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Abstract

Dark-grown seedlings exhibit skotomorphogenic development. Genetic and molecular evidence indicates that a quartet of
Arabidopsis Phytochrome (phy)-Interacting bHLH Factors (PIF1, 3, 4, and 5) are critically necessary to maintaining this
developmental state and that light activation of phy induces a switch to photomorphogenic development by inducing
rapid degradation of the PIFs. Here, using integrated ChIP–seq and RNA–seq analyses, we have identified genes that are
direct targets of PIF3 transcriptional regulation, exerted by sequence-specific binding to G-box (CACGTG) or PBE-box
(CACATG) motifs in the target promoters genome-wide. In addition, expression analysis of selected genes in this set, in all
triple pif-mutant combinations, provides evidence that the PIF quartet members collaborate to generate an expression
pattern that is the product of a mosaic of differential transcriptional responsiveness of individual genes to the different PIFs
and of differential regulatory activity of individual PIFs toward the different genes. Together with prior evidence that all four
PIFs can bind to G-boxes, the data suggest that this collective activity may be exerted via shared occupancy of binding sites
in target promoters.
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Introduction

A key component of the successful colonization of land by

terrestrial flowering plants was the evolution of a developmental

strategy termed skotomorphogenesis (etiolated growth). This

strategy enabled post-germinative seedlings emerging from buried

seed to grow heterotrophically, on seed reserves, rapidly upwards

through the subterranean darkness to the soil surface. Coupled

with this was the evolution of a photosensory mechanism to trigger

a switch to autotrophic, photomorphogenic (deetiolated) develop-

ment upon emergence into sunlight.

Genetic evidence indicates that a small subfamily of basic helix-

loop-helix (bHLH) transcription factors, termed PIFs (for Phyto-

chrome (phy)-Interacting Factors) are centrally critical to the

promotion of such skotomorphogenic development in dark-grown

seedlings [1]. A quadruple pif mutant (pifq), lacking PIF-family

members PIF1, PIF3, PIF4 and PIF5 (termed the PIF quartet),

displays morphogenic development in total darkness that strongly

phenocopies that of normal light-grown seedlings [2,3]. This

observation establishes that these factors act constitutively to promote

skotomorphogenic development and that their absence induces the

switch to photomorphogenic development. All four quartet members

have been shown individually to bind preferentially to a core G-box

DNA-sequence motif (CACGTG) (a variant of the canonical E-box

motif (CANNTG)) [4–9], and to function as transcriptional activators

in transfection or heterologous systems [4–7,10]. Because monogenic

mutants at each of these loci have no, or minimal, visible effects on

skotomorphogenesis, and the various double and triple pif-mutant

combinations progressively exhibit increasingly photomorphogenic

phenotypes in darkness, it appears that the PIF quartet members act

with partially additive or overlapping redundancy to drive the

skotomorphogenic pathway [2,3,11–13].
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The phy family of sensory photoreceptors (especially phyA and

phyB) has a central role in inducing the switch from skotomor-

phogenic to photomorphogenic development (deetiolation) in

response to initial exposure of dark-grown seedlings to light

[1,14,15]. The existing evidence indicates that this is achieved in

large part by rapid phy-triggered degradation of the PIF proteins.

The mechanism underlying this process involves the rapid, light-

induced translocation of the activated (Pfr) conformer of the phy

molecule from the cytoplasm into the nucleus, where it physically

interacts with PIF-quartet members. This interaction induces

phosphorylation of the PIF proteins which in turn triggers

ubiquitylation and proteolytic degradation of the transcription

factors (half-lives of 5–20 min) via the proteasome system. The

altered transcriptional landscape resulting from the consequent

robust reduction in steady-state abundance of these factors is the

major driving force in the switch from heterotrophic to

autotrophic development inherent in the deetiolation process.

A limited number of transcriptome analyses, using Affymetrix

ATH1 microarrays, aimed at identifying genes regulated by the

phy-PIF signaling pathway during deetiolation have been reported

[3,12,16–19]. The data show that 80% of the genes that display

altered expression in the pifq mutant in the dark are normally

altered by prolonged light in fully deetiolated wild-type (WT)

seedlings [17], but that only a relatively small fraction of these are

misexpressed in dark-grown pif1 [19], pif3 [16–18] and pif4pif5

mutants [12]. These results affirm the central collective regulatory

function of these four PIFs in regulating the overall transcriptional

network that drives the developmental switch from skotomorpho-

genesis to photomorphogenesis, and provide initial indications of

functional redundancy at the gene expression level. These genes

could be either direct or indirect targets of PIF transcriptional

regulatory activity [20]. Identification of those genes that respond

rapidly (within 1 h) to initial light exposure has defined a subset of

PIF-regulated genes that are likely to be enriched for loci that are

directly transcriptionally regulated by the PIF-quartet proteins

[17]. PIF-regulated genes that conversely respond rapidly to

vegetative shade in fully-green, light-grown plants have also been

identified by microarray-based expression profiling [11,21]. It is

notable that these early-response genes are enriched for transcrip-

tion-factor-encoding loci, suggesting a potential hierarchal net-

work that drives a transcriptional cascade. However, rapid

responsiveness alone obviously does not establish that transcrip-

tional regulation is direct.

The advent of ChIP-chip and ChIP-seq technology has

provided the opportunity to identify genes that contain binding

sites for transcription factors of interest, on a genome-wide scale

[20,22,23]. When combined with full transcriptome analysis, the

data provide identification of genes that are direct targets of

transcriptional regulation by the factor(s) under study. A number

of such studies have recently been reported for a diversity of

factors in Arabidopsis, using either ChIP-chip or ChIP-seq analysis

of factor binding sites, coupled predominantly with Affymetrix

ATH1 microarrays (representing about 80% of the protein-coding

genes in the genome) for expression analysis [21,23–29]. These

data have begun to provide insight into the complexity of the

transcriptional networks that coordinate a variety of the funda-

mental processes underlying plant growth and development.

Despite these advances, the use of the ATH1 microarray for

expression analysis in many of these studies means that important

expression changes in genes not present on this array might have

been missed. In addition, the question of whether, and to what

extent, closely related transcription-factor family members, such as

the PIF quartet, with apparently shared DNA-target-sequence

specificity, contribute toward the transcriptional regulation of

common target genes does not appear to have been addressed in

many existing studies of eukaryotic systems [27,30–34], although a

recent report by Hornitschek et al shows differential binding of

recombinant PIF4 and PIF5 to various E-box variants in vitro

using protein-binding microarrays, as well as shared binding in vivo

to four selected promoters using ChIP-PCR analysis [21]. Here,

using ChIP-seq analysis, we have identified PIF3-binding sites,

genome wide, and, in parallel, using RNA-seq analysis of selected

pif-mutant lines, we have defined the genes regulated by PIF3,

genome-wide, in dark-grown seedlings. By merging these datasets,

we have identified those genes whose expression is, at least

partially, directly regulated by promoter-bound PIF3. In addition,

by profiling the expression of a selected subset of these direct PIF3-

targets in multiple additional pif-mutant combinations, we have

addressed the question of whether PIF1, 3, 4 and 5 display

qualitative and/or quantitative functional divergence in regulating

shared target genes.

Results

ChIP–seq–based identification of PIF3-binding sites
Two-day-old dark-grown wild-type (WT) and MYC-epitope-

tagged-PIF3 (P3M)-expressing, pif3-3 null-mutant seedlings were

used for ChIP-seq analysis. DNA prepared from MYC-antibody-

generated immunoprecipitates from four independent biological

replicates of each genotype was subjected to high-throughput

sequencing. Statistically-significant binding peaks were defined by

comparing the parallel P3M and WT ChIP samples within each

replicate using the MACS algorithm [35]. Replicate-specific peaks

(Table S1) were defined as reproducible if they were identified at

the same genomic location in two or more biological replicates

(overlapping Venn sectors in Figure 1A; also Table S2). For each

reproducible peak, we assigned a common summit as the mean of

the individual replicate-specific summits.

This analysis identified 1064 reproducible peaks which form our

‘‘high-confidence’’ set of PIF3-binding sites (Table S2). These sites

Author Summary

An important issue in understanding mechanisms of
eukaryotic transcriptional regulation is how members of
large transcription-factor families, with conserved DNA–
binding domains (such as the 162-member Arabidopsis
bHLH family), discriminate between target genes. Howev-
er, the specific question of whether, and to what extent,
closely related sub-family members, with potential over-
lapping functional redundancy (like the quartet of Phyto-
chrome (phy)-Interacting bHLH transcription Factors (PIF1,
3, 4, and 5) studied here), share regulation of target genes
through shared binding to promoter-localized consensus
motifs does not appear to have been widely investigated.
Here, using ChIP–seq analysis, we have identified genes
that bind PIF3 to conserved, sequence-specific sites in their
promoters; and, using RNA–seq, we have identified those
genes displaying altered expression in various pif mutants.
Integration of these data identifies those genes that are
likely direct targets of transcriptional regulation by PIF3.
Our data suggest that the PIF quartet members share
directly in transcriptional activation of numerous target
genes, potentially via redundant promoter occupancy, in a
manner that varies quantitatively from gene to gene. This
finding suggests that these PIFs function collectively as a
signaling hub, selectively partitioning common upstream
signals from light-activated phys at the transcriptional-
network interface.

