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Abstract

In this paper, we introduce the notion of U-BG-filter in U-BG-BH-
algebra and observed that every filter of a U-BG-BH-algebra is a U-BG-
filter. A necessary and sufficient condition is derived for every U−BG−
filter of U −BG−BH−algebra to become a filter. Some properties of
U −BG− filter are studied with respect to homomorphism, Cartesian
products and quotient U −BG−BH − algebra.
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1 Introduction

The notion of U-BG-BH-algebra was introduced and extensivelys studied by
H.H.Abass and L.S.Mahdi ([3]), in 2014. This class of U-BG-BH-algebra was
introducsd as a combination of the classes of BH-algebra and BG-algebra.In
1980, E.Y.Deeba ([6]) introduced the notion of filters and in the setting of
bounded implicative BCK-algebra constructed quotient algebra via a filter.Also
E.Y.Deeba and A.B.Thaheem ([7]) studied afilters in BCK-algebra in 1990. In
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1991 C.S.Hoo ([8]) was presented the filters in BCI-algebra . In 1996, J.Meng
([10]) introduced the notion of BCK-filter in BCK-algebra. In 2012 H.H.Abass
and H.A.Dahham ([1]) discussed the concept of completely closed filter of a BH-
algebra, and completely closed filter with respect to an element of BH-algebra.
In this paper, the notion of U-BG-filter of U-BG-BH-algebra is introdused.

2 Preliminary Notes

In this section, some basic concepts about a BG-algeba, BH-algebra, U-BG-
BH-algrbra, filter, U-BG-filter, subalgebra, normal subset and quotient U-BG-
BH-algebra are given.

Definition 2.1. ([9]) A BG-algebra is a non-empty set X with a constant
0 and a binary operation * satisfying the following axioms:for all x, y, z ∈ X:
(I) x ∗ x = 0,
(II) x ∗ 0 = x,
(III) (x ∗ y) ∗ (0 ∗ y) = 0,

Lemma 2.2. ([9]) Let (X, ∗, 0) be a BG-algebra. Then

(i) The right cancellation law holds in X, i.e. x ∗ y = z ∗ y implies x = z,

(ii) 0 ∗ (0 ∗ x) = x, ∀x ∈ X.

(iii) If x ∗ y = 0, then x = y,∀x, y ∈ X.

(iv) If 0 ∗ x = 0 ∗ y, then x = y, ∀x, y ∈ X.

(v) (x ∗ (0 ∗ x)) ∗ x = x, ∀x ∈ X.

Definition 2.3. ([11]) A BH-algebra is a nonempty set X with a constant
0 and a binary operation “∗”satisfying the following conditions:

(I) x ∗ x = 0, ∀ x ∈ X.

(II) x ∗ y = 0 and y ∗ x = 0 imply x = y, ∀ x, y ∈ X.

(III) x ∗ 0 = x, ∀ x ∈ X.

Proposition 2.4. ([9]) Every BG-algebra is a BH-algebra.

Definition 2.5. ([3]) A U-BG-BH-algebra is defined to be a BH-algebra X
in which there exists a proper subset U of X, such that:
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(U1) 0 ∈ U, |U | ≥ 2.

(U2) U is a BG-algebra.

Definition 2.6. ([5]) A nonempty subset S of a BH-algebra X is called a
BH-subalgebra or subalgrbra if x ∗ y ∈ S, ∀ x, y ∈ S.

Definition 2.7. ([1]) Let X be a BH-algebra, a nonempty subset N of X
is said to be normal of X if (x ∗ a) ∗ (y ∗ b) ∈ N for any x ∗ y and a ∗ b ∈ N ,
∀ x, y, a, b ∈ X.

Definition 2.8. ([2]) A BH-algebra X is called medial if x ∗ (x ∗ y) = y,
∀ x, y ∈ X.

Definition 2.9. A filter of a BH-algebra X is a non-empty subset F of X
such that:

(F1) If x ∈ F, and y ∈ F, then y ∗ (y ∗ x) ∈ F and x ∗ (x ∗ y) ∈ F .

