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Ionization in a dense hydrogen plasma: 
analytic solution of the master equation 

BY A. W. YAU AND H. 0. PRITCHARD 

Centre for Research in Experimental Space Science, York University, 
Downsview, Ontario, Canada M3J 1P3 

(Communicated by D. R. Bates, F.R.S. - Received 19 December 1977) 

The master equation is solved analytically for the ionization in a dense 
hydrogen plasma involving single-quantum transitions. The derived 
expression for the observed ionization rate coefficient is valid for all 
temperatures at which the ionization time constant is long compared with 
the internal relaxation time constants. At high temperature, the observed 
ionization rate coefficient is determined by excitation and ionization from 
the ground level. At low temperature, a bottleneck occurs above the 
first excited state, and the expression reduces to a form foreseen by Bates 
as the counterpart to the network-like expression for recombination. The 
implications with regard to the temperature dependence of the rate 
coefficient are discussed. 

1. INTRODUCTION 

The kinetics of ionization and recombination in a plasma have been of considerable 
theoretical and experimental interest in recent years. Much of the work has been 
reviewed by Biberman, Yakubov & Vorob'ev (I970I) and by Bates (I974a). 

A milestone in the theoretical development is the work of Bates, Kingston & 
McWhirter (962z). In this work, the quasi-steady-state assumption was made that 
the only time-dependent populations were those of the ground state atoms and free 
electrons. An optically thin plasma, which included electronic excitation, de- 
excitation, ionization and (three-body) recombination, spontaneous radiation and 
radiative recombination, was considered. The collisional-radiative recombination 
and ionization coefficients were obtained by using the quasi-steady-state 
approximation. 

An alternative theoretical approach which does not invoke the quasi-steady- 
state approximation is to seek the solution of the time-dependent relaxation 
equations. This approach facilitates a study of the temporal behaviour of the 
plasma by integrating the relaxation equations numerically (Gordiets, Gudzenko & 
Shelepsin I968; Limbaugh & Mason I97I). The integration consumes much com- 
puting time, because the system of equations is stiff, so that the integration step- 
length must be very small. Also, the number of differential equations involved is 
large, one equation being required for each of the bound states as well as one for the 
continuum. 
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Recently, Hogarth & McElwain (I975 a) applied the boundary layer method and 
obtained an approximate solution for the relaxation equations of a dense hydrogen 
plasma. These authors set up and solved the master equation for the ionization- 
recombination reaction and showed that the ionization rate coefficient could be 
obtained from the largest eigenvalue of the relaxation matrix. The eigenvalue was 
computed numerically for a series of temperatures by Hogarth & McElwain (I975 6). 
Their work represents a substantial improvement over previous numerical studies 
in so far as the required labour of computing is concerned. Yet, for heavier atoms 
with phenomenally large numbers of bound states, the required computation is still 
formidable, and approximate procedures such as matrix condensation (Burgess & 
Summers I969) are sometimes used. 

The aim of this paper is to derive the analytic solution of the relaxation matrix 
for a dense plasma, and to elucidate from it the prominent microscopic features in 
dense plasma relaxations. 

The organization of the paper is as follows. In ? 2, the master equation is set up 
and the formal relations between the observed ionization rate coefficient and the 
normal modes of internal relaxation are derived. In ? 3, the ionization rate coefficient 
is derived for a model system involving nearest-neighbour transitions only, and the 
derived expression is used to examine the roles of the respective microscopic 
processes in the overall observed ionization rate in a dense hydrogen plasma. 
Numerical results are presented in ? 4. The relevant implications regarding the 
temperature coefficient are discussed in ? 5. 

