → K → F → M → 0 is exact, where
F is a finitely generated free module. Since R is a w-Noetherian ring, M is a
finitely presented type module. Thus K is of finite type. Then we have the
following commutative diagram with exact rows:

0 // lim
−→

HomR(M,Ni) //

τM

��

lim
−→

HomR(F,Ni) //

∼=
��

lim
−→

HomR(K,Ni)

τK

��
0 // HomR(M, lim−→Ni) // HomR(F, lim−→Ni) // HomR(K, lim−→Ni)

By Lemma 2.3, τK is a monomorphism. So by the Five Lemma, τM is an
epimorphism. Therefore, τM is an isomorphism by Lemma 2.3. �
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Proposition 2.5. Let {Ni} be a family of w-modules. If R is a w-Noetherian
ring, then lim

−→
Ni is a w-module.

Proof. For any J ∈ GV (R), there exists an exact sequence 0 → J → R →
R/J → 0. Then we have the following commutative diagram with exact rows:

lim
−→

HomR(R,Ni) //

∼=
��

lim
−→

HomR(J,Ni) //

τJ

��

lim
−→

Ext1R(R/J,Ni) //

τ1
��

0

HomR(R, lim−→Ni) // HomR(J, lim−→Ni) // Ext1R(R/J, lim−→Ni) // 0

Since J is finitely generated, τJ is an isomorphism by Theorem 2.4. Thus
τ1 is an isomorphism. Since each Ni is a w-module, Ext1R(R/J, lim

−→
Ni) ∼=

lim−→Ext1R(R/J,Ni) = 0. Hence lim−→Ni is a w-module. �

In [6, Proposition 2.2], it is shown that for modulesM andN over an integral
domain R, if M is GV -torsion-free, then HomR(Nw,Mw) ∼= HomR(N,Mw).
Although the following result is a special case of this result, we give a proof for
the sake of completeness.

Proposition 2.6. Let N be a GV -torsion-free R-module and let M be a w-
module. Then HomR(N,M) ∼= HomR(Nw,M).

Proof. From the exact sequence 0 → N → Nw → Nw/N → 0, we have the long
exact sequence 0 → HomR(Nw/N,M) → HomR(Nw,M) → HomR(N,M) →
Ext1R(Nw/N,M). Since HomR(Nw/N,M) = 0 and Ext1R(Nw/N,M) = 0,
HomR(N,M) ∼= HomR(Nw,M). �

Lemma 2.7. Let {Ni} be a family of w-modules. If R is a w-Noetherian ring

and I is a w-ideal, then lim
−→

Ext1R(R/I,Ni) ∼= Ext1R(R/I, lim
−→

Ni).

Proof. Consider the exact sequence 0 → I → R → R/I → 0. We have the
following commutative diagram with exact rows:

lim−→HomR(R,Ni) //

∼=
��

lim−→HomR(I,Ni) //

τI

��

lim−→Ext1R(R/I,Ni) //

τ1
��

0

HomR(R, lim−→Ni) // HomR(I, lim−→Ni) // Ext1R(R/I, lim−→Ni) // 0

By hypothesis, I is of finite type, so there exists a finitely generated subideal
B of I such that I = Iw = Bw. By Theorem 2.4 and Proposition 2.6, we have
lim
−→

HomR(I,Ni) ∼= lim
−→

HomR(Bw, Ni) ∼= lim
−→

HomR(B,Ni) ∼= HomR(B, lim
−→

Ni)
∼= HomR(Bw, lim−→Ni) ∼= HomR(I, lim−→Ni). Therefore, τ1 is an isomorphism by

the Five Lemma. �

Lemma 2.8 ([17]). Let E be a w-module. Then E is injective if and only if

Ext1R(R/I,E) = 0 for any w-ideal I of R.
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It is shown in [5] that R is a Noetherian ring if and only if the direct limit
of injective modules is injective. Accordingly, we have the following theorem.