(F2) If x ∈ F and x ∗ y = 0 then y ∈ F.

Remark 2.10. Let (X, ∗X , 0X) and (Y, ∗Y , 0Y ) be BH-algebra. A map-
ping f : X −→ Y is called a Homomorphism if f(x ∗X y) = f(x) ∗Y f(y) for
any x, y ∈ X.A homomorphism f is called a monomorphism (resp., epimor-
phism) if it injective (resp., surjective). A bijective homomorphism is called
an isomorphism. Two BH-algebra X and Y are said to be isomorphic, written
X ∼= Y , if there exists an isomorphism f : X −→ Y . For any homomorphism
f : X −→ Y , the set {x ∈ X : f(x) = 0Y } is called the kernel of f , denoted by
Ker(f), the set {f(x) : x ∈ X} is called image of f , denoted by Im(f). Notice
that f(0X) = 0Y .([11]), and the set {x ∈ X : f(x) = y, for some y ∈ Y },is
preimage of f , denoted by f−1(Y ) ([4]).

Remark 2.11. ([9]) Let (X,*,0) be a BG-algebra and let N be a normal
subalgebra of X. Define a relation ∼N on X by x ∼N y if and only if x∗y ∈ N ,
where x, y ∈ X. Then it is easy to show ∼N is an equivealence relation
on X. Denote the equivealence class containing x by [x]N , i.e. [x]N = {y ∈
X : x ∼N y} and let X/N = {[x]N : x ∈ X}. If ∗′ denoted on X/N by
[x]N ∗

′
[y]N = [x ∗ y]N . Then (X/N, ∗′ , [0]N) is a BG-algebra and it is called

qutient bg-algebra of X by N. The authers in ([1]) generalized this concept to
BH-algebra to obtain (X/N, ∗′ , [0]N) qutient BH-algebra of X by N .

Remark 2.12. Let {(Xi, ∗Xi
, 0Xi

) : i ∈ λ} be a family of Ui−BG−BH−
algebra. Define the cartesian product of all Xi, i ∈ λ to be the structure∏
i∈λ

Xi = (
∏
i∈λ

Xi,~, (0Xi
)), where

∏
i∈λ

Xi is the set of tuples {(xi) : ∀i ∈ λ and

xi ∈ X}, and whose binary operation ~ is give by (xi)~(yi) = (xi∗Xi
yi),∀i ∈ λ

and xi, yi ∈ Xi. Note that the binary operation ~ is componentwise.
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3 Main Results

In this section, we introduce the concepts of a U −BG− filter of a U −BG−
BH − algebra. Also, we study some properties of it with examples.

Definition 3.1. A non-empty subset F of a U −BG−BH − algebra X is
called a U −BG− filter of X, if it satisfies (F1) and
(F3) If x ∈ F and x ∗ y = 0 then y ∈ F, ∀ y ∈ U.

Example 3.2. Consider the U −BG−BH − algebra(X; ∗, 0), where X =
{0, 1, 2, 3} and * is the binary operation define by the following table:

* 0 1 2 3
0 0 2 1 0
1 1 0 2 0
2 2 1 0 0
3 3 3 3 0

and U = {0, 1, 2}. The subset F = {1, 2} is U-BG-filter, but the subset
F = {1, 3} is not a U-BG-filter of X, since 3 ∗ (3 ∗ 1) = 0 /∈ F.

Remark 3.3. If X is a U-BG-BH-algebra. Then {0} and X are a U-BG-
filter of X, called trivial U-B-filters of X. A U-BG-filter F of X is called a
proper U-BG-filter of X if F 6= X.

Theorem 3.4. Let X be a U-BG-BH-algebra and S is a subalgebra of X,
satisfies the right cancellation low in X. Then S is a U-BG-filter of X.