PIFs Provide a Transcriptional Hub
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Figure 1. Genome-wide identification of PIF3-binding sites and motifs. (A) Venn diagram depicting total numbers (parentheses) and
reproducible presence (overlapping sectors) of statistically significant PIF3-binding peaks in ChIP-seq analysis of four biological replicates (Venn ovals)
of dark-grown seedlings. (B) Relative binding-peak distribution across genomic regions. (C) MEME motif search identifies two dominant PIF3-binding

PIFs Provide a Transcriptional Hub
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are evenly distributed on the five chromosomes and 89% are

located in intergenic regions (Figure 1B). In ChIP-qPCR

validation assays, all but 1 of the 38 tested regions exhibited

strong binding enrichment in the P3M samples compared to the

WT controls (Figure S1), indicating a low false positive rate for our

ChIP-seq procedure.

G-box and PBE-box motifs dominate PIF3-binding DNA
sequences

Using the MEME program [36], we performed de novo motif

discovery on the +/2100 bp regions surrounding the 1064 ‘‘high-

confidence’’ PIF3 binding-peak summits described above. Two E-

box (CANNTG) variants were identified as statistically overrep-

resented motifs within these PIF3-binding regions (Figure 1C).

The CACGTG (‘G-box’) variant is well-established as a preferred

PIF-binding motif [4–9]. By contrast, the CACATG variant is

previously undescribed as a PIF3-binding motif, although PIF1

[37] and, recently, PIF4 [21] have been reported to bind. We

conclude that this variant is a strong candidate for being a general

alternative binding motif for PIF3 across the genome, and define

it, therefore, as the PIF-binding E-box (PBE-box). The relative

distribution of these two motifs across the 1064 PIF3 binding-sites

is summarized in Figure 1D. A majority (73%) of the sites contain

one or both motifs (G-box 50% and PBE-box 36%, with 13%

overlap) within the 200-bp window.

A broader analysis shows that 64% of the G-box and 30% of the

PBE-box motifs present in the 2 kb windows surrounding the

PIF3-binding summits cluster within the designated 200-bp

binding sites (Figure 1E). Similarly, both motifs are strongly

enriched in these 200-bp windows compared to random 200-bp

genome segments, and this enrichment increases toward the PIF3-

binding summit (Figure 1F). These data establish the highly

significant coincidence between PIF3 and these two specific cis-

elements.

To examine the potential direct interaction of PIF3 with the

newly-identified PBE-box compared to that of the G-box, we

performed DNA-Protein-Interaction (DPI)-ELISA [38]. We tested

the binding of PIF3 to several G-box- (PIL1, PHYB, and RGA1) or

PBE-box- (IAA2, IBH1, and AT4G30410) containing probes

generated from various genomic PIF3-binding sites identified in

the ChIP-seq analysis. Figure 1G shows that recombinant PIF3

binds sequence-specifically to all G-box- and PBE-box-containing

probes, although the apparent affinity for the G-box seems overall

to be higher than for the E-box. An EMSA analysis showed similar

results (Figure S2). These in vitro binding-assay data indicate that

the coincidence of PIF3-binding sites with the G-box or PBE-box

motif in the ChIP-seq assay likely results from their direct

interaction in vivo, and that the PBE-box is indeed another

sequence-specific PIF-binding, E-box variant genome wide.

Because all of the PIF3-binding sites tested by ChIP-qPCR in

Figure S1 contain coincident G- or PBE-box motifs, these data

validate the in vivo-binding of PIF3 to these motifs.

The binding of PIF3 to the ATHB-2 probe, which contains one

G-box and one PBE-box, provides an interesting insight. Neither

the competitor mutated in both motifs (Figure 1G; also Figure S2),

nor the competitor mutated only in the G-box motif (Figure S3)

displayed competitive activity, whereas the probe mutated only in

the PBE-box motif showed competitive efficiency similar to that of

the WT sequence (Figure S2). These findings suggest that PIF3

may have differential binding affinity toward these two motifs in

specific genomic contexts.

Identification of genes associated with PIF3-binding sites
Although all ChIP-defined transcription factor binding sites

may prove to be functionally significant, we have chosen here to

focus on identifying those genes displaying motif-coincident PIF3-

binding sites located in conventional promoter regions (defined

here as ‘‘PIF3-bound genes’’). Initially, from the 1064 binding sites

defined above, we identified 709 sites that are both intergenic and

G- and/or PBE-box-coincident (Table S2). For these 709 sites, we

defined PIF3-bound genes as having a binding site in the 59

flanking DNA, within 5 kb of the transcription start site (TSS), in

the absence of intervening genes. This analysis identified 596

PIF3-binding sites, with 828 associated genes, where some sites are

associated with two genes on opposite strands. Of these genes,

88% have PIF3-binding sites within 3 kb of TSS, whereas the

remaining 12% have sites between 3 and 5 kb upstream (Table

S3). These 828 genes thus constitute a set of PIF3-bound genes

whose transcription is potentially directly regulated by PIF3.

To provide genome-wide visualization of the ChIP-seq analysis,

we developed a platform using the Integrated Genome Browser

[39]. Figure 2A shows the chromosomal regions around PIL1 and

ATHB-2, as examples. The chromosomal region surrounding the

PIL1 gene shows a single PIF3-binding peak that is coincident with

three G-box motifs located in the PIL1 promoter region. ATHB-2

is somewhat unusual in that it displays five specific PIF3-binding

peaks in its extensive 59-upstream region, each coincident with 1 to

3 G-box motifs (Figure 2A). ChIP-qPCR analysis scanning across

the PIL1 genomic region provides robust validation of the ChIP-

seq data for this gene (Figure 2B).

Definition of PIF3 contribution to the transcriptional
pattern collectively regulated by the PIF-quartet during
skotomorphogenic development

To identify the genes regulated by PIF3, genome-wide, in the

promotion of skotomorphogenic development, we performed 39-

end-capture directional RNA-seq analysis, comparing the expression

profiles of 2-d dark-grown WT, pif3, pif1pif4pif5 (pif145) and

pif1pif3pif4pif5 (pifq) Arabidopsis seedlings. Genes displaying Statisti-

cally-Significant Two-Fold (SSTF) expression changes in the three

mutant genotypes compared to the WT and each other were

identified as being regulated by the relevant mutated PIF(s) (Figure 3;

listed in Tables S4, S5, S6, S7, S8). The degree of overlap between

SSTF genes identified in these comparisons is depicted in the Venn

diagrams in Figure 3B, 3C and 3D. We defined a combined total of

345 genes in the pif3/WT and pifq/pif145 gene-sets as the composite

PIF3-regulated gene-set (Table S9). Similarly, a combined total of

motifs, defined as G-box (CACGTG) and PBE-box (CACATG) motifs. (D) Percentage of PIF3 binding sites containing designated motifs. Other E-box:
Variants of E-box (CANNTG) motif other than G- or PBE-box. Unknown: Unknown and/or non-statistically-overrepresented motif. (E) Distribution of
the G- and PBE-box motifs in the 1 kb regions surrounding the PIF3-binding peak-summits. (F) G- and PBE-box-motif coincidence with PIF3-binding
peaks (% within 201, 101, and 51 bp centered at the peak-summits) is significantly higher than in other random genomic regions of the same size.
Internal numbers indicate the relative fold motif-enrichment at PIF3 binding-sites. Error bars represent the standard deviation of 100 random
simulations. (G) DPI-ELISA assays of in vitro binding of recombinant GST-PIF3 to the G- and PBE-box motifs. Binding activity (Relative Absorbance) for
each DNA probe is expressed as a percentage of each reaction relative to GST-PIF3 binding to the PIL1a WT probe. Data represent the mean of
independent duplicates +/2 SEM. WT: wild-type competitor probes. mut: competitor probes mutated at the G-box and PBE-box motifs. GST: GST
negative-control binding to the biotinylated WT probes.
doi:10.1371/journal.pgen.1003244.g001

PIFs Provide a Transcriptional Hub
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Figure 2. Compiled ChIP–seq and RNA–seq data identify PIL1 and ATHB2 as direct targets of PIF3 transcriptional regulation. (A)
Visualization of ChIP-seq and RNA-seq data in the genomic regions encompassing two representative genes, PIL1 and ATHB-2. The ChIP and RNA
tracks show the pile-up distribution of the combined raw reads from four biological replicates of ChIP-seq data and three replicates of RNA-seq data,
respectively. P3M- and WT-ChIP: DNA immunoprecipitated from PIF3-Myc-expressing and from wild-type seedlings, respectively. WT-, pif3-, pif145-
and pifq-RNA: RNA from genotypes used for expression analysis. Binding Site: 201 bp defined as the PIF3-binding site. Summit: predicted PIF3-
binding center defined from the binding-peak maximum. G- and PBE-box: Vertical lines indicate motif positions. (B) ChIP-qPCR verification of specific
PIF3 binding to the G-box-located promoter region of PIL1. The schematic diagram illustrates the genomic region around the PIL1 locus. The short

PIFs Provide a Transcriptional Hub
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1454 genes in the pif145/WT and pifq/pif3 gene-sets were defined as

the composite PIF1/4/5-trio regulated gene-set (Table S10).