Theorem 2.9. The following statements are equivalent for a ring R :

(1) R is w-Noetherian;
(2) the direct limit of GV -torsion-free injective modules is injective;
(3) the direct sum of GV -torsion-free injective modules is injective.

Proof. (1)⇒(2). Let E = lim−→Ej , where each Ej is a GV -torsion-free injective

module, and I be a w-ideal of R. By Proposition 2.5, Lemma 2.7 and Lemma
2.8, we have Ext1R(R/I,E) ∼= lim

−→
Ext1R(R/I,Ei) = 0. Thus E is injective.

(2)⇒(3). Since a direct sum is a direct limit of the finite sums, the direct
sum of GV -torsion-free injective modules is injective.

(3)⇒(1). [25, Theorem 4.4]. �

Let M be an R-module. Then an injective cover of M is a homomorphism
φ : E → M with E injective such that

(1) for any injective R-module E′ and any homomorphism φ′ : E′ → M ,
the diagram

E′

f

~~⑥
⑥
⑥
⑥

φ′

��
E

φ // M

can be completed to a commutative diagram, i.e., there exists an R-
module homomorphism f : E′ → E such that φf = φ′, and

(2) the diagram

E

~~⑥
⑥
⑥
⑥

φ

��
E

φ // M

can only be completed by an automorphism of E.

Hence if an injective cover exists, then it is unique up to isomorphism. If φ :
E → M satisfies (1), but perhaps not (2), then it is called an injective precover.
It is well-known that a ring R (not necessarily commutative) is Noetherian if
and only if every R-module has an injective (pre)cover [7, Theorem 5.4.1]. The
following result is the w-theoretic analogue of this seminal theorem.

Theorem 2.10. The following statements are equivalent for a ring R :

(1) R is w-Noetherian;
(2) every R-module has a GV -torsion-free injective precover;
(3) every R-module has a GV -torsion-free injective cover.
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Proof. (1)⇒(2). Let R be a w-Noetherian ring. By [25, Theorem 4.5], ev-
ery GV -torsion-free injective R-module is a direct sum of indecomposable GV -
torsion-free injective R-modules. Thus there is a family {Ei | i ∈ I} of indecom-
posable GV -torsion-free injective R-modules such that every GV -torsion-free
injective R-module is the direct sum of copies of the various Ei. Let M be an

R-module, Xi = HomR(Ei,M) and let E
(Xi)
i → M be the evaluation map de-

fined by (ϕf )f∈Xi
7→

∑
f∈Xi

f(ϕf ). Then we have the following commutative
diagram:

Ei

}}③③
③③
③③
③

f

��❄
❄❄

❄❄
❄❄

❄

E
(Xi)
i

// M

Thus, for any GV -torsion-free injective R-module E, we have the following
commutative diagram:

E

{{✇✇
✇✇
✇✇
✇✇

f

��❃
❃❃

❃❃
❃❃

❃

⊕
E

(Xi)
i

// M

Therefore,
⊕

E
(Xi)
i → M is a GV -torsion-free injective precover of M .

(2)⇒(1). Let {Ei | i ∈ I} be a family of GV -torsion-free injective R-

modules. Then by hypothesis, E
ϕ
→

⊕
Ei is a GV -torsion-free injective pre-

cover of
⊕

Ei, where E is a GV -torsion-free injective module. For each j ∈ I,

Ej

λj

→
⊕

Ei is the canonical injection, we have the following commutative
diagram:

Ej

fj

��⑧⑧
⑧⑧
⑧⑧
⑧ λj

""❉
❉❉

❉❉
❉❉

❉

E
ϕ // ⊕Ei

that is, ϕfj = λj . Hence we have the following commutative diagram:

⊕
Ej

∑
fj

}}④④
④④
④④
④④

∑
λj

##●
●●

●●
●●

●

E
ϕ // ⊕Ei

that is, ϕ(
∑

fj) =
∑

(ϕfj) =
∑

λj = 1. So
⊕

Ei is isomorphic to a summand
of E. Hence

⊕
Ei is a GV -torsion-free injective module. By [25, Theorem 4.4],

R is a w-Noetherian ring.
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(2)⇒(3). Let R be a w-Noetherian ring. By Theorem 2.9(2), the direct
limit of GV -torsion-free injective R-modules is injective. Thus by [7, Corollary
5.2.7], every R-module has a GV -torsion-free injective cover.

