
Hui jeong Gong- University of Southampton
Hui jeong Gong
- University of Southampton
About
425
Publications
115,322
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,649
Citations
Current institution
Publications
Publications (425)
The rapid development of optical labeling and imaging technologies has enabled scientists to capture three-dimensional images of mammalian brains at the single-neuron level. However, it has also brought about numerous technical challenges. In neuronal images, fibers exhibit lower fluorescence intensity than cell bodies and are densely packed, makin...
Molecularly defined cortical cell types have recently been linked to whole neuronal morphology (WNM), particularly those characterized by whole-brain-wide projections, such as intratelencephalic (IT), extratelencephalic (ET), and corticothalamic (CT) neurons. In contrast, classical morphological classifications (e.g., tufted TPC, small tufted SPC,...
Brain slicing is a commonly used technique in brain science research. In order to study the spatial distribution of labeled information, such as specific types of neurons and neuronal circuits, it is necessary to register the brain slice images to the 3D standard brain space defined by the reference atlas. However, the registration of 2D brain slic...
The hypothalamus coordinately regulates physiological homeostasis and innate behaviors, yet the detailed arrangement of hypothalamic axons remains unclear. Here we mapped the whole-brain projections of over 7,000 hypothalamic neurons expressing distinct neuropeptides in male mice, identifying 2 main classes and 31 types using single-neuron projecto...
Given the evolutionary instinct for caloric intake and the tendency for weight rebound after discontinuing dietary interventions or medications, increasing energy expenditure emerges as an alternative obesity treatment. However, neural regulation of energy expenditure remains poorly understood. Here, we report that a hypothalamic neuronal subtype,...
The basal forebrain is a critical brain region involved in various neurobiological processes, including learning, memory, and attention. Basal forebrain cells undergo structural and functional changes during ageing, increasing their vulnerability to neurodegenerative diseases.
To reveal the molecular landscape of distinct cell types during developm...
Background: Organelles in neuronal dendrites facilitate local metabolic processes and energy supply, crucial for dendrite development and neurodegenerative diseases. The distinct functions of dendritic organelles have been well studied, however, their crosstalk under physiological and pathological contexts remains elusive. We aimed to establish an...
The mammalian brain comprises a vast number of neurons, exhibiting remarkable diversity in both molecular composition and spatial distribution. However, a comprehensive understanding of how these neurons are organized within the brain remains elusive, largely due to the lack of systematic studies providing three-dimensional coverage of molecularly...
The retrosplenial cortex (RSP) is a complex brain region with multiple interconnected subregions that plays crucial roles in various cognitive functions, including memory, spatial navigation, and emotion. Understanding the afferent and efferent connectivity of the RSP is essential for comprehending the underlying mechanisms of its functions. Here,...
Motivation
Neuroscientists have long endeavored to map brain connectivity, yet the intricate nature of brain networks often leads them to concentrate on specific regions, hindering efforts to unveil a comprehensive connectivity map. Recent advancements in imaging and text mining techniques have enabled the accumulation of a vast body of literature...
We conducted a large-scale whole-brain morphometry study by analyzing 3.7 peta-voxels of mouse brain images at the single-cell resolution, producing one of the largest multi-morphometry databases of mammalian brains to date. We registered 204 mouse brains of three major imaging modalities to the Allen Common Coordinate Framework (CCF) atlas, annota...
The sensorimotor cortex participates in diverse functions with different reciprocally connected subregions and projection-defined pyramidal neuron types therein, while the fundamental organizational logic of its circuit elements at the single-cell level is still largely unclear. Here, using mouse Cre driver lines and high-resolution whole-brain ima...
Mild cognitive impairment (MCI) is an intermediate stage between normal cognition and dementia, with a high risk of progression to Alzheimer’s disease (AD). As an important threshold for the intervention and prevention of AD, accurate diagnosis of AD-related MCI based on plasma biomarkers is crucial. However, early detection of AD-related MCI still...
The brain atlas is essential for exploring the anatomical structure and function of the brain. Non-human primates, such as cynomolgus macaque, have received increasing attention due to their genetic similarity to humans. However, current macaque brain atlases only offer coarse sections with intervals along the coronal direction, failing to meet the...
The brain–computer interface (BCI) is one of the most powerful tools in neuroscience and generally includes a recording system, a processor system, and a stimulation system. Optogenetics has the advantages of bidirectional regulation, high spatiotemporal resolution, and cell-specific regulation, which expands the application scenarios of BCIs. In r...