Comparison of these composite gene-sets is displayed in Figure 3D.

The data indicate that 254 (74%) PIF3-regulated genes are also

redundantly transcriptionally regulated by one or more of the

other three PIF-quartet proteins. Conversely, 1740 (86%) PIF-

quartet-regulated genes show no significant PIF3 dependence

(Figure 3B), whereas 918 (45%) do display PIF1/4/5 regulation

(Figure 3D), indicating that one or more of the other PIF-quartet

members function non-redundantly with PIF3 in regulating the

expression of many target genes. The general robustness of our

genome-wide RNA-seq expression profiling is demonstrated by

the extensive RT-qPCR validation data presented in Figure S3.

Definition of genes that are likely direct targets of
transcriptional regulation by PIF3

To identify the genes that both physically bind PIF3 in their

promoters, in a G-box- or PBE-box-coincident manner, and

display PIF-regulated expression (defined here as ‘‘direct-target

genes’’), we merged our ChIP-seq and RNA-seq data. This

permitted gene-by-gene visualization of the PIF3-binding peaks

and PIF-dependent transcription, genome-wide, as shown for PIL1

and ATHB2 in Figure 2A. The expression data for these two genes

show a clear difference in transcript levels between the WT and

pifq mutant, demonstrating the robust dependence of full

expression on the presence of the PIF-quartet. Comparison of

the expression peaks for the pif145 and pifq mutants also suggests

that PIF3 acts in the absence of the other three quartet members

to promote a moderate increase in transcript levels. Overall, the

combined PIF-regulated expression-patterns and promoter-locat-

ed PIF3-binding sites displayed by these two genes render them

likely direct-targets of transcriptional regulation by PIF3 and one

or more other quartet members in promoting skotomorphogenic

development.

The Venn diagrams in Figure 4 show the genome-wide overlap

of the genes identified independently as displaying PIF-quartet-

and/or PIF3-dependent expression in a SSTF manner, with those

exhibiting promoter-located, motif-coincident PIF3-binding sites

(Figure 4A, Classes X, Y and Z; listed in Table S11). By these

criteria, a total of 22 genes (Classes X and Z) were identified as

robustly-likely, direct-target genes of autonomous-PIF3 transcrip-

tional regulation. Of these, 21 genes (19 PIF3-induced; 2 PIF3-

repressed) also display collective PIF-quartet regulation (Class Z).

The 19 PIF3-induced Z-Class genes are listed in Table 1. The bar

graphs in Figure 4B and 4C portray the mean expression level

(relative to WT) of all the genes in each class, for each pif genotype.

The quantitatively robust responsiveness of the PIF3-bound genes

to the presence of PIF3 in the pif145 mutant background is evident

bars with numbers show 12 specific qPCR products. The black and white rectangular boxes represent CDS and UTR, respectively. Boxes labeled ‘G’
indicate the approximate locations of three G-box motifs in the PIL1 promoter. The relative enrichment level is represented by the percentage of co-
immunoprecipitated DNA to the input control in the P3M and WT samples. Data are represented as the mean of biological triplicates +/2 SEM. 18S:
18S rRNA as internal control.
doi:10.1371/journal.pgen.1003244.g002

Figure 3. RNA–seq analysis of selected pif-mutants identifies PIF-regulated genes genome wide. (A) Hierarchical clustering of
differentially expressed genes by fold-change in expression (log2 scale), in the five pairwise genotypic comparisons indicated (pif3/WT, pif145/WT.
pifq/WT, pifq/pif145 and pifq/pif3). Data shown are for the genes identified here as displaying Statistically-Significant, Two-Fold (SSTF) differences in
any pairwise comparison. (B and C) Venn diagrams depicting total gene numbers (parentheses) and genes in common (overlapping sectors) that
display SSTF differences in expression in the pairwise genotypic comparisons shown (Top Venn). Separation of genes into down-regulated (pif-
DOWN; Middle Venn) and up-regulated (pif-UP; Bottom Venn) is based on the direction of the change in expression displayed in each pairwise
comparison. (D) Venn diagrams summarizing the overlap between all identified PIF-quartet-, PIF1/4/5-trio- and PIF3-regulated genes. PIF3-regulated
genes are defined as the combined total of the non-overlapping genes in the pif3/WT and pifq/pif145 sets in (B). PIF1/4/5-trio-regulated genes are
defined as the combined total of the non-overlapping genes in pif145/WT and pifq/pif3 sets in (C). Separation of genes into PIF-induced (PIF-Ind;
Middle Venn) and PIF-repressed (PIF-Rep; Bottom Venn) is based on the deduced action of the PIF proteins when present in WT seedlings.
doi:10.1371/journal.pgen.1003244.g003

PIFs Provide a Transcriptional Hub
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from these data (Class Z-associated bar graphs). This robust PIF3-

responsiveness was validated using RT-qPCR for selected members

of the 19 PIF3-induced, Z-Class gene-set, having a range of

quantitative dependence on this bHLH factor (Figure S3A).

A striking feature of our data is the relatively large number of

PIF-quartet-regulated genes (107 total genes; 88 PIF-induced and

19 PIF-repressed) that display promoter-located, PIF3-binding

sites, but lack evidence of SSTF-level PIF3 regulation in our RNA-

seq analysis (Figure 4, Class Y; also Table S11). Nevertheless, the

bar graphs of the mean expression of these genes suggest a

tendency toward a consistent difference in expression between the

pif145 and pifq mutants, across the gene-set. In addition, combined

analysis of the full set of PIF-induced, PIF3-bound genes (Classes Y

and Z together) shows that there is a reciprocal continuum in the

magnitude of the relative contributions of PIF3 and the PIF1/4/5-

trio to the collective activity of the PIF quartet in transcriptionally

activating these genes (Figure S4). To more closely examine the

PIF3 contribution to the total PIF-quartet activity in the Y-Class

genes, we therefore arrayed these genes by the pif145/pifq fold-

change value and assayed the relative expression levels in 20

selected PIF-induced loci by RT-qPCR. Figure S3B shows that the

17 genes in this group with fold-changes .1.5 by the RNA-seq

analysis, all exhibit statistically-significant (Student’s t-test,

P,0.05), PIF3-promoted expression increases in the pif145 mutant

compared to the pifq mutant by RT-qPCR. This suggests that a

subset of Y-Class genes may represent additional bona fide

autonomously-PIF3-regulated genes that are below the resolution

of the SSTF criteria we imposed on our RNA-seq analysis. We

have therefore designated these 17 as Class YZ1.5 genes, having

moderate (.1.5-fold), but statistically significant, regulation by

PIF3 (Table 1). The evidence indicates, therefore, that a combined

total of at least 38 YZ1.5- and Z-Class genes are direct targets of

moderate to robust transcriptional regulation by promoter-bound

PIF3. Because an additional 34 of the 88 Y-Class genes also

display .1.5-fold PIF3-induced expression (Figure S3B and Table

S11), it is possible that the number of direct targets of partial PIF3

transcriptional regulation is yet larger.

The W-class genes are those that display promoter-localized, G-

or PBE-box-coincident PIF3-binding peaks, but no differential

expression between the pifq mutant and wild type (Figure 4A). This

observation is consistent with data from a variety of organisms that

have shown that transcription factors vary greatly in their number

of genomic binding sites, and that binding events can vastly exceed

the number of known or possible direct gene targets [40]. The

reasons for this phenomenon here are unclear but could include

functional redundancy with other factors, including other PIF

proteins. Consistent with this possibility, a subset of 41 of the total

699 W-class genes exhibit rapid light responsiveness [17] upon

initial exposure (Table S12).

Definition of genes that are potential direct targets of
transcriptional regulation by PIF1, 4, and/or 5, as well as
PIF3

The reciprocal continuum in relative PIF3 and PIF1/4/5-trio

contributions to the collective PIF-quartet transcriptional activation

of PIF-induced, Y- and Z-class genes referred to above (Figure S4),

indicates that PIF1, 4 and/or 5 contribute substantially to the

regulation of these PIF3-bound genes. To identify the individual

genes in this set displaying a significant PIF1/4/5 contribution, we

compared the Y- and Z-class genes (Table S11) with those defined

above as PIF1/4/5-regulated (Figure 3D; also Table S10). Overall,

92 (72%) of the 128 combined Y- and Z-class genes exhibit

regulation by PIF1, 4 and/or 5 (Table S11), as shown by significant

differences in the pif145/WT and/or pifq/pif3 comparisons. More

notably, all 38 PIF3-induced direct-target genes (Class YZ1.5 and Z)

are also PIF1/4/5-induced (Table 1). Because all four PIFs have

been shown to bind to the G-box motif in sequence-specific fashion

[4–9], it appears probable that these PIF-quartet-regulated genes,

displaying promoter-located PIF3-binding sites (Figure 4; also Table

S11), may be directly regulated by one or more of the other quartet

members, in addition to, or instead of, PIF3.

