
Automatic generation of poetry: an overview

Hugo Gonçalo Oliveira
hroliv@dei.uc.pt

CISUC
Universidade de Coimbra

Portugal

Abstract

This paper is about the automatic generation of creative
text, more precisely the automatic generation of poetry. It
starts by presenting two possible categorisations for sys-
tems that aim generating poetry and then makes a brief
overview on the existing attempts to this subject based on
what can be found in the literature.

1. Introduction

In the last years we have seen several attempts to gener-
ate creative objects automatically, with the help of computer
programs and we have started to accept the computer has an
artist. The creation of visual art, the composition of musical
pieces or the generation of creative text are just some of the
fields that actual creative systems deal with.

The generation of natural language is a well-established
and promising sub-field of artificial intelligence and com-
putational linguistics. Its main goal is to develop computer
programs that can produce text that can be understood by
humans. Among the types of text generated automatically
we can find, for example, biographies [9], weather forecasts
[2] and also text that includes creative features. Attempts to
the automatic generation of creative text include systems ca-
pable of generating story narratives [3, 8], jokes [1, 18] or
poetry.

This paper is focused on the generation of the last re-
ferred text genre. The automatic generation of poetry in-
volves several levels of language like phonetics, lexical
choice, syntax and semantics and usually demands a con-
siderable amount of input knowledge. It is a complex task
and though an interesting topic for artificial intelligence re-
search.

We start by presenting two different categorisations for
the existing poetry generation systems. The first is based
on the approaches and techniques used to accomplish po-
etry generation and the second is based on the goals of the

system and on the output text. A brief overview on several
systems capable of generating poetry is then provided.

2. Categorisation of poetry generation systems

Despite not requiring exaggerate precision [5], poetic
texts involve regular syntactic and phonetic patterns where
rhythm, metrics, rhyme and other features like alliteration
or figurative language play an important role.

Manurung [12] affirms that when it comes to writing po-
etic text, we need to break several rules that are usually
present in the production of natural language text. He refers
some specific issues that need to be taken into consideration
while writing poetry:

• High occurrence of interdependent linguistic phenom-
ena that requires consideration of semantics, syntax
and lexis.

• There may not be a well-defined message.

• Rich resources are needed to satisfy phonetics, syntax
and semantics.

• Objective evaluation of the output text is very difficult.

This section presents two different proposed categorisa-
tions for poetry generation systems according first to the
approach taken and techniques used and then to the goals
the systems try to achieve. For each of the presented cate-
gories, examples of systems that embody its properties are
given. Short descriptions of all the referred systems are later
provided in Section 3.

2.1 Approaches and techniques

According to Gervás [7], it is (roughly) possible to group
poetry generation systems based on the approaches and
techniques they use:

1



• Template Based Poetry Generation: templates of po-
etry forms are filled with words that suit the defined
constraints (either syntactic, rhythmic or both). After
using the Poetry Creator and looking at several gen-
erated results, it is clear that the system follows this
approach.

• Generate and Test Approaches: random word se-
quences are produced according to formal require-
ments, that may involve metric, other formal con-
straints and semantic constraints. Manurung’s chart
system [11], the WASP system [5] and the generate
and test strategy of Tra-La-Lyrics [15] follow this ap-
proach.

• Evolutionary Approaches: poetry generation is based
on evolutionary computation. POEVOLVE and Manu-
rung’s McGonnagall [12] are two systems that follow
an evolutionary approach.

• Case-Based Reasoning Approaches: existing poems
are retrieved, considering a target message provided by
the user, and are then adapted to fit the required con-
tent. ASPERA [6] and COLIBRI [4] are examples of
this approach.

2.2 Goals

For the purpose of his thesis, Manurung defines that po-
etic text must hold all the following three properties:

• Meaningfulness: convey a conceptual message, which
is meaningful under some interpretation.

• Grammaticality: obey linguistic conventions pre-
scribed by a given grammar and lexicon.

• Poeticness: exhibit poetic features.

He describes a taxonomy for poetry generation systems,
based on the goals they try to achieve and how their output
texts embody the previously referred properties:

• Word salad: systems that simply concatenate random
words together, without following any grammatical
rules (none of the properties are embodied).

• Template and grammar-based: words are selected from
a lexicon in order to fill gaps in sentence templates
(property of grammaticality).

• Form-aware: the choice of words follows a pre-defined
text form, like the haiku1 or the sonnet. This is ac-
complished by following metrical rules (properties of

1Form of Japanese poetry consisting of three metrical phrases of 5, 7
and 5 syllables respectively.

grammaticality and poeticness). The WASP [5], PO-
EVOLVE [10], the programs by the ALAMO group,
Wong and Chun’s system [19] and the generative
grammar strategy of Tra-la-Lyrics [15] are examples
of systems belonging to this category.

• Poetry generation: the generated text embodies all
the three properties of grammaticality, poeticness and
meaningfulness. ASPERA [6], COLIBRI [4] and Mc-
Gonnagall [12] are included in this category.

The random words strategy of Tra-La-Lyrics [15] seems
to give rise to another entry in the presented taxonomy,
since the metrics of the generated text suit the given rhythm
and the text contains poetic features (rhyme), but the word
order does not follow any grammatical rules and there is no
semantics present. In other words, this strategy satisfies the
property of poeticness but none of the other two.

3. Attempts to poetry generation

The automatic generation of poetry has become a re-
search topic in the late 1990s, when the first serious works
on this subject started to be discussed in scientific meet-
ings and published in the literature. In this section several
attempts to poetry generation that can be found in the liter-
ature are briefly described.