2. MASTER EQUATION 

Following the work of Hogarth & McElwain (I975 a, b), we consider a dense and 
neutral hydrogen plasma, in which only collisional excitation-de-excitation and 
ionization-recombination processes need to be considered: 

H(i)+e#H(j)+e, i,j = 1, ...,m, (1a) 

H(i)+e#H++e+e, i t,...,m. (tb) 

Transitions due to atom-atom, atom-ion or ion-ion collisions and any boundary 
effects are neglected (Bates et al. i962; Hogarth & McElwain I975 a, b). In reactions 
(1), H(i) denotes a hydrogen atom with principal quantum number i, and e denotes 
an electron. The high-lying bound states of the hydrogen atom are regarded as part 
of the continuum whence the principal quantum number of the atom (i and j in (1)) 
ranges from 1 to m. The degenerate states of a particular level are assumed to be 
populated according to their statistical weights. Furthermore, we assume an 
electron temperature Te which remains constant throughout the reaction, whence 
the transition probabilities of reactions (1) are independent of time; it should be 
noted that under certain circumstances, the relaxation time associated with Te is 
much shorter than that for the plasma decay (Bates & Kingston I964 a, b). 
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The nonlinear master equation for the relaxation of the plasma may then be 
written as 

dn/ /dt = ne, (nj Pji - ni Pij) + n c, - n P (2) 

for i = 1, ..., m, where ne(t) is the electron concentration, ni(t) is the number density 
of atoms in state i, Pij is the transition rate constant from state i to state j, with the 
subscript c denoting the continuum. 

To obtain the ionization rate coefficient, one considers the system which involves 
ionization but no recombination (Hogarth & McElwain 1975 a, b), namely, 

H(i) + e H(j) + e, i,j 1,..., , (3a) 

H(i)+e-eH++e+e, i 1, ... M. (3b) 

The master equation is then linear and may be cast in matrix notation: 

(d/dt)IN> = A IN>, (4) 

where IN(t)> is the population vector and 

( [k=l jk=1 

The reader is referred to the papers of Hogarth & McElwain (1975a,b) for the 
detailed derivattions of the above results. 

To solve for (4), we note that the transport matrix A may be symmetrized to B, 

B = E-IAEi, (6) 

where E is the fractional equilibrium population matrix. 

Eij= 8ij 

where n-i is the fractional equilibrium population of hydrogen atom with principal 
quantum number i at temperature Te. The matrix B is symmetric and negative- 
definite. Hence, it has eigenvalues Aj and eigenvectors IXj> which satisfy the 
following: 

B = XAXT, (8) 

Aij =Ai 6ipa( 

and O > Al > A2 > A3 > > Am. (10) 

The solution of (4) is I N(t)> = exp (At) I N(O)> a) 

m m 
and hence n%(t) n E exp(A t)Xs1 z niEyXkjnk(O). (IIb) 

andhence=tj=1 
i 

k=1 

At time t < '/(A1 - A2), the system goes through a transient during which the initial 
distribution of hydrogen atoms relaxes to a new distribution at a rate which depends 
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on- A2. Following the transient (at t > 1/(A1 - A2)), the new distribution decays at 
a much slower rate which depends on -A1, and ( 11) reduces to 

m 
ni(t) i4 E ik-jXklnk(O)exp(A,t)Xi,. (12) 

k=1 

The initial transient corresponds to internal relaxation while the latter phase 
characterizes the ionization process. Explicitly the ionization rate approaches 

dN/dt = -SobsneNII, (13) 

where NH is the total concentration of hydrogen atoms, 

m 
NI, (t)- ni(t), (14) 

t = 1 

and the observed ionization rate coefficient Sobs is just 

Sobs -A/Ife. (15) 

To solve for A1, we factorize the transport matrix A into 

A=Q-K (16) 

with Qii= nej(I-(ij)Pji -i E(1 -tk)Pik (17) 
k=1 

and Kijf neijpJc. (18) 

The matrix Q then consists only of transitions between the bound states of the atom, 
and is stochastic with zero column-sums. Again we note that it may be symmetrized 
to R, R = E-QEI. (19) 

The symmetrized matrix R has eigenvalues yj and eigenvectors jYj> which satisfy 
the following R= YryT (20) 

= (21) 

0=Y1 > Y2 >Y3 > Y> m (22) 

and IY> El >, (23) 

where all the elements in 1l> are unity. The zero eigenvalue y, in (22) and the 
equilibrium eigenvector 1Y1> in (23) ensure the conservation of particles and the 
attaininent of Boltzmann equilibrium at infinite time in the absence of ionization. 