Transcription-factor genes are the dominant targets of
direct transcriptional regulation by the PIFs

Categorization of the YZ-class genes by the known or predicted

functions of their encoded products reveals substantial enrichment

in a diversity of transcription-factor-encoding genes (Table 1; also

Figure S5 and Table S11), consistent with the concept that these

multiple direct targets of the PIF quartet function at the apex of a

primary transcriptional-cascade to regulate the downstream

transcriptional network. It is also notable, however, that a

considerable number of the YZ-class genes that have other

cellular functions are also apparent direct targets of transcriptional

regulation by the PIFs, including two non-protein-encoding genes

of unknown function (Table 1).

Definition of light-regulated direct-target genes of PIF3
Previously, by microarray profiling, we identified a subset of

genes (designated Class 7) that, in dark-grown seedlings, exhibit a

PIF-quartet-dependent expression pattern, that is rapidly reversed

(within 1 h) upon initial exposure to phy-activating R light [17].

Of the 24 rapidly light-repressed Class 7 genes displaying

promoter-localized, G- or PBE-box-coincident PIF3-binding

peaks, 21 (88%) are either Class YZ1.5 or Z genes here

(Table 1). These genes are thus identified as a subset whose

expression is directly promoted, at least partially, by PIF3

transcriptional activation in the dark, and is rapidly reduced in

the light, at least in part, by photoactivated-phyB-induced PIF3

degradation. It is notable that 9 of these genes (43%) encode

transcription factors (Table 1), indicative of being master

regulators at the apex of the downstream transcriptional cascade

controlled by the phy signaling pathway.

In striking contrast to the light-repressed Class 7 genes, only 7 of

the 115 rapidly light-induced Class 7 genes (6%) [17] display PIF3-

binding peaks that are coincident with a G-box or PBE-box, and

of these only 2 genes (,2%) (PSY and KAI2) exhibit derepression

here in the dark-grown pifq mutant. No individual PIF3

contribution to this repression was detectable here. Collectively,

these data indicate that PIF3 acts predominantly, if not

exclusively, to activate the expression of direct-target genes in

dark-grown seedlings. Conversely, the 94% (108/115) of light-

induced Class 7 genes that do not display G- or PBE-box

coincident PIF3-binding peaks, might suggest that one or more of

the proposed direct targets of the PIF quartet (Table 1) can act as

key repressor(s) that regulate a diverse set of light-induced genes.

Recently, we defined a small core set of 14 Class 7 PIF-quartet-

regulated genes (called M-Class genes) that display rapid,

reciprocal, transcriptional responsiveness to light and vegetative

shade in dark-grown and light-grown seedlings, respectively [11].

Our present analysis shows that 11 (79%) of these M-Class genes

are identical to those identified here as dual Class 7 and YZ1.5-/

Z-Class genes (Table 1), indicating that they are likely direct

targets of PIF3 regulation, not only during skotomorphogenesis

and deetiolation, but also subsequently, on a continuing basis,

through juvenile vegetative development. The correlated PIF3-

binding and PIF-regulated transcriptional behavior of several of

these M-Class genes, determined by merging the ChIP-seq and

RNA-seq data, is depicted in Figure S6.

PIFs Provide a Transcriptional Hub
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Figure 4. Merging of ChIP–seq and RNA–seq data identifies apparent direct targets of PIF3 transcriptional regulation. (A) Venn
diagrams showing the overlap of genes displaying promoter-localized, G- or PBE-box-coincident, PIF3-binding peaks (PIF3-bound genes), with those
displaying PIF-quartet- and/or PIF3-regulated expression (as defined in Figure 3D). This comparison defines seven classes of genes corresponding to
the diagram sectors (circled red letters). The number of genes in each class is indicated. (B and C) Genes indicated in (A) divided into PIF-induced (B)
and PIF-repressed (C) sets based on the direction of the transcriptional response elicited by the designated PIFs in dark-grown WT seedlings. The
average fold-change in expression of all genes in each class relative to WT (set at unity) is shown in the bar graphs. Error bars represent the standard
error for the genes averaged in each class. The percentage indicates the relative contribution of PIF3 to the total PIF-regulated expression in each
class, defined by comparing pif145 with pifq.
doi:10.1371/journal.pgen.1003244.g004
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Individual PIF-quartet members display quantitatively
differential regulation of different direct-target genes

Because our data indicate that the contribution of PIF3 to the

total level of expression collectively regulated by the PIF-quartet is

quantitatively variable between genes (Figure 2A; Figure 4B, 4C;

Figures S3 and S4), we wished to determine whether the other

members of the PIF-quartet display a similarly variable pattern of

regulation. For this purpose, we assayed the expression by RT-

qPCR of a selected set of apparently PIF3 direct-target genes

(Classes Z and YZ1.5), in the four different pif triple mutants

compared to the pifq mutant and WT (Figure 5A). The relative

autonomous contribution of each individual PIF (in the absence of

the other three quartet members) to the total, collective PIF-

quartet-supported expression was calculated as a percentage of the

total difference in expression between the WT and pifq mutant, for

each separate gene. The data reveal a striking diversity of relative

contributions, both between the individual PIFs, and between

genes for any individual PIF, in two-dimensional-matrix fashion

(Figure 5B). Particularly notable is the dominant role played by

PIF1 in promoting the expression of the majority of these genes.

On the other hand, PIF3 contributes strongly to ARF18, SNRK2.5

and BBX28 expression, PIF4 strongly activates ST2A and ATHB-2,

PIF5 contributes actively to AT5G02580, ATHB-2 and XTR7

expression, while all four PIFs contribute substantially to IAA19

transcription. Because all these tested genes are prospective direct-

target genes of multiple PIF-quartet members, our findings suggest

that there is an intricate combinatorial network, in which the

individual PIF-quartet factors collaborate to transcriptionally

regulate an array of direct-target genes, through potentially

common DNA binding sites, with quantitatively differential

regulatory activity.

Comparison of our data with recently published ChIP-seq-

identified PIF4- and PIF5-binding sites [21,24] supports this

conclusion (Figure S7). Although the three studies were performed

under contrasting experimental conditions, our analysis shows that

82% of genes with promoter-located, G- or PBE-box-associated

PIF3-binding peaks identified here, also display PIF4- and/or

PIF5-binding peaks (Figure S7A). Perhaps more striking, 89% of

the 128 PIF3-binding, PIF-quartet-regulated genes identified here

(Y- and Z-class genes in Figure 4A), are also bound by PIF4 and or

PIF5, with 52% being bound by all three PIFs (Figure S7B; Table

S11).

One possible mechanistic basis for the differential control of

shared target genes by the individual PIF-quartet members

described above (Figure 5) is that each PIF transcription factor

has a different spatial expression pattern across the plant. To

examine this possibility, we expressed pPIF:GUS fusions for each of

the PIF genes transgenically in Arabidopsis seedlings, and assayed

the distribution of GUS expression histochemically. The data

show that all four PIF promoters support expression broadly

throughout the seedling shoot tissue, with largely similar distribu-

tion patterns between the quartet members, within the resolution

of this procedure (Figure 6A–6D).

In principle, differences in absolute expression levels among the

PIF-quartet members could also be a fundamental determinant of

differences in PIF-promoted expression of target genes (Figure 5).

However, this does not appear to be the case here. Examination of

the RNA-seq profiles, and independent RT-qPCR analyses, of

PIF1, PIF3, PIF4 and PIF5 expression, shows that, while there are

marked differences in expression between these genes in wild-type

seedlings (Figure 6F), these are not strongly correlated with the

respective patterns of target-gene expression (Figure 5). In parti-

cular, PIF1 and PIF3 display expression levels that are robustly

converse to their respective general levels of transcriptional

activation. Similarly, and more importantly, although the expres-

sion levels of PIF4 and PIF5 are significantly elevated in the relevant

triple mutant compared to wild-type (Figure 6G), these differences

also do not correlate with the overall differential expression patterns

of the target genes. While these elevated levels could indicate that

the computation in Figure 5B overestimates the normal, relative

contributions of these two PIFs to the collective PIF-quartet activity,

displayed when all four PIFs are present, they do not account for the

apparent dominance of PIF1 or the diversity of response-patterns

between the genes.