Photon-counting single-pixel imaging (SPI) can image under low-light conditions with high-sensitivity detection. However, the imaging quality of these systems will degrade due to the undersampling and intrinsic photon-noise in practical applications. Here, we propose a deep unfolding network based on the Bayesian maximum a posterior (MAP) estimatio...
Neocortex is a complex structure with different cortical sublayers and regions. However, the precise positioning of cortical regions can be challenging due to the absence of distinct landmarks without special preparation. To address this challenge, we developed a cytoarchitectonic landmark identification pipeline. The fluorescence micro-optical sec...
Reconstructing neuronal morphology is vital for classifying neurons and mapping brain connectivity. However, it remains a significant challenge due to its complex structure, dense distribution, and low image contrast. In particular, AI-assisted methods often yield numerous errors that require extensive manual intervention. Therefore, reconstructing...
Knowledge about the neuronal dynamics and the projectome are both essential for understanding how the neuronal network functions in concert. However, it remains challenging to obtain the neural activity and the brain-wide projectome for the same neurons, especially for neurons in subcortical brain regions. Here, by combining in vivo microscopy and...
The orbitofrontal cortex (ORB), a region crucial for stimulus-reward association, decision-making, and flexible behaviors, extensively connects with other brain areas. However, brain-wide inputs to projection-defined ORB neurons and the distribution of inhibitory neurons postsynaptic to neurons in specific ORB subregions remain poorly characterized...
Amyloid-β (Aβ) readily misfolds into neurotoxic aggregates, generating high levels of reactive oxygen species (ROS), leading to progressive oxidative damage and ultimately cell death. Therefore, simultaneous inhibition of Aβ aggregation and scavenging of ROS may be a promising therapeutic strategy to alleviate Alzheimer’s disease pathology. Based o...
Cytoarchitecture, the organization of cells within organs and tissues, serves as a crucial anatomical foundation for the delineation of various regions. It enables the segmentation of the cortex into distinct areas with unique structural and functional characteristics. While traditional 2D atlases have focused on cytoarchitectonic mapping of cortic...
Using an on-the-fly scanning scheme, line confocal microscopy can obtain complex structures of large biological tissues with high throughput. Yet, it suffers from lateral imaging asymmetry and thus introduces the potential deformations of the observation results. Here, we propose cross-line illumination microscopy (cLIM) that acquires the imaging d...
In multicolor fluorescence microscopy, it is crucial to orient biological structures at a single-cell resolution based on precise anatomical annotations of cytoarchitecture images. However, during synchronous multicolor imaging, due to spectral mixing, the crosstalk from the blue signals of 4′,6-diamidino-2-phenylindole (DAPI)-stained cytoarchitect...
Background
The medial prefrontal cortex (mPFC) is involved in complex functions containing multiple types of neurons in distinct subregions with preferential roles. The pyramidal neurons had wide-range projections to cortical and subcortical regions with subregional preferences. Using a combination of viral tracing and fluorescence micro-optical se...
Mapping single-neuron projections is essential for understanding brain-wide connectivity and diverse functions of the hippocampus (HIP). Here, we reconstructed 10,100 single-neuron projectomes of mouse HIP and classified 43 projectome subtypes with distinct projection patterns. The number of projection targets and axon-tip distribution depended on...
The image quality of light-sheet microscopy degrades due to the system misalignment or opacity of the sample. In this work, we proposed to synchronously detect the fluorescence from both the illumination and detection light path of axially swept light-sheet microscopy (SD-LSM) to realize the full exploitation of the excited fluorescence. We adopted...
The mammalian brain is composed of diverse neuron types that play different functional roles. Recent single-cell RNA sequencing approaches have led to a whole brain taxonomy of transcriptomically-defined cell types, yet cell type definitions that include multiple cellular properties can offer additional insights into a neuron’s role in brain circui...
Organoids can recapitulate human-specific phenotypes and functions in vivo and have great potential for research in development, disease modeling, and drug screening. Due to the inherent variability among organoids, experiments often require a large sample size. Embedding, staining, and imaging each organoid individually require a lot of reagents a...
Reward devaluation adaptively controls reward intake. It remains unclear how cortical circuits causally encode reward devaluation in healthy and depressed states. Here, we show that the neural pathway from the anterior cingulate cortex (ACC) to the basolateral amygdala (BLA) employs a dynamic inhibition code to control reward devaluation and depres...