Proof. (i) Let x, y ∈ S , then x ∗ y ∈ N and y ∗ x ∈ N , using Definition(2.6).
So y ∗ (y ∗ x) ∈ S and x ∗ (x ∗ y) ∈ S.
(ii)Let x ∈ S, x ∗ y = 0, y ∈ U, then x ∗ y = y ∗ y, [by Definition(2.1)(I)]. We
obtian x = y, [by using the right cancellation low], so y ∈ S. Therefore S is a
U-BG-filter of X.

Proposition 3.5. Let X be a U-BG-BH-algebra. Then every filter of X is
a U-BG-filter of X.

Proof. Is obvious. [Since U ⊆ X and F is a filter of X].

Remark 3.6. The convers of proposition (3.5) is not correct in general as
in the following example. Consider the U-BG-BH-algebra X in example(3.2).
The subset F = {1, 2} is a U − BG − filter of X, but it is not a filter since
1 ∈ F and 1 ∗ 3 = 0 but 3 /∈ F .
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Theorem 3.7. Let X be a medail U-BG-BH-algebra. Then every a non-
empty subset A of X is a U-BG-filter of X.

Proof. Let A be a non-empty subset of X.
(i) Let x, y ∈ A. Then x = y∗(y∗x)[By Definition(2.8)]. Thus y∗(y∗x) ∈ A.
Similarly, x ∗ (x ∗ y) ∈ A.
(ii) Let x ∈ A,x ∗ y = 0, y ∈ U . Then y = x ∗ (x ∗ y) [By Definition(2.8)],
imply that y = x ∗ 0,then y = x [By definition(2.3)(III)], so y ∈ A. Therefore,
A is a U-BG-filter of X.

Theorem 3.8. Let X be a U-BG-BH-algebra, and F be a U-BG-filter of
X such that x ∗ y 6= 0, ∀y /∈ F and x ∈ F . Then F is a filter of X.

Proof. Let F be a U-BG-filter of X such that y ∈ X and x ∈ F ,
(i) Let x, y ∈ F ,then y ∗ (y ∗ x), x ∗ (x ∗ y) ∈ F [By definition(3.1)(F1)],
(ii) Let x ∈ F ,x ∗ y = 0,. Then we have two cases. Cases(I): If y ∈ U ,
then y ∈ F [By definition(3.1)(F3)]. Cases(II): If y /∈ U then either y /∈ F
or y ∈ F . Suppose y /∈ F , then x ∗ y 6= 0, this a contradiction. Thus y ∈ F
Therefore , F is a filter of X.

Proposition 3.9. Let X be a U-BG-BH-algebra and let {Fi, i ∈ λ} be a
family of U-BG-filters of X.Then

⋂
i∈λ

Fi is a U-BG-filter of X.

Proof. Let {Fi, i ∈ λ} be a family of U-BG-filters of X. To prove
⋂
i∈λ

Fi is a

U-BG-filter of X.
(i) If x, y ∈

⋂
i∈λ

Fi, then x, y ∈ Fi, ∀i ∈ λ. Hence y ∗ (y ∗ x), x ∗ (x ∗ y) ∈ Fi
[since Fi is a U-BG-filter of X, ∀ i ∈ λ, by definition(3.1)(F1)]. Then y ∗ (y ∗
x), x ∗ (x ∗ y) ∈

⋂
i∈λ

Fi.

(ii) Let x ∈
⋂
i∈λ

Fi such that x∗y = 0, y ∈ U . Then x ∈ Fi ∀ i ∈ λ. Thus y ∈ Fi
,[Since Fi is a U-BG-filter of X,∀ i ∈ λ, by definition(3.1)(F3)]. Therefore,

⋂
i∈λ

Fi

is a U −BG− filter of X.

Remark 3.10. The union of U − BG − filters of U-BG-BH-algebra may
be not a U −BG− filter as in the following example.