(3)⇒(2). This is clear. �

Corollary 2.11. Let R be a Noetherian ring. Then

(1) every R-module has a GV -torsion-free injective precover;
(2) every R-module has a GV -torsion-free injective cover.

Proposition 2.12. Let M be a GV -torsion-free module. If E is an essential

extension of M , then E is also GV -torsion-free.

Proof. Let x ∈ E and J ∈ GV (R) with Jx = 0. Assume x 6= 0. By hypothesis,
there exists r ∈ R such that rx 6= 0 and rx ∈ M . Since M is GV -torsion-free
and Jrx = 0, we have rx = 0, a contradiction. Hence E is GV -torsion-free. �

Theorem 2.13. The following statements are equivalent for a ring R :

(1) R is w-Noetherian;
(2) the direct sum of GV -torsion-free injective modules is injective;
(3) if {Mi} is a family of GV -torsion-free R-modules, then

E(
⊕

i∈I

Mi) ⊆
⊕

i∈I

E(Mi);

(4) if {Mi} is a family of GV -torsion-free R-modules, then

E(
⊕

i∈I

Mi) =
⊕

i∈I

E(Mi).

Proof. (1)⇔(2). [25, Theorem 4.4].
(2)⇒(3). Since E(

⊕
i∈I Mi) is the injective envelope of

⊕
i∈I Mi, there is

no other injective module between
⊕

i∈I Mi and E(
⊕

i∈I Mi). Since each Mi

is GV -torsion-free, E(Mi) is also GV -torsion-free by Proposition 2.12. Hence⊕
i∈I E(Mi) is injective. Also, by

⊕
i∈I Mi ⊆

⊕
i∈I E(Mi), we have

E(
⊕

i∈I

Mi) ⊆
⊕

i∈I

E(Mi).

(3)⇒(4). This is clear.
(4)⇒(2). Let {Ej}j∈J be a family of GV -torsion-free injective R-modules.

Then
⊕

j∈J Ej =
⊕

j∈J E(Ej) = E(
⊕

j∈J Ej). Therefore, the direct sum of
GV -torsion-free injective modules is injective. �

3. w-simplicity and injective modules

From [4] and [18], we see that simple modules play an important role in
characterizing Noetherian rings. Now we introduce the concept of w-simple
modules. It is necessary to realize that simple modules and w-simple modules
are two mutually exclusive concepts.
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Definition. Let M be a nonzero w-module. M is said to be w-simple if M
has no nontrivial w-submodule.

Clearly, a w-simple module is indecomposable.

Proposition 3.1. Let M be a w-module. Then M is w-simple if and only if

M = (Rx)w for any nonzero element x ∈ M .

Proof. Let M be a w-simple module. For any x ∈ M , x 6= 0, we have
that (Rx)w is a nonzero w-submodule of M . Since M has no nontrivial w-
submodule, M = (Rx)w .

Conversely, suppose M is not w-simple. Then there exists a nontrivial w-
submodule N of M . For any x ∈ N , x 6= 0, we have (Rx)w ⊆ N ⊂ M , that is,
(Rx)w 6= M , a contradiction. Therefore, M is w-simple. �

It is clear that a w-simple module may also not be a cyclic w-module.

Proposition 3.2. Let M be a w-module and let N be a w-submodule of M .

Then N is a maximal w-submodule of M if and only if (M/N)w is w-simple.