One intrinsic yet critical issue that troubles the field of fluorescence microscopy ever since its introduction is the unmatched resolution in the lateral and axial directions (i.e., resolution anisotropy), which severely deteriorates the quality, reconstruction, and analysis of 3D volume images. By leveraging the natural anisotropy, we present a d...
Optical microscopy is a powerful tool for exploring the structure and function of organisms. However, the three-dimensional (3D) imaging of large volume samples is time-consuming and difficult. In this manuscript, we described an on-line clearing and staining method for efficient imaging of large volume samples at the cellular resolution. The optim...
Compared to young people and adults, there are differences in the ability of elderly people to resist diseases or injuries, with some noticeable features being gender-dependent. However, gender differences in age-related viscera alterations are not clear. To evaluate a potential possibility of gender differences during the natural aging process, we...
The brain generates predictive motor commands to control the spatiotemporal precision of high-velocity movements. Yet, how the brain organizes automated internal feedback to coordinate the kinematics of such fast movements is unclear. Here we unveil a unique nucleo-olivary loop in the cerebellum and its involvement in coordinating high-velocity mov...
Significance:
Robust segmentations of neurons greatly improve neuronal population reconstruction, which could support further study of neuron morphology for brain research.
Aim:
Precise segmentation of 3D neuron structures from optical microscopy (OM) images is crucial to probe neural circuits and brain functions. However, the high noise and low...
Background
Based on their anatomical location, rostral projections of nuclei are classified as ascending circuits, while caudal projections are classified as descending circuits. Upper brainstem neurons participate in complex information processing and specific sub-populations preferentially project to participating ascending or descending circuits...
The hypothalamus plays a vital role in coordinating essential neuroendocrine, autonomic, and somatomotor responses for survival and reproduction. While previous studies have explored population-level projections of hypothalamic neurons, the specific innervation patterns of individual hypothalamic axons remain unclear. To understand the organization...
Clarifying the morphological characteristics of neurons can promote the understanding of brain function. However, traditional morphometrics fail to capture the modeling of each point in reconstructed neurons, leading to limited ability to distinguish massive nerve fibers and restricted application scenarios. To address these challenges, we propose...
Line confocal (LC) microscopy is a fast 3D imaging technique, but its asymmetric detection slit limits resolution and optical sectioning. To address this, we propose the differential synthetic illumination (DSI) method based on multi-line detection to enhance the spatial resolution and optical sectioning capability of the LC system. The DSI method...
Line confocal (LC) microscopy is a fast 3D imaging technique, but its asymmetric detection slit limits resolution and optical sectioning. To address this, we propose the differential synthetic illumination (DSI) method based on multi-line detection to enhance the spatial resolution and optical sectioning capability of the LC system. The DSI method...
Line confocal (LC) microscopy is a fast 3D imaging technique, but its asymmetric detection slit limits resolution and optical sectioning. To address this, we propose the differential synthetic illumination (DSI) method based on multi-line detection to enhance the spatial resolution and optical sectioning capability of the LC system. The DSI method...
Resin embedding combined with ultra-thin sectioning has been widely used in microscopic and electron imaging to acquire precise structural information of biological tissues. However, the existing embedding method was detrimental to quenchable fluorescent signals of precise structures and pH-insensitive fluorescent dyes. Here, we developed a low-tem...
Histamine is a conserved neuromodulator in mammalian brains and critically involved in many physiological functions. Understanding the precise structure of the histaminergic network is the cornerstone in elucidating its function. Herein, using histidine decarboxylase (HDC)-CreERT2 mice and genetic labeling strategies, we reconstructed a whole-brain...
The neocortex mediates information processing through highly organized circuitry that contains various neuron types. Distinct populations of projection neurons in different cortical regions and layers make specific connections and participate in distinct physiological functions. Herein, with the fluorescence micro-optical sectioning tomography (fMO...
Fluorescence microscopy typically suffers from aberration induced by system and sample, which could be circumvented by image deconvolution. We proposed a novel, to the best of our knowledge, Richardson–Lucy (RL) model-driven deconvolution framework to improve reconstruction performance and speed. Two kinds of neural networks within this framework w...