Example 3.11. Consider the U-BG-BH-algebra X = {0, 1, 2, 3, 4} with
binary operation ′′∗′′ defined by the following table:
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* 0 1 2 3 4
0 0 1 2 0 0
1 1 0 1 4 3
2 2 2 0 1 1
3 3 1 2 0 2
4 4 3 1 2 0

where U={0,1,2}. F1 = {0, 4} and F2 = {0, 3} are two U − BG − filters
of X, The union of the U − BG − filters is not a U-BG-filter of X. Since
3, 4 ∈ F1

⋃
F2, but 3 ∗ (3 ∗ 4) = 2 /∈ F1

⋃
F2.

Proposition 3.12. Let X be a U-BG-BH-filter and let {Fi, i ∈ λ} be a
chain of U-BG-filters of X.Then

⋃
i∈λ

Fi is a U-BG-filter of X.

Proof. Let {Fi, i ∈ λ} be a chain of U-BG-filters of X. To prove
⋃
i∈λ

Fi is a

U-BG-filter of X.
(i) If x, y ∈

⋃
i∈λ

Fi, ∀i ∈ λ, then there exist Fj, Fk ∈ {Fi}i∈λ such that x ∈ Fj
and y ∈ Fk. So, either Fj ⊆ Fk or Fk ⊆ Fj. If Fj ⊆ Fk, then x ∈ Fk
and y ∈ Fk, we have y ∗ (y ∗ x) ∈ Fk and x ∗ (x ∗ y) ∈ Fk [since Fk is a
U-BG-filter of X, ∀ i ∈ λ, by definition(3.1)(F1)]. Similarly, if Fk ⊆ Fj. Then
y ∗ (y ∗ x), x ∗ (x ∗ y) ∈

⋃
i∈λ

Fi.

(ii) Let x ∈
⋃
i∈λ

Fi such that x ∗ y = 0, y ∈ U .There exists j ∈ λ such that x ∈

Fj. Hence y ∈ Fj,[Since Fi is a U-BG-filter of X,∀ i ∈ λ, by definition(3.1)(F3)].
Thus y ∈

⋃
i∈λ

Fi. Therefore,
⋃
i∈λ

Fi is a U-BG-filter of X.

Proposition 3.13. Let X and Y be U-BG-BH-algebras and
f : (X, ∗X , 0) −→ (Y, ∗Y , 0Y ) be a BH-homomorphism. Then ker(f) is a U-
BG-filter of X.

Proof. (i) Let x, y ∈ ker(f). Then f(x) = 0Y , f(y) = 0Y , so f(y ∗X (y ∗X
x)) = f(y) ∗Y (f(y) ∗Y f(x) = 0Y . Thus y ∗X (y ∗X x) ∈ ker(f) Similarly,
x ∗X (x ∗X y) ∈ ker(f)
(ii) Let x ∈ ker(f) and y ∈ U. such that x ∗X y = 0X . Then f(x) = 0Y . Now,
f(x ∗X y) = f(x) ∗Y f(y) = f(0X) = 0Y . [By Proposition(2.10)]. So,
0Y ∗Y f(y) = f(y) ∗Y f(y), [by Definition(2.1)(I)], we obtain f(y) = 0Y ,[by
Lemma(2.2)(i)]. Therefore, y ∈ ker(f), [By Remark(2.10)]. Then ker(f) is a
U-BG-filter of X.