Proof. By [26, Theorem 2.7], M/N is GV -torsion-free. Suppose (M/N)w is w-
simple. If N1 is a w-submodule of M containing N properly, then (N1/N)w =
(M/N)w. So for any x ∈ M , there exists J ∈ GV (R) such that Jx ⊆ N1/N .
Therefore, Jx ⊆ N1, whence x ∈ N1. So N1 = M , and hence N is a maximal
w-submodule of M .

Conversely, suppose N is a maximal w-submodule ofM . If B is a nonzero w-
submodule of (M/N)w, then set A = B

⋂
(M/N). Then Aw = B

⋂
(M/N)w =

B. Write A = N1/N , where N1 is a submodule of M containing N properly.
Then (N1)w = M . Then for any x ∈ M , there exists J ∈ GV (R) such that
Jx ⊆ N1. Hence Jx ⊆ A. Then Aw = B = (M/N)w, whence (M/N)w is
w-simple. �

Corollary 3.3. Let M be a w-simple module. Then for any nonzero element

x ∈ M , ann(x) is a maximal w-ideal of R.

Let D be a domain. In the following, we denote by Q(D) the quotient field
of D.

Proposition 3.4. Let m be a maximal w-ideal of R. Then (R/m)w = Q(R/m)
= Rm/mRm is a w-simple module.

Proof. Let x ∈ (R/m)w \ {0}. Then Jx ⊆ R/m for some J ∈ GV (R). Thus
mJx = 0, whence mJ ⊆ ann(x). Since ann(x) is a w-ideal, m ⊆ ann(x). So
ann(x) = m since m is a maximal w-ideal. Hence (R/m)w is an R/m-module.
Since J 6⊆ m, there exists r ∈ J with r 6∈ m. Thus r 6= 0 in R/m and
rx = rx 6= 0. Therefore, (R/m)w is an essential extension of R/m, whence we
have (R/m)w ⊆ Q(R/m). Now let x = r

s + mRm ∈ Q(R/m), where r, s ∈ R,
s 6∈ m. Then (m+Rs)x ⊆ R/m. Since (m+Rs)w = R, there exists J ∈ GV (R)
with J ⊆ m + Rs. So Jx ⊆ R/m. Hence Q(R/m) ⊆ (R/m)w. Then by
Proposition 3.2, we have (R/m)w = Q(R/m) = Rm/mRm is w-simple. �
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Lemma 3.5 ([22]). Let M and N be GV -torsion-free modules and let f : M →
N be a w-isomorphism. If g : Mw → Nw is the extension of f , then g is an

isomorphism.

Theorem 3.6. Let M be a w-module. Then M is w-simple if and only if there

exists a maximal w-ideal m of R such that M ∼= (R/m)w.

Proof. If M ∼= (R/m)w, where m is a maximal w-ideal of R, then M is w-simple
by Proposition 3.4.

Conversely, suppose M is w-simple. Let x ∈ M \ {0}. Then M = (Rx)w by
Proposition 3.1. Since m := ann(x) is a maximal w-ideal of R by Corollary 3.3
and Rx ∼= R/m, M ∼= (R/m)w by Lemma 3.5. �

Example 3.7. Let m be a maximal ideal of R but not a maximal w-ideal.
Then M := R/m is simple but not GV -torsion-free. Hence a simple module
is not necessarily w-simple. Let R := F [X,Y ] be the polynomial ring in two
indeterminates over a field F and let F (Y ) be the quotient field of F [Y ]. Then
m := (X) is a maximal w-ideal of R but not a maximal ideal. Thus N :=
R/m ∼= F [Y ] and M := Nw = F (Y ) is w-simple by Proposition 3.4, but not
simple. Therefore, a w-simple module is not necessarily simple.

Theorem 3.8. Let M be a w-module. If M is of finite type, then there exists

a maximal w-submodule of M .