Dissection of the anatomical information at the single-cell level is crucial for understanding the organization rule and pathological mechanism of biological tissues. Mapping the whole organ in numerous groups with multiple conditions brings the challenges in imaging and analysis. Here, we describe an approach, named array fluorescent micro-optical...
In traditional fluorescence microscopy, it is hard to achieve a large uniform imaging field with high resolution. In this manuscript, we developed a confocal fluorescence microscope combining the microlens array with spatial light modulator to address this issue. In our system, a multi-spot array generated by a spatial light modulator passes throug...
Background:
Estimation of influenza disease burden is crucial for optimizing intervention strategies against seasonal influenza. This study aimed to estimate influenza-associated excess respiratory and circulatory (R&C) and all-cause (AC) mortality among older adults aged 65 years and above in mainland China from 2011 to 2016.
Methods:
Through a...
Background
A major hand-foot-and-mouth disease (HFMD) pathogen, coxsackievirus A16 (CVA16), has predominated in several of the last 10 years and caused the largest number of HFMD outbreaks between 2011 and 2018 in China. We evaluated the efficacy of maternal anti-CVA16 antibody transfer via the placenta and explored the dynamics of maternal and nat...
Hand, foot and mouth disease (HFMD) is a major public health problem among children in the Asia-Pacific region. The optimal specimen for HFMD virological diagnosis remains unclear. Enterovirus A71 (EV-A71) neutralizing antibody titres detected in paired sera were considered the reference standard for calculating the sensitivity, specificity, positi...
Inverted light-sheet microscopy (ILSM) is widely employed for fast large-volume imaging of biological tissue. However, the scattering especially in an uncleared sample, and the divergent propagation of the illumination beam lead to a trade-off between axial resolution and imaging depth. Herein, we propose naturally modulated ILSM (NM-ILSM) as a tec...
Visualizing the relationships and interactions among different biological components in the whole brain is crucial to our understanding of brain structures and functions. However, an automatic multicolor whole-brain imaging technique is still lacking. Here, we developed a multicolor wide-field large-volume tomography (multicolor WVT) to simultaneou...
Visualizing the relationships and interactions among different biological components in the whole brain is crucial to our understanding of brain structures and functions. However, an automatic multicolor whole-brain imaging technique is still lacking. Here, we developed a multicolor wide-field large-volume tomography (multicolor WVT) to simultaneou...
Through synaptic connections, long-range circuits transmit information among neurons and connect different brain regions to form functional motifs and execute specific functions. Tracing the synaptic distribution of specific neurons requires submicron-level resolution information. However, it is a great challenge to map the synaptic terminals compl...
Simple Summary
We have established a pipeline to analyze the structures of intact millimeter-scale cerebral organoids. By using this pipeline, the morphological and spatial distribution of neurons and GFAP-positive cells in organoids, as well as the spatial distribution of cortical neuron subtypes, were obtained by using fMOST imaging. This study i...
The zona incerta (ZI) is involved in various functions and may serve as an integrative node of the circuits for global behavioral modulation. However, the long-range connectivity of different sectors in the mouse ZI has not been comprehensively mapped. Here, we obtained whole-brain images of the input and output connections via fluorescence micro-o...
Obtaining various structures of the entire mature heart at single-cell resolution is highly desired in cardiac studies; however, effective methodologies are still lacking. Here, we propose a pipeline for labeling and imaging myocardial and vascular structures. In this pipeline, the myocardium is counterstained using fluorescent dyes and the cardiov...
Hand, foot, and mouth disease (HFMD), which is mainly caused by coxsackievirus A16 (CVA16) or enterovirus A71 (EV-A71), poses a serious threat to children's health. However, the long-term dynamics of the neutralizing Ab (NAb) response and ideal paired-serum sampling time for serological diagnosis of CVA16-infected HFMD patients were unclear. In thi...
The midbrain participates in complex neural information processing in the ascending and descending circuits, but their organization remains unclear due to the lack of comprehensive dissection of the characterization of individual neurons. Combining fluorescent micro-optical sectional tomography with sparse labeling, we acquired the whole-brain data...
Optical imaging is an important tool for exploring and understanding structures of biological tissues. However, due to the heterogeneity of biological tissues, the intensity distribution of the signal is not uniform and contrast is normally degraded in the raw image. It is difficult to be used for subsequent image analysis and information extractio...