Using (16)-(19), we rewrite the eigenvalue equation (8) in the iterative form: 

IX> = (R-AkI)-1KIXk>. (24) 

Substituting (20) and (21) into (24) gives 

IXk> = Y(r-AkI) 1 yTK IXk>. (25) 
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Since K is diagonal, (25) reduces to 

m m 
X = YijYlj(YJ-Ak) 1KllXlk. (26) 

Z=di=1 

Using (18), (22) and (23), one obtains 

m 

ieXfk = (-Ak) X4 llcXlk+ E Yij(YJ-Ak)YYjPcXlk, (27) 
1=2 

where the I-summations are now over states from which ionization occurs. Thus, 
for a system with r such states, (27) leads to a system of r equations in r unknowns, 
Ak and the (r - 1) ratios of Xlk, given Y, F and K. It might appear at first sight that 
(27) is more tractable than the eigenvalue equation (8). This is not so in actual fact 
because the equation is nonlinear. Rather, it is useful because one can establish from 
it the relations between the normal modes of internal relaxation (yj and IYj>) and 
those of ionization (Ai and lXj>) (Yau & Pritchard I978a,b). Such relations, 
together with others between Aj and yj derived from a priori considerations, lead 
easily to explicit solutions of A1, at least for simple realistic model systems. In 
particular, it may be shown that 

A1 = x(Qll-K1l) (28a) 

(Y2- K,,)) (28b) 

where 0 < a < 1 and x is physically a fractional measure of the deviation of popul- 
ation from the Boltzmann distribution due to the ionization reaction. Of course x is 
unknown a priori. However, a first approximation may be obtained by noting that 
in a plasma, ionization probability and excitation probability from the ground state 
are small compared with those from the excited states. This implies that the 
population distributions of the excited states are strongly affected by the ionization 
whereas that of the ground state is not. Hence, we have 

a_, 1- A. (29) 

Note also that except at very high temperature, K,, - Qul. Hence, to simplify 
(27), we make the approximation that 

yj-A1 nlyj, (30) 
j > 2, whence we obtain 

m 
neix t - O- Aiii0+ Y Y0i-1yT1} IcXII. (31) 

j=2 

Let us examine the validity of the approximation (30) in more detail. At low 
temperature, the excited states are hardly populated (i < 1 for i > 1) and ionization 
is much slower than internal relaxation. Thus A, 1 and IA11 < Iyj for j > 2; (30) 
is therefore an excellent approximation. As the temperature increases, the ioniz- 
ation rate becomes comparable with the internal relaxation rate, and (yj - A1) no 
longer approximates to yj. Nevertheless, (30) holds forj = 2 as long as the excitation 
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probability from the ground state is smaller than any of those from the excited 
states. For the other eigenvalues yj, j > 2, two possibilities arise. If the eigenvalues 
are widely spaced, with fyjf > fY21 for j > 2, then the j > 2 terms are small com- 
pared with the j = 2 term in the j-summation in (31). Hence, little error is intro- 
duced into (31) even though (30) fails to hold for j > 2. On the other hand, if the 
eigenvalues yj are closely spaced, then yj is approximately Y2 for all j> 2 and (30) 
is thus valid for all j > 2. Note, however, that at very high temperature when n- is 
exceedingly small, the error in (30) becomes large even though the approximation in 
(29) is excellent, namely, a -? 1, because the ionization probability from the ground 
state becomes comparable with the corresponding excitation probabilities. This 
temperature range is indeed beyond our interest, because the ionization mode (Al 
and IX1>) and the transient relaxation modes (A1 and IX,>, j > 2) are no longer 
separable, and the description of the ionization process using a single eigenvalue 
becomes less meaningful. Hogarth and McElwain (1975 a) have shown that the 
ionization rate coefficient may be characterized by -A1, provided that 

6 = (A1/A2)i (32) 

< 1. (33) 

We see that the approximation (29) is valid at all temperatures for which c < 1. 