Taken together, these results suggest that the sometimes

strikingly different quantitative contributions of the individual

PIFs to the expression of a given target gene appears unlikely to be

primarily due to either differences in transcriptionally-driven PIF

abundance or differences in spatially-determined abundance of the

PIF-quartet-members. It appears more likely that these differences

are due to intrinsic differential activities of the individual PIFs in

the context of the individual target-gene promoters. In addition,

because the GUS expression pattern driven by the CaMV 35S

promoter (Figure 6E) overlaps substantially with that driven by the

PIF promoters (Figure 6A–6D), it seems reasonable to expect that

the majority of PIF3-binding sites detected by ChIP-seq analysis

here, using 35S-driven PIF3-Myc expression, will reflect sites that

are normally available to PIF3 generated by endogenous PIF3

promoter activity.

The G-box motifs in the PIL1 promoter are functionally
necessary for PIF-quartet promoted expression

The robust binding of PIF3 to the G-box-containing region of

the PIL1 promoter detected by ChIP-seq analysis (Figure 2) and in

vitro assay (Figure 1G and Figure S2), and the partial autonomous

promotion of PIL1 expression by PIF3 observed by RNA-seq

analysis (Figure 2A, Figure 5, and Figure S3A), provides strong

evidence that PIL1 is a direct target of PIF3 transcriptional

regulation via physical interaction of the bHLH factor with these

cis-elements. Conversely, because the non-PIF3 quartet members

contribute robustly to the collective PIF-quartet-dependent

expression of PIL1 (Figure 2A and Figure 5), and given that these

non-PIF3 members also bind selectively to G-box motifs [4–9], it

might be predicted that PIF1, 4 and/or 5 transcriptional activation

of PIL1 will, like PIF3, be exerted through interaction with the G-

boxes in the PIL1 promoter [5,6]. To examine this prediction, we

tested the functional necessity of these G-box motifs to PIL1

expression using reporter constructs in transgenic seedlings. The

data show that activation of the PIL1 promoter requires both the

presence of one or more of the PIF quartet and one or more of the

G-boxes (Figure 5C), indicating that the G-box elements are the

major, if not sole, targets of PIF-quartet transcriptional activation

activity. By contrast, it is notable that, although a recent report

shows that PIF7 also binds to the G-box region of the PIL1

promoter in a manner that is functionally important for shade-

induced expression of this gene in light-grown seedlings [41], the

extremely low residual levels of PIL1 expression in dark-grown pifq

seedlings compared to wild-type (Figure 2A and Figure 5A)

indicate that PIF7 has minimal, if any, contribution under these

conditions. Together, the evidence suggests that, to the extent that

the PIF-quartet members share transcriptional activation of PIL1

(Figure 5A and 5B), they do so by sharing the G-box motifs as

interaction sites. This conclusion is consistent with the demon-

stration that PIF3 binds to all three G-box motifs in the PIL1-

promoter cluster, both in vivo (Figure 2B) and in vitro (Figure 1G

and Figure S2). By extrapolation, the other Y- and Z-Class, PIF-

quartet-regulated genes, established here as being direct-targets of

PIF3 transcriptional regulation through G- or PBE-box binding

PIFs Provide a Transcriptional Hub
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Figure 5. Differential regulation of PIF3 direct-target genes by individual PIF-quartet proteins. (A) Individual PIF-quartet members
display diverse patterns of shared regulatory activity toward genes defined as direct targets of PIF3 transcriptional activation. Expression levels in the
pifq and pif-triple mutants indicated, were determined by RT-qPCR, normalized to an internal PP2AA3 control, and presented relative to WT levels set
at unity. Data are represented as the mean of biological triplicates +/2 SEM. (B) Matrix of relative contributions from individual PIF proteins toward
the shared transcriptional activation of individual, potentially-shared direct-target genes. Percent contribution is calculated as the proportion of the
total differential expression between pifq and WT, that is contributed by the differential expression between pifq and each pif-triple mutant. (C) In

PIFs Provide a Transcriptional Hub
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motifs, are strong candidates for likewise being targets of

functionally active, direct binding-site sharing among the four

PIF factors.

Discussion

Previous genetic studies have established that the overarching

biological function of the PIF quartet is to promote skotomorpho-

genic growth and development in post-germinative seedlings in

darkness, and to promote shade-avoidance behavior in deetiolated

seedlings in response to exposure to neighboring vegetation

[2,3,11,42]. The evidence shows that the quadruple pifq mutant

is strongly impaired in skotomorphogenic growth and develop-

ment in dark-grown seedlings and has reduced shade-avoidance

responsiveness to signals from neighboring vegetation in green

seedlings [2,3,11]. In addition, there are indications that the

contributions of individual PIF members to the collective activities

of the quartet vary quantitatively, both between the PIFs for a

given morphogenic-response feature, and between morphogenic-

response features for a given PIF. For example, experiments

comparing single, double, triple and quadruple pif-mutant

combinations indicate that the individual PIFs appear to

contribute additively or synergistically, in more or less equivalent

fashion, to the promotion of hypocotyl-cell elongation growth in

dark-grown seedlings [2,3,11]. By contrast, PIF1 appears to

dominate the concomitant suppression of cotyledon separation

that occurs in these same seedlings during dark-growth [2,11]. In

green seedlings, on the other hand, PIF4 and/or PIF5 appear to

have a major role in promoting the stem and petiole elongation

intrinsic to shade-avoidance in response to vegetative shade

[21,42], whereas PIF3 [43], together with PIFs 4 and 5 [44],

contribute strongly to growth during the night period under

diurnal light/dark cycles. Consistent with this general pattern,

another related bHLH factor, PIF7, displays only moderate

involvement in seedling deetiolation [45], but has a prominent role

in shade avoidance [41]. Although a limited number of previous

studies have examined the transcriptome regulated by PIF-quartet

members in seedlings in darkness [3,12,16–19] and vegetative

shade [11,21] using the Affymetrix ATH1 array, these studies did

not provide full genome coverage and did not permit dissection of

potential quantitative differences in transcriptome profiles con-

trolled by the individual PIFs.

The RNA-seq analysis performed here defines, with full genome

coverage, the transcriptome collectively regulated by the PIF

quartet in promoting skotomorphogenesis, and provides initial

definition of the extent, and quantitative partitioning, of shared

transcriptional control of the genes within of this network between

PIF3 and the PIF1/4/5-trio. Superimposed on these data, our

ChIP-seq analysis has identified a subset of these genes that are

likely direct targets of PIF3 transcriptional regulation, exerted by

physical binding of this factor to promoter-localized G- or PBE-

box recognition-motifs (Class X, Y and Z genes, combined;

Figure 4). The predominant pattern of PIF-regulated expression of

these PIF3-bound genes (108 (84%) of 129 total) is one of high

levels in the presence of the wild-type PIF factors, and reduced

levels in the genetically-imposed absence of these factors in dark-

grown seedlings, indicative of transcriptional activation by PIF3

and/or one or more of the other three PIF-quartet members. This

pattern is consistent with the existing reports that all four factors

function intrinsically as transcriptional activators, at least in

transfection or heterologous expression systems [4–9], and with

the demonstration here and elsewhere [21] that these PIFs

function to activate PIL1-promoter-driven expression in transgenic

seedlings (Figure 5C). We have therefore focused here primarily on

this predominant class of PIF-transcriptionally-activated genes.

Our data indicate that there is a continuum, from robust to

marginal, in the extent of the contribution of PIF3 to the

combined transcriptional regulatory activity of the PIF quartet

toward the PIF-induced, Class Y and Z genes (Figure S4).

Conversely, by definition, there is a complimentary continuum in

the share of this combined activity provided by the collective

actions of PIFs 1, 4 and 5. These data imply at least some degree of

shared, but quantitatively differential, transcriptional-regulatory

activity among the PIF-quartet members toward individual genes

that are apparent direct targets of PIF3-induced expression. Our

RT-qPCR analysis of the expression patterns of selected genes

from this subset, in all pif triple-mutant combinations, confirms

that all four quartet members display such intra-subfamily

differential activity toward individual genes in this set. Moreover,

this analysis shows, conversely, that the individual PIF proteins

induce differential levels of transcription in each different gene

(Figure 5A). The three-dimensional response surface generated by

this comparison (Figure 5B) suggests that this pattern may be

iterated across all PIF-regulated genes genome wide, and points to

the potential for considerable signaling and regulatory complexity

at the PIF-target-gene interface.

Because it has been shown that all four PIF-quartet members

bind robustly to the G-box motif [4–9], it appears likely that many

of the direct targets of PIF3 transcriptional regulation are also

direct targets of these other PIFs [5,6], and that the shared

activation of genes by the individual quartet members observed

here will involve some degree of shared occupancy of these

binding sites by the different PIFs. This may also apply to the

newly discovered PBE-box motif, as there is recent evidence that

PIF4 also recognizes this motif [21]. However, there is also

evidence of potential divergence in motif recognition, as PIF5 was

shown in the same report not to bind to the PBE-box motif [21].