Rapid verification and three-dimensional (3D) mapping of β-amyloid (Aβ) plaques in mouse whole brain is of great significance in early diagnosis of Alzheimer’s disease (AD) due to the intricate relationship of Aβ plaques with their surrounding microenvironment. Previously reported fluorescent labelling to locate Aβ plaques usually require lengthy p...
The pontomesencephalic tegmentum, comprising the pedunculopontine nucleus and laterodorsal tegmental nucleus, is involved in various functions via complex connections; however, the organizational structure of these circuits in the whole brain is not entirely clear. Here, combining viral tracing with fluorescent micro-optical sectional tomography, w...
Prefrontal cortex (PFC) is the cognitive center that integrates and regulates global brain activity. However, the whole-brain organization of PFC axon projections remains poorly understood. Using single-neuron reconstruction of 6,357 mouse PFC projection neurons, we identified 64 projectome-defined subtypes. Each of four previously known major cort...
The liver contains a variety of vessels and participates in miscellaneous physiological functions. While past studies generally focused on certain hepatic vessels, we simultaneously obtained all the vessels and cytoarchitectural information of the intact mouse liver lobe at single-cell resolution. Here, taking structural discrepancies of various ve...
Neurons in the primary auditory area (AUDp) innervate multiple brain regions with long-range projections while receiving informative inputs for diverse functions. However, the brain-wide connections of these neurons have not been comprehensively investigated. Here, we simultaneously applied virus-based anterograde and retrograde tracing, labeled th...
Short-term memory deficits have been associated with prefrontal cortex (PFC) dysfunction in Alzheimer’s disease (AD) and AD mouse models. Extratelencephalic projection (ET) neurons in the PFC play a key role in short-term working memory, but the mechanism between ET neuronal dysfunction in the PFC and short-term memory impairment in AD is not well...
Background
China experiences large variations in influenza seasonal activity. We aim to update and improve the current understanding of regional-based within-year variations of influenza activity across mainland China to provide evidence for the planning and optimisation of healthcare strategies.
Methods
We conducted a systematic review and spatio...
Background:
Cilostazol combined with P2Y12 receptor inhibitor has been used as a substitute regimen for aspirin-intolerant patients undergoing percutaneous coronary stent implantation on a small scale. Its exact impact on platelet functions and clinical benefits of aspirin-intolerant patients is unknown.
Hypothesis:
Cilostazol combined with P2Y1...
Fluorescence microscopy plays an irreplaceable role in biomedicine. However, limited depth of field (DoF) of fluorescence microscopy is always an obstacle of image quality, especially when the sample is with an uneven surface or distributed in different depths. In this manuscript, we combine deep learning with Fresnel incoherent correlation hologra...
Background:
Neurotropic virus infection can cause serious damage to the central nervous system (CNS) in both humans and animals. The complexity of the CNS poses unique challenges to investigate the infection of these viruses in the brain using traditional techniques.
Methods:
In this study, we explore the use of fluorescence micro-optical sectio...
Background: Unraveling how new coronary arteries develop may provide critical information for establishing novel therapeutic approaches to treating ischemic cardiac diseases. There are two distinct coronary vascular populations derived from different origins in the developing heart. Understanding the formation of coronary arteries may provide insig...
Recent whole-brain mapping projects are collecting large-scale three-dimensional images using modalities such as serial two-photon tomography, fluorescence micro-optical sectioning tomography, light-sheet fluorescence microscopy, volumetric imaging with synchronous on-the-fly scan and readout or magnetic resonance imaging. Registration of these mul...
The glutamatergic and GABAergic neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) mediated diverse brain functions. However, their whole-brain neural connectivity has not been comprehensively mapped. Here we used the virus tracers to characterize the whole-brain inputs and outputs of glutamatergic and GABAergic ne...
The brain modulates specific functions in its various regions. Understanding the organization of different cells in the whole brain is crucial for investigating brain functions. Previous studies have focused on several regions and have had difficulty analyzing serial tissue samples. In this study, we introduced a pipeline to acquire anatomical and...
The ventral pallidum (VP) integrates reward signals to regulate cognitive, emotional, and motor processes associated with motivational salience. Previous studies have revealed that the VP projects axons to many cortical and subcortical structures. However, descriptions of the neuronal morphologies and projection patterns of the VP neurons at the si...
The dorsal raphe nucleus (DR) and median raphe nucleus (MR) contain populations of glutamatergic and GABAergic neurons that regulate diverse behavioral functions. However, their whole-brain input-output circuits remain incompletely elucidated. We used viral tracing combined with fluorescence micro-optical sectioning tomography to generate a compreh...