Proof. Let M = (x1, . . . , xn)w, (x1, . . . , xn−1)w 6= M . Set

S = {N | N is a w-submodule of M , x1, . . . , xn−1 ∈ N , xn 6∈ N}.

By Zorn’s Lemma, S has a maximal element P , whence P is a maximal w-
submodule of M . �

Lemma 3.9. Let M be a GV -torsion-free module and let N be a submodule of

M . If M/N is GV -torsion-free, then (M/N)w ∼= (Mw/Nw)w.

Proof. Since the canonical homomorphism M/N → Mw/Nw is a w-isomorph-
ism, (M/N)w ∼= (Mw/Nw)w. �

Lemma 3.10. Let M be a w-module and let N be a w-submodule of M . Then

for any nonzero w-submodule A of (M/N)w, there is a w-submodule K of M
containing N properly such that (K/N)w = A.

Proof. Let A be a nonzero w-submodule of (M/N)w. Set B = A ∩ (M/N) =
C/N , where C is a submodule of M containing N properly. By Lemma 3.9,
Bw = Aw∩(M/N)w = A∩(M/N)w = A = (C/N)w = (Cw/N)w. Set K = Cw .
Then the conclusion follows. �

In [18], according to the Kurshan Theorem, R is a Noetherian ring if and
only if every countable direct sum of injective envelopes of simple modules is
injective. For w-Noetherian rings, we generalize the Kurshan Theorem.

Theorem 3.11. The following statements are equivalent for a ring R :
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(1) R is w-Noetherian;
(2) the direct sum of GV -torsion-free injective modules is injective;
(3) the direct sum of injective envelopes of w-simple modules is injective;
(4) the countable direct sum of injective envelopes of w-simple modules is

injective.

Proof. (1)⇔(2). [25, Theorem 4.4].
(2)⇒(3)⇒(4). This is clear.
(4)⇒(1). Suppose R is not a w-Noetherian ring. Then there exists a strictly

ascending chain of w-ideals of R

I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ · · · .

Set I =
⋃

i Ii. Then I is also a w-ideal and for any a ∈ I, there exists ia ∈ N

such that a ∈ Ii for all i > ia. For each n ∈ N, choose an ∈ I \ In. By
Theorem 3.8 and Lemma 3.10, there is a maximal w-submodule(An/In)w of
((Ran + In)w/In)w, where An is a w-ideal containing In. By Proposition 3.2,
En := (((Ran+In)w/In)w/(An/In)w)w is w-simple. Let E(En) be the injective
envelopes of En. We have the following commutative diagram:

E(En)

En

βn

OO

((Ran + In)w/In)w/(An/In)w

αn3

OO

(Ran + In)w/In

αn2

OO

0 // (Ran + In)/In //

αn1

OO

I/In

^^❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃

Set πn : I/In → E(En) and αn = αn3
αn2

αn1
. Then πn(an) = βnαn(an) 6= 0.

For any n ∈ N, let f : I →
⊕∞

n=1 E(En) be a homomorphism defined by

f(a) = (π1(a+ I1), π2(a+ I2), . . . , πn(a+ In), . . .),

where if n > ia, then πn(a+In) = 0. By hypothesis, we have that
⊕∞

n=1 E(En)
is injective. Thus we have the following commutative diagram:

∞⊕
n=1

E(En)

0 // I

f

OO

// R

g
bb❊❊❊❊❊❊❊❊❊❊
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Set

g(1) = (x1, x2, . . . , xn, . . .), xi ∈ E(Ei),

and xn = 0 for any n > m. Then for t > m, f(at) = (π1(at + I1), π2(at +
I2), . . . , πt(at + It), . . .) = g(at) = atg(1) = (atx1, atx2, . . . , atxm, 0, . . .), and
hence we have πt(at + It) = 0, a contradiction. Therefore, R is w-Noetherian.