The prominent contribution of PIF1 to the transcriptional

activation of many of the genes examined here (Figure 5), despite

its apparent considerably lower expression level than PIF3

(Figure 6F), is particularly intriguing in this respect, as this may

imply that PIF1 may dominate promotion of target gene

expression in dark-grown seedlings.

Comparison of the genes identified here as direct targets of PIF3

transcriptional activation (Class Z and YZ1.5 genes), with those

previously identified as being rapidly (within 1 h) repressed by

initial exposure of dark-grown seedlings to red light [17], has

defined an overlapping subset of 21 genes (22 including PIL1)

(Table 1). The evidence is strong, therefore, that these 22 genes

form a core set that are directly transcriptionally activated by PIF3

in darkness and repressed in light, at least in part, by direct,

photoactivated-phy-induced PIF3 degradation. Moreover, because

all of these genes are also transcriptionally activated, either

collectively (Table 1 and Table S11), or individually (Figure 5A

and 5B) by PIF1, 4 and/or 5 in darkness, it appears likely that

planta PIL1 promoter activity requires both G-box motifs and PIF-quartet members. Left: Schematic of pPIL1:LUC constructs expressed transgenically
in either WT or pifq plants, as indicated. Yellow and red stripes represent the locations of three native (pPIL1) and mutated (mpPIL1) G-box motifs,
respectively, in variants of the PIL1 promoter, as shown by the DNA sequences displayed below each construct. A contiguous 35S-promoter driven
RLUC reporter was included as an internal control in each construct. Right: Mean expression of the LUC reporter gene is shown as LUC enzyme activity
normalized to the RLUC control in the same transgenic plant. Data represent the means of 6 or 7 independent transgenic lines +/2 SEM.
doi:10.1371/journal.pgen.1003244.g005
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Figure 6. Expression patterns of PIF-encoding genes. (A–E) Representative images of histochemical staining of GUS activity in 2-d-old dark-
grown transgenic seedlings. The GUS reporter gene is driven by PIF1 (A), PIF3 (B), PIF4 (C), PIF5 (D) and CaMV 35S (E) promoters, respectively. Data of
biological triplicates were collected from two independent transgenic lines, and representative images are shown for each transgene. (F) Steady-state
transcript levels of PIF-encoding genes defined by RNA-seq and RT-qPCR analyses in 2-d-old dark-grown WT seedlings. Data are presented as the
mean of biological triplicates +/2 SEM. (G) Relative expression of PIF-encoding genes in 2-d-old dark-grown pifq and pif-triple mutants. Expression
was determined by RT-qPCR, normalized to an internal PP2AA3 control, and presented relative to WT levels set at unity. Data are represented as the
mean of biological triplicates +/2 SEM.
doi:10.1371/journal.pgen.1003244.g006
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these PIFs share similarly directly in the light-reversible trans-

activation of this core gene-set via photoactivated-phyB-induced

degradation of the PIF-trio members.

The predicted or established functional diversity of the PIF

direct-target genes identified here (Figure S5) suggests that PIF3

and/or one or more other PIF-quartet members act pleiotropically

to directly regulate the transcription of a diversity of genes involved

in a spectrum of cellular processes that sustain the skotomorpho-

genic developmental pathway. Consistent with previous analyses

[3,11,17,21], the PIF-induced genes are strikingly enriched for

transcription-factor-encoding loci (40% of the annotated genes in

this set). These data support the proposition, therefore, that the PIFs

regulate an extensive transcriptional network via direct activation of

a battery of primary target-genes in a hierarchal transcriptional

cascade [20]. Because the encoded target-proteins represent

multiple major classes of transcription factors (including bHLH,

homeobox, bZIP, ARF, AUX/IAA, AP2-EREBP, BBX and TCP),

it appears likely that they act concomitantly to activate multiple,

diverse downstream pathways in parallel. Interestingly, however,

many apparent PIF direct-target genes are involved in other cellular

processes (including cytokinin metabolism, auxin-responsiveness,

protein phosphorylation and cell-wall metabolism), suggesting a

more immediate mode of PIF regulation of these processes.

A central issue in understanding mechanisms of eukaryotic

transcriptional regulation is how members of large transcription-

factor families, with conserved DNA-binding domains (such as the

162-member Arabidopsis bHLH family [46]), discriminate between

target genes [22,30,47]. However, the specific question of whether,

and to what extent, closely-related sub-family members, with

potential overlapping functional redundancy (like the PIF quartet),

share regulation of target genes through shared binding to

promoter-localized consensus motifs, does not appear to have

been widely investigated [31–34]. Our data, together with those of

others [21,24], provide evidence suggesting that the PIF quartet

members share directly in transcriptional activation of numerous

target genes, potentially via redundant promoter occupancy, in a

manner that varies quantitatively from gene to gene (Figure 7).

This finding suggests that these PIFs function collectively as a

signaling hub, selectively partitioning common upstream signals

from light-activated phys at the transcriptional-network interface.

Definition of the mechanistic basis and functional consequences of

this apparent complexity will require further investigation.

Figure 7. PIFs direct differential light-signal channeling to the phy-regulated transcriptional network. Model depicting proposed
quantitatively differential partitioning of transcriptional activation activity to shared direct-target genes, both by and between individual PIF-quartet
members. Arrows represent the presence or absence and relative level (line thickness) of shared transcriptional activation of different direct-target
genes by the individual PIFs in the dark. This representation is based on the data in Figure 5A and 5B. Light-activation of phy photoreceptors induces
rapid proteolysis of the PIFs, reversing this transcriptional activity.
doi:10.1371/journal.pgen.1003244.g007
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Materials and Methods

Plant materials and growth conditions
The Colombia-0 ecotype of Arabidopsis thaliana was used for all

experiments. The 35S:66His-PIF3-56MYC (P3M) transgenic line

[48], pif3 [18], pif1pif4pif5 (pif145) [11], pif1pif3pif4 (pif134),

pif1pif3pif5 (pif135), pif3pif4pif5 (pif345), and pif1pif3pif4pif5 (pifq)

[2] were as described.

Stratified seeds were irradiated with WL at 21uC for 3 h to

induce germination, followed by a FR pulse for 15 min to suppress

pseudo dark effects [2], and grown in darkness at 21uC for 2 d

before harvest.

ChIP–seq
The ChIP assay was performed using about 2 g of Arabidopsis 2-

d-old dark-grown whole seedlings as described [49] under green

safelight. Polyclonal anti-MYC antibodies (Abcam, ab9132) were

used with BSA-blocked Protein G Agarose beads (Millipore) to

immunoprecipitate the P3M-DNA complex. Wild-type Arabidopsis

seedlings grown under the same conditions were used as the

negative control following the same assay procedure.

The ChIP-seq library was constructed according to Illumina’s

instructions (www.illumina.com) with some modifications. Four

ChIP samples from technical replicates of each biological replicate

were pooled together and concentrated to increase the starting

amount of DNA. The end repair of DNA fragments was

performed using End-It DNA End-Repair Kit (Epicentre). The

A-tailing was added to the end-repaired DNA fragments using

Klenow Fragment (NEB), and then Illumina’s PE adapters were

ligated by T4 DNA Ligase (Promega) at 16uC overnight. The

adapter-ligated DNA fragments in the 200–300 bp size-range

were selected by the gel purification, and then were amplified

using Phusion High-Fidelity DNA Polymerase (NEB) with the

Illumina PE PCR primer set. The library was purified using an

Agencourt AMPure XP system (Beckman Coulter Genomics), and

then validated by Bioanalyzer 2000 (Agilent).

The parallel libraries from P3M and WT ChIP samples were

assayed by single-end sequencing on an Illumina GAIIx platform.

The 36-nt reads were aligned to the TAIR9 assembly of the

Arabidopsis genome using Bowtie [50] with up to 2 mismatches

allowed. Only reads mapped uniquely to the nuclear genome with

the lowest number of mismatches were retained for binding-peak

identification. To increase the uniformity of read-counts across

biological replicates, two technical-replicate sequencing runs were

performed on the 4 libraries from the 1st and 2nd ChIP

experiments (two of the four biological replicates). The aligned

reads from the two technical sequencing replicates of each library

were combined and processed as single biological replicate data.

The statistical identification of PIF3-binding peaks was per-

formed separately for each biological replicate using MACS [35]

with the default 1025 P-value cutoff. MACS analysis was

customized to ensure a more uniform analysis across biological

replicates, and to decrease the size of the window for detecting

background enrichment (due to the small size of the Arabidopsis

genome) by employing modified parameters (gsize = 1.1e8,

bw = 100, nomodel, shiftsize = 50, slocal = 1000, and llocal = 2000).

Four independent biological replicates of ChIP-seq data were

collected, and replicate-specific binding peaks, identified in at least

one other replicate, were defined as reproducible, if the distance

between the summits of each replicate were less than 100 bp. For

each reproducible peak, a mean summit position was assigned as

the average position of the individual replicate-specific summits,

and the PIF3-binding sites were defined as the 201 bp windows

centered at each reproducible mean-summit position.