3. RATE COEFFICIENT 

The temperature of experimental interest ranges from a small percentage of a to 
about 0, where 0 = Illk, I1 and k being respectively the ionization energy from the 
ground state, and the Boltzmann constant. Our objective in this section is to derive 
the ionization rate constant for a model system that is simple enough as to allow 
transparent analytic solutions, and yet is realistic enough at all these temperatures. 
To this end, we note that in the transition probability matrix Q, transitions between 
neighbouring levels are dominant. Indeed, for all i, Pi, i+1 is greater than P1j, j > i + 1, 
by at least an order of magnitude in this temperature range. Also, the ionization 
probability from the topmost bound level, Pm, exceeds all the Pi,, i < m. Hence, we 
shall consider the simplified system in which only transitions between neighbouring 
levels are allowed, whence 

P1j = 0, Ij-il > 1, (34) 

and Pic =, i<M. (35) 

To assess the consequence of the first simplification (34), one may examine its 
effect on the internal relaxation behaviour of the system. Table 1 compares the 
slowest relaxation eigenvalues Y2 for a system allowing all transitions with those 
for a system allowing nearest-neighbour transitions only, calculated by using the 
collisional transition rate coefficients of Johnson (I 972) for hydrogen with 20 bound 
levels (n = 20). At the temperatures shown (4000-64 000 K), the agreement is better 
than 20 ?/ indicating that (34) does represent a semiquantitative approximation 
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to the full transition matrix; this conclusion is not inconsistent with the results of 
Brocklehurst (I970). 

The consequence of assuming (35) is less obvious. Certainly, the approximation is 
valid for the ground and low-lyiig excited states, where the ionization probabilities 
are small. On the other hand, the ionization probabilities from the high-lying 
excited states are quite large. Fortunately, however, the observed ionization rate 
coefficient does not in fact depend strongly on the microscopic ionization processes 
at these states; we recall that it is this property that justifies the treatment of the 
very high-lying excited states as an extension of the continuum in the first place. 
Thus, (35) is expected to lead to little error in the derived ionization rate coefficient, 
provided that the ionization probabilities from the low-lying states are small. 

TABLE 1. INTERNAL RELAXATION EIGENVALUE -Y2 

temp -72, full matrix -7Y2' tridiagonal matrix 

K cm3 s-i cm3 sfi 

43t 1.06-8 1.03-8 
83 1.08-9 1.02--9 
1.64 1.34-10 1.23-10 

3.24 7.98-10 6.81-10 
6.44 5.36-9 4.28-9 

t The index giv-es the power of 10 to be multiplied with the entry. 

With the introduction of (35), (31) reduces drastically to give 

-Al = n1{nelPJ + Vmm}n-la (36) 
rn 

where the quantity 1nm? = -(y/2) /yi (37) 
i=2 

m-1 
is shown in the appendix to be J',, = v VJ, (38) 

with V= E nk) /nbK Pi,i+i, j= 1,.*m-1 (39) 

for a system obeying (34). The observed ionization rate coefficient Sobs is then 

explicitly Sb { 1 2 -1 

in in 1 

k=1 

l mnmEc n, j. = Kj Pj, j+1 

Several properties of the rate coefficient Sobs are apparent in (40). First, the 
observed rate coefficient represents a co-operative effect of the respective excitation 
transitions, in the sense that the latter behave like a series of capacitors, leading to 
a resultant rate coefficient which is rather like the effective capacitance of a series 
of capacitors. This is perhaps intuitively obvious for systems with nearest- 
neighbour transitions only; for systems which allow other transitions as well, the 
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corresponding physical picture is expected to be more complicated. Indeed, at low 
temperatures (below 10 000 K in hydrogen) when l, 1, (40) approaches 

m - 
Sobs= E (iijpi +)-1J, (41) 

where Pn, m+1 denotes P,C This expression is complementary to that derived by 
Bates for the recombination coefficient aobs using an electrical network analogy 
(Bates & Kingston I964 c; Bates 1974 b). Note, however, that the applicability of 
(40) is more restricted than is the corresponding expression of Bates (Ig974 b) for the 
recombination coefficient; the latter is valid for systems involving radiative tran- 
sitions as well, whereas (40) is valid onlv for systems where radiative transitions 
are unimportant or where the radiation field has a temperature Te. 