�

Recall from [10] that an injective module is Σ-injective if an infinite direct
sum of its copies is injective. Following [21], we say that a module M is
finitely injective if every finite set of elements of M is contained in an injective
submodule.

Lemma 3.12 ([1, 3]). Let M be an injective module. Then the following

statements are equivalent:

(1) M is a Σ-injective module;
(2) every essential extension of M (ℵ0) is a direct sum of injective modules;
(3) every finitely injective submodule of E(M (ℵ0)) is injective;
(4) every finitely injective submodule of E(M (ℵ0)) is a direct sum of injec-

tive modules.

It is shown in [1, 3, 4] that R is a Noetherian ring if and only if every injective
module is Σ-injective if and only if the essential extension of the direct sum of
injective modules is the direct sum of injective modules if and only if for each
injective moduleM , every essential extension ofM (ℵ0) is the direct sum of injec-
tive modules if and only if for each injective module M , every finitely injective
submodule of E(M (ℵ0)) is a direct sum of injective modules. The above results
generalize the Cartan-Eilenberg-Bass-Papp Theorem for Noetherian rings. In
[25], the authors proved the w-theoretic analogue of the Cartan-Eilenberg-Bass-
Papp Theorem for Noetherian rings, that is, R is a w-Noetherian ring if and
only if the direct sum of GV -torsion-free injective modules is injective. Next
we follow from Lemma 3.12 to easily obtain the following generalization of this
theorem.

Theorem 3.13. The following statements are equivalent for a ring R :

(1) R is w-Noetherian;
(2) the direct sum of GV -torsion-free injective modules is injective;
(3) every GV -torsion-free injective module is Σ-injective;
(4) the essential extension of the direct sum of GV -torsion-free injective

modules is the direct sum of GV -torsion-free injective modules;
(5) the essential extension of the countable direct sum of GV -torsion-free

injective modules is the direct sum of GV -torsion-free injective modules;
(6) for each GV -torsion-free injective module M and each index set Γ,

every essential extension of M (Γ) is the direct sum of GV -torsion-free

injective modules;



INJECTIVE MODULES OVER w-NOETHERIAN RINGS, II 1063

(7) for each GV -torsion-free injective module M , every essential extension

of M (ℵ0) is the direct sum of GV -torsion-free injective modules;
(8) for each GV -torsion-free injective module M , every finitely injective

submodule of E(M (ℵ0)) is injective;
(9) for each GV -torsion-free injective module M , every finitely injective

submodule of E(M (ℵ0)) is a direct sum of injective modules.

Next we give another characterization of w-Noetherian rings in terms of a
weaker condition than injectivity. To do so, we need some terminologies.

Let Fw,f (R) (resp., Fw(R)) be the set of all finite type w-ideals (resp., w-
ideals) of R. An R-module M is said to be Fw,f (R)(resp., Fw(R))-injective
if for every ideal I ∈ Fw,f(R) (resp., Fw(R)), every R-homomorphism from I
into M can be extended to an R-homomorphism from R into M .

Example 3.14 (An example of a GV -torsion-free Fw,f (R)-injective module
that is not a w-module). Let R := F [X,Y ] be the polynomial ring in two
indeterminates over a field F and let Q := F (X,Y ) be its field of quotients.
We consider the module M := Q/R. It is shown in [16, Example 2.3] that
M is a divisible R-module that is not injective. It is also shown from [14,
Corollary 2.11] that M is a GV -torsion-free R-module. Note that R is a fac-
torial domain. Thus by [10, Lemma I.7.2], the Fw(R)-injectivity (and hence
Fw,f (R)-injectivity) is equivalent to the divisibility. Now assume that M is a
w-module. Then by [17, Corollary 2.4], M is injective, which is a contradic-
tion. From this example, we can see easily that Fw,f(R)-injective modules and
injective modules are different.

Theorem 3.15. Let {Mi}i∈I be a family of R-modules. Then
∏

i∈IMi is

Fw,f (R)-injective if and only if each Mi is Fw,f (R)-injective.