De novo PIF3-binding motif discovery was performed on the 201-

bp defined binding sites using MEME [36], and the enrichment

significance of identified G-box and PBE-box motifs beyond the

genome background was quantified by 100 random simulations,

where in each simulation 1064 randomly selected genomic regions

of the same size were searched for the occurrence of each motif.

The tight association of PIF3 binding with a specific motif was

defined as the distance between the peak summit and the closest

motif less than 100 bp.

Definition of the closest neighboring genes to each binding peak

was approached by scanning the regions within +/25 kb centered

at each peak summit, using CisGenome [51], and the potential

target genes downstream of each summit with no intervening

genes were selected manually.

RNA–seq
Total RNA was extracted from 2-d-old dark-grown seedlings

using QIAshredder column and RNeasy Plus Mini Kit (Qiagen)

according to the manufacturer’s instructions. The sequencing

library construction was adapted from 39-end RNA-seq protocol

[52]. The mRNA was fractionated from 20 mg of total RNA using

Dynabeads Oligo (dT)25 (Invitrogen), and fragmented using

Fragmentation Reagents (Ambion) at 70uC for 2.5 min in 20 ml

of reaction. The polyA-tailed 39-end fragments were captured by

another run of mRNA purification as described above, and then

treated by Antarctic Phosphatase (NEB) and T4 Polynucleotide

Kinase (NEB) at 37uC for 1 h and 2 h, respectively. The sample

was purified using RNeasy MinElute Cleanup Kit (Qiagen)

according to Illumina’s protocol. The eluted mRNA fragments

were ligated with 2.5 mM of Illumina’s SRA 59 adaptor by T4

RNA Ligase 1 (NEB) at 20uC for 4 h. The 39 cDNA adapter

derived from Illumina’s v1.5 sRNA 39 adapter was conjugated

with the anchored oligo (dT)20 primer, and introduced through

reverse transcription using the SuperScript III First-Strand

Synthesis System (Invitrogen). The first-strand cDNA was purified

using the Agencourt AMPure XP system, and then amplified by

PCR reaction using Phusion High-Fidelity DNA Polymerase with

Illumina’s sRNA PCR primer set. The size of purified library

DNA was validated by Bioanalyzer 2000.

Libraries from the 1st biological replicate were assayed by 36-

cycle single-end sequencing on the Illumina GAIIx platform, while

libraries from the 2nd and 3rd biological replicates were assayed

by 50-cycle single-end sequencing on the HiSeq2000 platform. For

consistency, only the 59-end 36-nt trimmed reads from the 2nd

and 3rd replicates, as well as the full-length 36-nt reads from the

1st replicate, were aligned to the TAIR9 representative tran-

scriptome using Bowtie with zero mismatches allowed. Only reads

mapping uniquely to the 39-end 500-bp region of the coding

strand were counted for gene expression. Differentially expressed

genes were identified using the edgeR package [53], and SSTF

genes were defined as those that differ by $2-fold with an adjusted

P value #0.05 as described [17].

In vitro protein–DNA binding assay
The recombinant protein GST-PIF3-Flag and the GST control

were purified from E. coli as described previously [9]. DNA probes

were generated by annealing a 59 biotinylated oligonucleotide

(IDT) to a complementary unmodified oligonucleotide (IDT). The

complementary oligonucleotides were diluted in annealing buffer

(10 mM Tris-HCl (pH 7.5), 50 mM NaCl, 1 mM EDTA) to a

final concentration of 40 mM, heated to 95uC for 5 min, and

cooled down slowly (0.1uC/second) to 12uC. The same procedure

was followed to generate unmodified dsDNA fragments for

competition assays. Probes are listed in Table S13.
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The DPI-ELISA assays were performed as described [38].

Biotinylated probes were bound to Reacti-Bind Streptavidin High

Binding Capacity Coated 96-Well Plates (Thermo Scientific) by

applying 2 pmol/well of the probes in TBS-T buffer (20 mM Tris-

HCl (pH 7.5), 180 mM NaCl, 0.1% (v/v) Tween 20) for 1 h at

37uC. The wells were blocked with 5% (w/v) non-fat dry milk in

TBS-T buffer for 30 min, and then incubated with 100 ng of

GST-PIF3-Flag or GST for 1 h. For competition assays, 2, 10 or

50 pmol/well of the unlabeled probes were added at the same

time with the proteins. After incubation, the wells were washed 3

times with TBS-T/PBS-T buffer, and then were incubated with

1:2000 diluted THE GST Antibody [HRP] (GenScript, A00866)

in PBS-T buffer for 1 h. The wells were then washed twice with

PBS-T and PBS buffers, respectively, after incubation. The protein

binding was detected by adding the OPD solution (Thermo

Scientific), and the reaction was stopped by 2.5 M sulfuric acid.

The color extinction was measured at 490 nm, using 650 nm as a

reference wavelength in the ELISA reader.

The EMSA assays were performed as described [9]. 100 ng of

recombinant proteins and the biotinylated DNA probes were used

in each assay. Gel electrophoresis using native 5% PAGE gel in ice

cold 0.56 TBE buffer (280 V, 15 min) was followed by wet-

transfer electro blotting to Biodyne B Nylon membrane (Pierce) in

0.56 TBE buffer (80 V, 1 h). The Lightshift Chemiluminescent

DNA EMSA kit (Pierce) was used for detection of the biotinylated

probes according to the manufacturer’s instructions.

Quantitative PCR (qPCR)
RT-qPCR was performed as described [17]. Each PCR

reaction was repeated at least twice, and the mean value of

technical replicates was recorded for each biological replicate.

Data from biological triplicates were collected, and the mean value

with standard error is represented in the bar graphs. Primers and

gene accession numbers are listed in Table S13.

Construction of pPIL1:LUC and pPIF:GUS transgenic plants
The 1.8 kb PIL1 promoter region (pPIL1) upstream of the ATG

was amplified by PCR using the pPIL1-F1/R1 primer set, and

then the XhoI/EcoRI fragment was cloned into the pBluescript II

SK (pBSK) vector (Stratagene) to produce pBSK-pPIL1. The G-

box mutations were introduced by two-step PCR amplification

(using pPIL1-F7/R7, pPIL1-F8/R8, pPIL1-F9/R9, and pPIL1-

F10/R10 primer sets), and the XhoI/MfeI fragment from the

pPIL1-F1/R5 primer set was cloned to replace the unmutated

fragment of pBSK-pPIL1 to produce pBSK-mpPIL1. The

HindIII/BamHI fragment containing the omega-LUC+-rbcS

terminator from the pENTR/D-TOPO\arGIp::LUC+ construct

was cloned into pBSK-pPIL1 and pBSK-mpPIL1, respectively, to

produce pBSK-pPIL1:LUC and pBSK-mpPIL1:LUC. The CDS

of Renilla Luciferase (RLUC) was amplified by PCR using the

Rluc-F1/R1 primer set, and then the NcoI/PmlI fragment was

cloned into the pCAMBIA1302 binary vector to produce

pC1302-35S:RLUC. The PstI/SacI fragments from pBSK-

pPIL1:LUC and pBSK-mpPIL1:LUC were then sub-cloned into

pC1302-35S:RLUC to produce pC1302-pPIL1:LUC-35S:RLUC

(pPIL1:LUC) and pC1302-mpPIL1:LUC-35S:RLUC (mpPIL1:LUC),

respectively.

The 2.5–3.0 kb promoter regions upstream of the ATG of PIF3,

PIF4 and PIF5 were amplified from Arabidopsis (Col-0 ecotype)

genomic DNA by PCR using the TOPO-PIF3p-LP1/RP1,

TOPO-PIF4p-LP1/RP1 and TOPO-PIF5p-LP1/RP1 primer

sets, respectively. The PCR products were cloned into the

pENTR/D-TOPO vector (Invitrogen) to produce the pPIF3,

pPIF4 and pPIF5 entry clones. For the PIF1 promoter, the first

2 kb fragment upstream of the ATG was amplified by PCR using

the TOPO-PIF1p-LP3/RP1 primer set, and then was cloned into

the pENTR/D-TOPO vector to produce the intermediate entry

clone. The second fragment of 2–4 kb upstream of ATG was

amplified using the NotI-PIF1p-LP/XcmI-PIF1p-RP primer set,

and then the NotI/XcmI fragment of the PCR product was

subcloned into the intermediate entry clone to produce the pPIF1

entry clone. All four entry clones were subcloned into the gateway

compatible pGWB3 binary vector [54] using Gateway LR

Clonase II Enzyme Mix (Invitrogen) to produce pPIF:GUS

constructs.

The constructs were transformed into Arabidopsis plants as

described [55], and the individual transgenic lines were selected on

MS medium containing 25 mg/L of Hygromycin B (Invitrogen).