Equation (40) is useful in identifying the roles of the respective microscopic 
processes in the overall ionization. Specifically, if we define 

Vm (ne PmC)l 
as a generalization to VJ, j < m, then the observed ionization rate coefficient is 
predominantly controlled by the process associated with the largest Vj term, Vmax. 
Figure 1 is a logarithmic plot of VJlVm for hydrogen at 4000, 8000 and 12000K, 
again calculated by using the collisional transition rates of Johnson (1972) with 
20 bound levels. The fact that Vm is much smaller than Vmax at all these temperatures, 
indicates that the observed ionization rate coefficient does not depend strongly on 
the ionization probability Pmc and provides a plausible justification for (35). The 
location of Vmax simply corresponds to the bottleneck. Indeed, it is of interest to 
<ompare the ionization of atomic hydrogen with the dissociation of molecular 
hydrogen in this regard. In the latter, the bottleneck occurs at highly excited states 
near the dissociation limit, and is broad in the sense that excitation processes 
associated with several levels are of importance in determining the overall rate, at 
all temperatures of experimental interest (Yau & Pritchard 1978 b). This compares 
with the ionization of hydrogen (figure 1) where the bottleneck occurs in the low- 
lying excited states at all interesting temperatures. Indeed, as the temperature 
increases, the bottleneck is shifted towards the ground level, so that at high 
temperatures, the observed ionization rate coefficient depends predominantly on 
the excitation rate coefficient P12 from the ground level to the first excited level. 
Such temperature dependence of the bottleneck is to be found in a system which 
allows all transitions also. Indeed, at high temperature, the observed ionization 
rate is simply the sum of all the excitation probabilities plus the ionization 
probability from the ground level, as is given by (28 a). Note also that the bottleneck 
is relatively sharp, in the sense that only excitation processes associated with a few 
states are of importance in determining the observed ionization rate. Such behaviour 
was first observed semiquantitatively by Byron, Stabler & Bortz (i962) in their 
studies of collisional-radiative recombination. Indeed, their empirical correction 
factor y may be understood as the ratio of Vmax to the sum of Vj in the present 
context. 
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M:n ~~~~~~~~ I 
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FIGURE 1. Study of bottleneck effects in collisional ionization of hydrogen at 4000, 8000 and 
12 000 K. Vj is contribution from levelj to the overall ionizationtime, '/Sob.; equation (39). 
X, > V? for small j. Thus, Sobo depends predominantly on the excitation processes fromthe 
low-lying states. - - - -, 4000 K; , 8000 K; - --, 12 000 K. 

4. RESULTS 

Given the collisional transition probabilities Pij and Pic, it is straightforward to 
compute the observed ionization rate coefficient as a function of temperature by 
using (40). For atomic hydrogen, a complete set of data for PJ and Pi, has been given 
by Johnson (I972). In the present calculation, m is taken to be 20, and the actual 
ionization limit (13.6 eV) is used. In Johnson's paper, a reduced ionization limit was 
introduced, which increases the ionization probabilities Pic slightly. Since the 
observed ionization rate coefficient Sobs is in any case insensitive to the ionization 
probability P. in (40), the effect of the reduction in the ionization limit on the 
observed rate coefficient is clearly minimal. 

Table 2 summarizes the results of the relevant calculations and illustrates the 
numerical properties of the formal results in ?? 2 and 3. Columns 2-6 refer to 
solutions of the complete system, namely, the one with all transitions allowed. 
Columns 7-10 refer to the tridiagonal system, which allows only nearest-neighbour 
transitions. It is immediately apparent from inspection that all the corresponding 
entries in the two systems are very similar, showing that the tridiagonal system 
indeed represents a fair approximation to the complete one. 
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For the complete system, the calculated values of Sobs are in exact agreement 
with the results of Hogarth & McElwain, except at 4000 and 6000K: the slight 
discrepancies of less than 1 %/o here are attributed to their use of a reduced ionization 
limit and possibly to the different numerical methods of solution used. The ratio 
of (-Y2+K1l) to Sobs, columns 4 and 5, approaches unity above 32000K, the 
temperature beyond which the ionization probability from the ground level, 

Kll, becomes comparable with the slowest internal relaxation rate - Y2, and the 
parameter e in (32) becomes comparable with unity. (Both - K11/Y2 and exceed 
0.1 above 64 000 K.) 