Theorem 3.14. Let f : (X, ∗X , 0X) −→ (Y, ∗Y , 0Y ) be a U-BG-BH-monom
orphism, and let F be a U −BG− filter of X,such that f(U) is a BG-algebra
of X. Then f(F ) is a f(U)−BG− filter of Y .
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Proof. Let F be a U-BG-filter of X.
(i) Let x, y ∈ f(F ).Then there exist a, b ∈ F such that x = f(a), y = f(b).
Then y ∗Y (y ∗Y x) = f(b) ∗Y (f(b) ∗Y f(a) = f(b) ∗Y (f(b ∗X a)) = f(b ∗X
(b ∗X a)) ∈ f(F ).[Since b ∗X (b ∗X a) ∈ F, by Definition(3.1)(F1)]. Hence
y ∗Y (y ∗Y x) ∈ f(F ). Similarly, x ∗Y (x ∗Y y) ∈ f(F ).
(ii) Let x ∈ f(F ) such that x ∗Y y = 0Y , y ∈ f(U).Then there exist a ∈ F
and b ∈ U such that x = f(a) and y = f(b). Now, x ∗Y y = f(a) ∗Y f(b) =
f(a ∗X b) = 0Y = f(0X). Then a ∗X b = 0X , [since f is an injective]. Thus,
b ∈ F , [by definition(3.1)(F3)]. So, y = f(b) ∈ f(F ). Therefore, f(F) is a
U-BG-filter of X.

Theorem 3.15. Let f : (X, ∗X , 0X) −→ (Y, ∗Y , 0Y ) be a U-BG-BH-epimor
phism, such that f−1(U) is a BG-algebra of X. If F be a U-BG-filter of Y .
Then f−1(F ) is f−1(U)−BG-filter of X.

Proof. Let F be a U-BG-filter of Y.
(i) Let x, y ∈ f−1(F ). Then f(x), f(y) ∈ F .
So f(y) ∗Y (f(y) ∗Y f(x)) ∈ F ,[since F is a U-BG-filter of Y]. Thus, f(y) ∗Y
(f(y)∗Y f(x)) = f(y∗X (y∗X x)) ∈ F ,[since F is a U-BG-filter of Y]. Therefore,
y ∗X (y ∗X x) ∈ f−1(F ). Similarly, x ∗X (x ∗X y) ∈ f−1(F ).
(ii) Let x ∈ f−1(F ) such that x ∗X y = 0X , y ∈ f−1(U). Then f(x) ∈ F and
f(x ∗X y) = f(x) ∗Y f(y) = f(0X) = 0Y , f(y) ∈ U, Hence f(y) ∈ F . Thus
y ∈ f−1(F ). Therefore, f−1(F ) is a U-BG-filter of X.

Theorem 3.16. . Let X be a U − BG − BH− algebra, N be a normal
subalgebra of X and U/N is a BG-algebra, such that (X/N, ∗′ , [0]N) is a U/N−
BG − BH− algebra. If F is a U-BG-filter of X, then F/N is a U/N −
BG−filter of X/N.

Proof. Let X be a U-BH-BH-algebra, and let F be a U-BG-filter of X. To prove
F/N is a U/N −BG− filter of X/N .
(i) Let [x]N , [y]N ∈ F/N , then [y]N ∗

′
([y]N ∗

′
[x]N) = [y]N ∗

′
[y ∗ x]N ,= [y ∗

(y ∗ x)]N , Hence [y]N ∗
′
([y]N ∗

′
[x]N) ∈ F/N [ Since y ∗ (y ∗ x) ∈ F , F is a

U-BG-filter of X]. Similarly, [x]N ∗
′
([x]N ∗

′
[y]N) ∈ F/N .

(ii) Let [x]N ∈ F/N and [y] ∈ U , [x]N ∗
′
[y]N = [0]N .

Since [x]N ∗
′
[y]N = [0]N , then [x ∗ y]N = [0]N , Hence (x ∗ y) ∗ 0 ∈ N . [By

Definition(2.11)], So x ∗ y ∈ N , then y ∈ [x]N . We obtain [y]N = [x]N , then
[y]N ∈ F/N . Therefore, F/N is a U/N −BG− filter of X/N .

Theorem 3.17. Let {(Xi, ∗, 0i) : i ∈ λ} be a family of Ui−BG−BH−algebras.
Then (

∏
i∈λ

Xi,~, (0i)) is a
∏
i∈λ

Ui −BG−BH−algebra.
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Proof. 1. To prove (
∏
i∈λ

Xi,~, 0Xi
) is a BH-algebra.