Luciferase assay
The 2-d dark-grown seedlings of independent transgenic lines

were ground in liquid nitrogen, and total protein was extracted in

LUC extraction buffer (16PBS, 4 mM EDTA, 2 mM DTT, 5%

glycerol, 1 mg/ml BSA, 2 mM PMSF and 16 complete protease

inhibitor cocktail (Roche) at 36w/v) as described [7]. 20 ml of the

supernatant were used to measure the LUC and RLUC activity

using a Dual-Luciferase Reporter Assay System (Promega)

according to the manufacturer’s instruction. The relative expres-

sion of LUC was represented by its enzyme activity compared to

the RLUC internal control.

Histochemical GUS staining
Histochemical GUS staining assays were performed on 2-d-old

dark-grown seedlings as described [56] using a modified substrate

buffer (16 PBS (pH 7.0), 1 mM K3Fe(III)(CN)6, 0.5 mM

K4Fe(II)(CN)6, 1 mM EDTA, 1% Triton X-100, 1 mg/ml X-

gluc). Data of biological triplicates were collected from two

independent transgenic lines, and representative images are shown

for each transgene.

Accession number
ChIP-seq and RNA-seq data reported in this study have been

deposited in the Gene Expression Omnibus database under the

accession number GSE39217.

Supporting Information

Figure S1 ChIP-qPCR validation of PIF3-binding sites. (A–C)

PIF3-binding sites containing the G-box (A), PBE-box (B), or both

motifs (C) were validated using independent ChIP-qPCR tests.

Sites are named according to adjacent genes. The relative

enrichment level is presented as the percentage of input-control

DNA that is immunoprecipitated for the P3M and WT samples.

Data are presented as the mean of biological triplicates +/2 SEM.

(TIF)

Figure S2 EMSA assays of PIF3 in vitro binding to the G-box

and PBE-box motifs. EMSA assays show that the recombinant

GST-PIF3 protein (Lane 3), but not GST by itself (Lane 2),

specifically binds to the wild-type (WT) biotinylated G-box and

PBE-box probes. For probes containing single G-box or PBE-box

motif (PIL1a, PHYB, IAA2, IBH1 and AT4G30410), the cold

competitor probes mutated at the motif (mut; Lane 5) did not

exhibit competitive effects similar to the WT competitor (Lane 4).

For probes containing two G-box motifs (PIL1b and RGA1), the

mut probes at either one motif (Land 6 and 7) showed competitive

effects similar to the WT probes (Lane 4), whereas the mut probe

at both motifs (Lane 5) did not show efficient competition. The

PIFs Provide a Transcriptional Hub

PLOS Genetics | www.plosgenetics.org 17 January 2013 | Volume 9 | Issue 1 | e1003244



ATHB-2 probe contains one G-box and one PBE-box motif

separated by 5 bp. The mut probe at only the G-box (Lane 6)

displayed no competition, as did the probe mutated at both G-box

and PBE-box motifs (Lane 5), while the mut probe at only PBE-

box motif (Lane 7) showed a competitive effect similar to the WT

probe (Lane 4). 1 both G-boxes mutated, 2 only 1st G-Box

mutated, 3 only 2nd G-Box mutated, 4 G-box and PBE-box

mutated, 5 only 1st PBE-box mutated.

(TIF)

Figure S3 RT-qPCR validation of PIF3- and PIF-quartet-

regulated genes. (A and B) The orange horizontal bar graphs show

the relative PIF3-induced expression of 19 Z-Class (A) and 88 Y-

Class (B) PIF-induced genes as determined by RNA-seq analysis.

The relative PIF3-induced expression value was calculated as the

ratio of the level in the pif145 mutant compared to that in the pifq

mutant (pif145/pifq), and the genes are arrayed according to this

ratio. We assayed the expression patterns of 12 (A) and 20 (B)

genes in each class using RT-qPCR, and the expression relative to

WT was normalized to the PP2AA3 internal control, for the pif3,

pif145 and pifq mutants. The data are presented as the mean of

biological triplicates +/2 SEM in the vertical bar-graph boxes,

compared to the RNA-seq data for these genes. Genes

highlighted-in-red exhibited statistically-significant differences

between pif145 and pifq in the RT-qPCR tests, by Student’s t-

test (P,0.05) (indicated by red star above the pif145 bar), while

genes highlighted-in-blue did not. Data from RNA-seq are shown

as the fold-change determined by the edgeR package in each pif

mutant compared to WT. The internal percentage values in each

box represent the relative contribution of PIF3 to the total PIF-

quartet-induced transcription for each tested gene, as shown in

Figure 5.

(TIF)

Figure S4 Relative contribution of PIF3 and the PIF1/4/5-trio

to the collective regulation of the PIF quartet. The relative

contribution of PIF3 and the PIF1/4/5-trio to the collective

regulation of the PIF quartet is plotted for the 107 PIF3-bound,

PIF-induced genes (Classes Y and Z). The degree of collective

regulation by the PIF quartet is defined as the difference in

expression between pifq and WT. The separate activities of PIF3

and the combined PIF1/4/5-trio, are defined as the differences in

expression between pif145 and pifq, and between pif145 and WT,

respectively. The relative contribution is then defined as the

percentage of the collective PIF-quartet regulation contributed by

the separate activities of PIF3 and the combined PIF1/4/5-trio,

respectively.

(TIF)

Figure S5 Functional categorization of PIF3-bound, PIF-

regulated genes. (A) The total PIF3-bound, PIF-regulated genes

identified by integrating our ChIP-seq and RNA-seq analyses

(Classes X, Y and Z) were assigned to functional categories, color-

coded as shown. This assignment was based on the Gene Ontology

annotations for biological and/or molecular function in the TAIR

database. The percentage of the total annotated genes within each

category was calculated after excluding the genes annotated as

having unknown function. (B) PIF-induced and PIF-repressed

genes in Classes X, Y and Z were assigned separately to the

functional categories as described in (A). The first numbers in

parentheses represent the genes with functional annotation, and

the second numbers represent the total genes in each class.

(TIF)

Figure S6 Correlated PIF3-binding and PIF-regulation of eight

M-class genes. (A–H) Visualization of ChIP-seq and RNA-seq data

in the genomic regions encompassing TCP15 (A), IAA29 (B),

ATHB52 (C), CKX5 (D), XTR7 (E), SNRK2.5 (F), AT5G02580 (G),

and SDR (H), respectively. The ChIP and RNA tracks show the

pile-up distribution of the combined raw reads from four biological

replicates of ChIP-seq data and three replicates of RNA-seq data,

respectively. P3M- and WT-ChIP: DNA immunoprecipitated

from PIF3-Myc-expressing and from wild-type seedlings, respec-

tively. WT-, pif3-, pif145- and pifq-RNA: RNA from genotypes

used for expression analysis. Binding Site: 201 bp defined as the

PIF3-binding site. Summit, predicted PIF3-binding center defined

from the binding-peak maximum. G- and PBE-box: Vertical lines

indicate motif positions.

(TIF)

Figure S7 Comparison of potential direct targets of PIF3, PIF4

and/or PIF5. (A) Venn diagram shows overlap of genes associated

with PIF3, PIF4 and/or PIF5 binding sites. (B) Venn diagram

shows PIF-quartet-regulated genes bound by PIF3, PIF4 and/or

PIF5.

(TIF)

Table S1 List of PIF3-binding peaks from four ChIP-seq

replicates. (A) List of PIF3-binding peaks from the 1st replicate.

(B) List of PIF3-binding peaks from the 2nd replicate. (C) List of

PIF3-binding peaks from the 3rd replicate. (D) List of PIF3-

binding peaks from the 4th replicate.

(XLS)

Table S2 List of reproducible PIF3-binding sites.

(XLS)

Table S3 List of PIF3-bound genes.

(XLS)

Table S4 List of SSTF genes from pifq/WT comparison (PIF-

quartet-regulated genes).

(XLS)

Table S5 List of SSTF genes from pif3/WT comparison (PIF3-

regulated genes (loss-of-function)).

(XLS)

Table S6 List of SSTF genes from pif145/WT comparison

(PIF1/4/5-trio-regulated genes (loss-of-function)).

(XLS)

Table S7 List of SSTF genes from pifq/pif145 comparison (PIF3-

regulated genes (gain-of-function)).

(XLS)

Table S8 List of SSTF genes from pifq/pif3 comparison (PIF1/

4/5-trio-regulated genes (gain-of-function)).

(XLS)

Table S9 Composite list of PIF3-regulated genes.

(XLS)

Table S10 Composite list of PIF1/4/5-trio-regulated genes.

(XLS)

Table S11 List of PIF3-, PIF4 and/or PIF5-bound, PIF-

regulated (Class X, Y and Z) genes.

(XLS)

Table S12 List of rapidly-light-regulated W-class genes.

(XLS)

Table S13 List of oligonucleotides used in this study. (A) List of

ChIP-qPCR primers. (B) List of RT-qPCR primers. (C) List of

cloning primers. (D) List of in vitro binding probes.

(XLS)
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