Similar behaviour is found in the tridiagonal system, namely, Y2 approaches A1 
(since K,, is assumed to be zero here) and e becomes comparable with unity above 
32 000 K. The analytic solution for Sobs from (40) is given together with the numerical 
solution; agreement is seen to be excellent up to 32 000 K. Note that the solutions 
for the tridiagonal system and the full system agree to within 20 % up to this 
temperature. To the extent that the collisional transition probability data are 
uncertain to this order of magnitude, we feel that the analytic solution for the 
tridiagonal system represents an acceptable approximation to the full numerical 
solution up to this temperature. Above this temperature, the ionization probability 

Pi, from the ground level becomes appreciable compared with the excitation 
probabilities, and the observed ionization rate coefficient SObs approaches the sum 
of the ionization probability and excitation probabilities from the ground level. 
Note however that the meaning of a single time-independent ionization rate 
coefficient becomes less well defined at these high temperatures as e becomes com- 
parable with unity. The results at and above 64 000 K are therefore less meaningful, 
and are given only for comparison and completeness. 

The rate-quotient law is obeyed up to first order in 6 in the relaxation of a dense 
plasma (Hogarth & McElwain 1975 a, b), namely, 

neSobs -A1{1+O(62)} (42) 

and nfeflobs = -A1K{ +O(c2)} (43) 

with Ifobs = 'tobsnl, (44) 

where fobs is the three-body recombination rate coefficient and Keq is the Saha 
equilibrium constant. One may therefore compute fobs using the relation 

Ifobs 3 Sobs/Keq. (45) 

Table 3 gives the value of 8obs calculated by using (40) and (45) up to 16 000 K. 
Above this temperature, the populations of the high-lying excited states become 

appreciable and the Saha equilibrium constant is very sensitive to the number of 
bound levels assumed; this causes the recombination coefficientfobs calculated from 

(45) to become meaningless, and it is therefore not given for temperatures above 
16000K. The values of /obs of Johnson & Hinnov (I973) and of Hogarth & 
McElwain (I 975 b) are also given in the table for comparison. The three calculations 
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are in essential agreement. Also, the calculated values of /?obs agree with the experi- 
ment of Funahashi & Takeda (I 969) between 10 000 and 20 000 K to within a factor 
of five. 

TABLE 3. RECOMBINATION COEFFICIENT flobs 

lobs /(cm3 S-1) 

temp Johnson & Hinnov Hogarth & McElwain 

K eqn (45) (1973) (I975) 

43% 9.80-26 1.3-25 1.17-25 

63 1.18-26 1.27-26 

83 2.14-27 2.3-27 2.22-27 

14 6.13-28 6.35-28 
1.24 2.44-28 2.56-28 
1.44 1.24-28 1.32-28 

1.64 7.84-29 7.5-29 8.50-29 

t The index gives the power of 10 to be multiplied with the entry. 

TABLE 4. ACTIVATION ENERGY Eact FOR THE 

IONIZATION RATE COEFFICIENT 

temp Eact, full matrix EaCt, tridiagonal matrix 

iK eV/atom eV/atom 

43t 12.4 12.5 
1.64 10.2 10.0 
6.44 12.5 10.8 
2.56r 17.0 14.0 
1.0246 7.5 5.7 
4.0966 -71.8 -65.7 

t The index gives the power of 10 to be multiplied with the entry. Ionization energy 
13.6eV, first excitation energy = 10.2eV. 

5. DiscUSSION 

It has been customary to interpret kinetic data in plasma relaxation experiments 
in terms of a postulated mechanism, with the interpretation based upon certain 
empirical trends in experimental observations. Thus, for example, the ionization 
of an inert-gas atom in a shock wave has been postulated as a two-step process, 
namely, excitation from the ground state to the first excited state followed by 
ionization from there at a much faster rate; the postulate is based upon the experi- 
mental observation that the temperature coefficient of the observed ionization 
rate coefficient Eact, where 

Eact =-d ln Sobs/d(1/kT) (46) 

is close to the excitation energy (McLaren & Hobson I968). Detailed theoretical 
expressions which explicitly relate the rate coefficients of the respective microscopic 
excitation processes to the observed rate coefficient, such as equation (40), may shed 
some light on such interpretations at an atomic level. 
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Thus, in the ionization of a dense hydrogen plasma, equation (40) does support the 
above postulated mechanism at high temperature, namely, that the ionization rate 
is determined by the rate of activation from the ground level to the first excited 
level. It also shows, however, that this does not necessarily imply that the activation 
energy Eact will be close to the first excitation energy. Indeed, Eact at such tempera- 
tures is simply the temperature coefficient of the overall rate of the relevant excit- 
ation processes; the latter depends on both the excitation energy and the energy 
dependence of the excitation cross sections, and may even become negative at very 
high temperature, as shown in table 4. 