(i) Let (xi) ∈
∏
i∈λ

Xi, ∀i ∈ λ, and xi ∈ Xi. Then (xi)~(xi) = (xi~Xi
xi) =

(0Xi
), [Since xi ∗Xi

xi = 0Xi
,∀ i ∈ λ and xi ∈ Xi],

(ii) Let (xi), (yi) ∈
∏
i∈λ

Xi, ∀ i ∈ λ and xi, yi ∈ Xi

such that (xi) ~ (yi) = (0Xi
), and (yi) ~ (xi) = (0Xi

), then (xi ∗Xi
yi) =

(0Xi
), and (yi ∗Xi

xi) = (0Xi
). Then xi ∗Xi

yi = 0Xi
and yi ∗Xi

xi = 0Xi
.

So, xi = yi, ∀ i ∈ λ, xi ∈ Xi. Therefore, (xi) = (yi).

(iii) Let (xi) ∈
∏
i∈λ

Xi, ∀i ∈ λ, and xi ∈ Xi. So, (xi)~(0i) = (xi ∗Xi
0i) =

(xi), [Since xi ∗Xi
0i = xi, ∀ i ∈ λ and xi ∈ Xi, by definition(2.3)(III)].

Therefore, (
∏
i∈λ

Xi,~, (0i)) is a BH-algebra.

2. |
∏
i∈λ

Ui| ≥ 2, [Since |Ui| ≥ 2].

3. To prove
∏
i∈λ

Ui is a BG-algebra. Let (xi) ∈
∏
i∈λ

Ui, ∀ i ∈ λ and xi ∈ Ui.

It is clear that (i) (xi) ~ (xi) = (0i) and (ii) (xi) ~ (0i) = (xi), ∀ i ∈
λ, xi ∈ Xi. Now, (iii) Let (xi), (yi) ∈

∏
i∈λ

Xi, ∀i ∈ λ, xi, yi ∈ Xi, So

((xi) ~ (yi)) ~ ((0i) ~ (yi)) = (xi ∗Xi
yi) ~ (0i ∗Xi

yi) = ((xi ∗Xi
yi) ∗Xi

(0i ∗Xi
yi)) = (xi), [since Ui is a BG-algebra]. So

∏
i∈λ

Ui is a BG-algebra.

Therefore, (
∏
i∈λ

Xi,~, (0i)) is a
∏
i∈λ

Ui −BG−BH−algebra.

Theorem 3.18. Let (
∏
i∈λ

Xi,~, (0Xi
)) is a

∏
i∈λ

Ui − BG − BH−algebra. If

{Fi : i ∈ λ} be a family of Ui − BG−filters of Xi. Then
∏
i∈λ

Fi is a
∏
i∈λ

Ui −

BG− filter of the product algebra
∏
i∈λ

Xi.

Proof. (i) Let x = (xi), y = (yi) ∈
∏
i∈λ

Fi, ∀ xi, yi ∈ Fi, and i ∈ λ,

y ~ (y ~ x) = (yi) ~ ((yi) ~ (xi)) = (yi ∗Xi
(yi ∗Xi

xi)) ∈
∏
i∈λ

Fi, [Since

yi ∗Xi
(yi ∗Xi

xi) ∈ Fi,by Defintion(3.1)(F1)],
(ii) Let (xi) ∈

∏
i∈λ

Fi, and (yi) ∈
∏
i∈λ

Ui such that (xi) ~ (yi) = (0Xi
), ∀i ∈

λ, xi, yi ∈ Xi,

Then (xi ∗Xi
yi) = (0Xi

), yi ∈ Ui,∀ i ∈ λ.
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So xi ∈ Fi, xi ∗ yi = 0i, yi ∈ Ui,∀ i ∈ λ , Hence yi ∈ Fi, [Since Fi is a
Ui−BG−filter of Xi], then (yi) ∈

∏
i∈λ

Fi. Therefore,
∏
i∈λ

Fi is a
∏
i∈λ

Ui−BG−

filter of
∏
i∈λ

Xi.
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