Many people affected by fragile X syndrome (FXS) and autism spectrum disorders have sensory processing deficits, such as hypersensitivity to auditory, tactile, and visual stimuli. Like FXS in humans, loss of Fmr1 in rodents also cause sensory, behavioral, and cognitive deficits. However, the neural mechanisms underlying sensory impairment, especial...
Fluorescence in situ hybridization (FISH) is a powerful tool to visualize transcripts in fixed cells and tissues. Despite the recent advances in FISH detection methods, it remains challenging to achieve high-level FISH imaging with a simple workflow. Here, we introduce a method to prepare long single-strand DNA concatemers (lssDNAc) through a contr...
Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types1,2, yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstr...
The cortico–basal ganglia–thalamo–cortical loop is one of the fundamental network motifs in the brain. Revealing its structural and functional organization is critical to understanding cognition, sensorimotor behaviour, and the natural history of many neurological and neuropsychiatric disorders. Classically, this network is conceptualized to contai...
An essential step toward understanding brain function is to establish a structural framework with cellular resolution on which multi-scale datasets spanning molecules, cells, circuits and systems can be integrated and interpreted¹. Here, as part of the collaborative Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-b...
Here we report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcripto...
Resin embedding of multi-color labeled whole organs is the primary step to preserve structural information for visualization of fine structures in three dimensions. It is essential to study the morphological characteristics, spatial and positional relationships of the millions of neurons, and the intricate network of blood vessels with fluorescent...
Pain decreases the activity of many ventral tegmental area (VTA) dopamine (DA) neurons, yet the underlying neural circuitry connecting nociception and the DA system is not understood. Here we show that a subpopulation of lateral parabrachial (LPB) neurons is critical for relaying nociceptive signals from the spinal cord to the substantia nigra pars...
To decipher the organizational logic of complex brain circuits, it is important to chart long-distance pathways while preserving micron-level accuracy of local network. However, mapping the neuronal projections with individual-axon resolution in the large and complex primate brain is still challenging. Herein, we describe a highly efficient pipelin...
Cutting tissues into ultrathin slices is highly desired in sectioning-based organ-wide imaging. However, it is difficult to perform tissue cutting at a high speed with excellent quality. Here, we design a precision vibratome based on a paired double parallelogram flexure, which enables a vibrating blade to move strictly along a straight line. Meanw...
Immunofluorescence (IF) is a powerful investigative tool in biological research and medical diagnosis, whereas conventional imaging methods are always conflict between speed, contrast/resolution, and specimen volume. Chemical sectioning (CS) is an effective method to overcome the conflict, which works by chemically manipulating the off/on state of...
Neural information is encoded by action potentials delivered by neurons. Which component of neural activity constitutes the basic unit carrying information is still a controversial issue. In this paper, stimulation experiments using a network of hippocampal neurons cultured on a multi-electrode array are used to investigate this issue. The results...
Parallel dual-plane imaging with a large axial interval enables the simultaneous observation of biological structures and activities in different views of interest. However, the inflexibility in adjusting the field-of-view (FOV) positions in three dimensions and optical sectioning effects, as well as the relatively small effective axial range limit...
The brain dopamine (DA) system participates in forming and expressing memory. Despite a well-established role of DA neurons in the ventral tegmental area in memory formation, the exact DA circuits that control memory expression remain unclear. Here, we show that DA neurons in the dorsal raphe nucleus (DRN) and their medulla input control the expres...
The impressive functions of the brain rely on an extensive connectivity matrix between specific neurons, the architecture of which is frequently characterized by one brain nucleus/region connecting to multiple targets, either via collaterals of the same projection neuron or several, differentially specified neurons. Delineating the fine architectur...
The stereotaxic brain atlas is a fundamental reference tool commonly used in the field of neuroscience. Here we provide a brief history of brain atlas development and clarify three key conceptual elements of stereotaxic brain atlasing: brain image, atlas, and stereotaxis. We also refine four technical indices for evaluating the construction of atla...
Deep convolutional neural networks (DCNNs) are widely utilized for the semantic segmentation of dense nerve tissues from light and electron microscopy (EM) image data; the goal of this technique is to achieve efficient and accurate three-dimensional reconstruction of the vasculature and neural networks in the brain. The success of these tasks heavi...