At low temperature, on the other hand, equation (40) suggests that the postulated 
mechanism no longer holds. The 1 -o- 2 excitation is no longer the sole rate-deter- 
mining step. Rather, the observed ionization rate is determined by excitation 
processes associated with more than one excited levels above the first excited level. 
Also, the observed temperature coefficient Eact may no longer be identified with the 
temperature coefficient of any particular transition, though it should be close to the 
first excitation energy. Table 4 lists the temperature coefficient Eact for the ioniz- 
ation rate coefficient for a dense hydrogen plasma between 4 x 103 and 4 x 106 K for 
both the complete system and the tridiagonal system. The agreement between the 
two is good at all temperatures shown (but the figures at and above 64 000 K should 
be taken as illustration of the theoretical result only in view of the discussions in ? 4 
regarding the rate coefficient at these temperatures). 

Although the above deductions from equation (40) are applicable, strictly 
speaking, only to a model hydrogenic plasma restricted to nearest-neighbour 
transitions, one may expect from the results of table 4 that equation (40) not only 
describes the basic physical features for an actual dense hydrogen plasma where all 
transitions are allowed, but also for other dense atomic plasma, since the transition 
probabilities and energy-level structures in different plasma are qualitatively 
similar; this despite the fact that in the latter systems, we are dealing primarily 
with atom-atom rather than electron-atom collisions. 

In respect of the latter point, we note two, as yet unexplained, results obtained 
in shock-wave ionization studies of the inert gases. For argon (McLaren & Hobson 
I968) it has been shown (McElwain, Wagschal & Pritchard 1970) that the observed 
rate data in the temperature range 8000-12 000 K can be fitted satisfactorily to a 
two-state reaction scheme, whereas there is no two-state model solution for the 
data at 7000K: thus, the ionization process for argon at 7000 K appears to be in a 
similar regime to that indicated in figure 1 and table 4 for hydrogen at 4000 K. On 
the other hand, similar experiments show an activation energy slightly (1 eV) lower 
than the first excitation energy for xenon, and the preliminary result for neon 
appears to be lower (Ward I 969); in view of the wide range of temperature coefficients 
exhibited in table 4 for the ionization rate for hydrogen, there seems no reason to be 
unduly suspicious of these apparently anomalous results, and it would appear that 
they both merit further investigation. 
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APPENDIX 

To derive (38) from (37), we define 

Zi = EY m 1i 2, ... ,M. (Al) 
1=2 Yi 

Since R IY1> = y1YIY I-=1,2, ... ,m, (A2) 

and 0 -y > y2> i summing (A 2) over I leads to 
m m mn 

E J?ikYklymlY=E (A3) 
I=2k=l 1=2 

Using the orthogonality property, 
m 
El YilyEkl =4iO (A 4) 

1==1 

we obtain R IZ> =1>, (A5) 

where C-81im-yTlyml (A6) 

=X. _ilnn (A 7) 
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In (A 5), R is singular. To solve for I w> we define as generalization of R and jg> a 
perturbed R(7h) and I(h3>, where 

R(' ') =R(?O) - h6j.11 6jll, (A 8 ) 

and -") =im, - Y(A') Y(n^) (A 9) 

=in,z - nigig,qnq (A 10) 

where Y YO)> is thejtb eigenvector for the perturbed matrix R(h). Note that g(?)> 
and gi -* 1 as h -* 0. Straightforward manipuilation then gives 

Z,,h= (h-1 i= l i i )Il} (A ll) 

To obtain gi, we solve the eigenvalue equation 

R(h I y(h)> = y(1h) I Y(')>, (A 12) 

where h is vanishingly small, and obtain 

Yj() = K-Mh (A 13) 

and = ( nh [m (E Ik /e nj ) P/ (A 14) 

where C is the normalization constant, with 

m 

E ni =-1 * (A 15) 
S= 1 

Substitution of (All1), (A 14) and (A 15) into (37) leads to (38) and (39). 
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