Proof. The proof of the assertion is analogous to that of injectivity. �

Theorem 3.16. Let {Mi}i∈I be a family of w-modules over R. Then
⊕

i∈I Mi

is Fw,f (R)-injective if and only if each Mi is Fw,f (R)-injective.

Proof. Suppose that each Mi is Fw,f(R)-injective. Let A = (x1, x2, . . . , xn)w
be a finite type w-ideal of R and let f : A →

⊕
i∈I Mi be a homomorphism.

Then f(A) ⊆ (
⊕

j∈J Mj)w =
⊕

j∈J (Mj)w =
⊕

j∈J Mj for some finite subset
J of I. The remainder of this assertion follows from Theorem 3.15. The proof
of the converse is similar to that of Theorem 3.15. �

In [12], it is shown that R is a Noetherian ring if and only if f(R)-injectivity
is equivalent to injectivity, where f(R) is the set of all finitely generated ideals
of R. In the following, we get the w-analogue of this result.

Theorem 3.17. A ring R is w-Noetherian if and only if every Fw,f (R)-
injective w-module is injective.
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Proof. Suppose that R is w-Noetherian and let M be an Fw,f (R)-injective w-
module. Then in order to prove that M is injective, by Lemma 2.8, it suffices
to show that M is Fw(R)-injective. But this follows from the facts that R is
w-Noetherian and that M is Fw,f(R)-injective.

Conversely, suppose that every Fw,f(R)-injective w-module over R is injec-
tive. Let {Mi}i∈I be a family of GV -torsion-free injective R-modules. Then
by Theorem 3.16 and [26, Proposition 2.3],

⊕
i∈I Mi is an Fw,f (R)-injective

w-module. Therefore, by hypothesis,
⊕

i∈I Mi is injective. Hence R is w-
Noetherian by Theorem 2.9. �

Following [13], we say that a module M admits an i-decomposition if M =
E ⊕ N , where E is injective and N is i-reduced in the sense that N has no
injective submodule except 0. Note this concept was first introduced by Ka-
plansky. In [13, Theorem 1], it is shown that R is Noetherian if and only if any
R-module admits an i-decomposition. In the following, we give the w-analogue
of this result.

Theorem 3.18. The following conditions are equivalent for a ring R :

(1) R is w-Noetherian;
(2) the direct sum of any countably infinite family of GV -torsion-free in-

jective R-modules is injective;
(3) any GV -torsion-free R-module admits an i-decomposition.

Proof. (1) ⇔ (2). [25, Theorem 4.4].
(1) ⇒ (3). Let M be a GV -torsion-free module. Set S = {X | X is an

injective submodule of M}. Then S is nonempty since 0 ∈ S . Let {Xi} be
a chain in S . Then by Theorem 2.9, U =

⋃
iXi is an injective submodule of

M . Hence U ∈ S and is an upper bound of {Xi}. Thus there is a maximal
element E in S by Zorn’s Lemma. Therefore,M admits a direct decomposition
M = E⊕N for some submodule N of M . If L is an injective submodule of N ,
then E ⊕ L is injective. By the maximality of E, we have L = 0. Thus N has
no injective submodule except 0. Therefore, M admits an i-decomposition.

(3) ⇒ (2). We adopt the proof of [13, Theorem 1]. Let {Mi}
∞
i=1 be a count-

ably infinite family of GV -torsion-free injective R-modules. By hypothesis, we
may assume that I and N realize an i-decomposition of M :=

⊕∞

i=1 Mi. For
each positive integer n, Xn :=

⊕n

i=1 Mi is a GV -torsion-free injective submod-
ule of M . Since N is i-reduced, we have E(Xn ∩ I) = Xn from which we
deduce that Xn ⊆ I. Taking direct limits on both sides gives M = I, which is
injective. �
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