3.1 The ALAMO group

The ALAMO group has been generating poems in
French for some time. Some of the programs they use are
described in their website2. As an example, the construc-
tion of the Rimbaudelaires used existing Rimbaud’s sonnets
as a starting point. Then, words like nouns, verbs and ad-
jectives were replaced by words belonging to Baudelaire’s
poetry vocabulary. The replacements are claimed to follow
”strong syntactic and rhythmic constraints”.

3.2 Manurung’s chart system

In 1999, Hisar Manurung applied chart generation to
generate natural language strings that satisfy given rhyth-
mic patterns.

The using of charts for parsing is quite common. This
technique consists of storing all complete constituents once
they are found or constructed so that they can be reused,
eliminating the inefficiency of backtracking. Chart genera-
tion is basically using a chart parser in the opposite direc-
tion: while a parser analyses strings and translates them to
logical forms, a generator translates logical forms to strings.

2http://indy.culture.fr/alamo/rialt/pagaccalam.html (former URL)
http://alamo.mshparisnord.org/rialt/index.html (April 2009)

2



In this work, sentences are logically represented by first
order predicates describing the input semantics. In order to
deal with the rhythm, lists of ’w’ (weak syllable) and ’s’
(strong syllable) were used to represent stress patterns. The
stress patterns of the words used were based on the lexical
stress and can be obtained from a pronunciation dictionary.
For example, the stress for the word incumbent would be
[w, s, w] and for the interrupt [w, w, s].

During the generation, when the result of a new rule is
obtained, the respective stress pattern is appended to the
existing one. Then, before adding the result to the chart,
the new stress pattern is checked for compatibility with the
target pattern. Only results with compatible patterns are
added, ensuring that the generated texts satisfy the pattern.

This system was used in the further developed poetry
generation system, McGonnagall.

3.3 POEVOLVE

In Levy’s [10] work, a computational model of poetry
generation, based on the theory of evolution, is discussed.
The real process of human poetry writing is taken as a refer-
ence from which to draw the intuitions that drive the system.

The architecture of a system following Levy’s model
would include:

• One (or more) generator module: for creating the ini-
tial population of candidate poetic objects and modify
these objects in the subsequent generations;

• Evaluator modules: for analysing and selecting the
highest ranked individuals at each generation;

• A work space: where the population resides;

• A lexicon, a conceptual knowledge base and a syntac-
tical knowledge base.

The POEVOLVE system is a prototype implementation
of the architecture proposed by Levy, that creates texts that
satisfy the form specifications of limericks3.

The initial population is created from a set of words
that include phonetic and stress information. Appropriately
rhyming words that can appear at the end of each line are
selected and then more words are selected to fill the rest of
the line based on their stress information. A genetic algo-
rithm is employed and evolution is achieved by mutation
and crossover operators that modify the words contained in
the limericks. Evaluation is performed by a neural network
that was trained on human judgements of how creative each
one of a selection of limericks is. This prototype, however,
doesn’t take syntax and semantics into account.

3Five-line poem with a strict form AABBA

3.4 Poetry Creator

The Poetry Creator is a simple system that generates po-
etry based on words describing a subject, a synonym for the
subject and a title for the poem, all three given by the user.
The resulting text consists of pre-defined verse templates
where gaps are filled with the words given. Despite being
referred by Manurung [14], the only information about this
system was obtained by using the applet in the Poetry Cre-
ator website4.

3.5 WASP

The WASP system [5] was one of the first serious at-
tempts on automatic poetry generation. It is a forward rea-
soning rule-based system that aims to study and test the im-
portance of the initial vocabulary, the word choice, the verse
pattern selection and the construction heuristics taking into
account the acceptance (or not) of the generated verses and
complete poems.

The system’s input consists of a set of words and a set
of reference verse patterns. A given block of text is splitted
into shorter fragments and all the words are collected and
can be used in the poem. The obtained fragments are used
to produce the reference patterns. The output of the system
can either be a set of verses that satisfy the constraints of
some strophic form (such as romances, cuartetos or tercetos
encadenados) or a set of free verses.

The WASP is in fact a set of programs, each one imple-
menting a different construction heuristics for the genera-
tion of poems. It works on the draft of the current verse and
follows a generate and test approach.

The basic verse generation algorithm starts with the se-
lection of the appropriate pattern. Then, a word correspond-
ing to the first category of the pattern is randomly chosen
from the vocabulary and appended to the draft. At each
stage the draft is tested against the conditions it should sat-
isfy. If the conditions are not met, it is rejected and a new
verse starts being generated.

The WASP was used to make experimental generations
in order to evaluate strategies for:

• Independent verse generation: avoiding word repeti-
tion and validation of the draft (3 different possibilities
for each);

• Complete poem generation: selecting both the pattern
and the rhyme for the next verse.

3.6 ASPERA

ASPERA [6] is a forward reasoning rule-based system
that, given a prose description of the intended message

4http://www-cs-students.stanford.edu/˜esincoff/poetry/jpoetry.html

3



and a rough specification of the type of poem, selects the
appropriate metre and stanza, generates a draft poem, re-
quests modification or validation of the draft by the user
and updates its database with the information of the vali-
dated verse.

The construction strategies included are an improved
version of the ones developed in WASP. Words must be
combined according to the syntax of the language and
should make sense according to their semantics. When oc-
curring at the end of lines, words may have additional con-
straints imposed by the strophic form. In ASPERA no rich
lexicon, syntax or semantics are involved, so it relies on en-
gineering solutions to achieve equivalent results without at-
tempting to model the complexity of natural language. The
selection of words uses methods based on similarity calcu-
lations between the intended message and a base of vali-
dated verses.

The basic unit for poem composition in ASPERA is the
line and not the sentence. The generation process starts by
interacting with the user to obtain the specification of the
poem, given by the following parameters:

• Approximate length of the poem (number o lines);

• Rhyme structure;

• Degree of formality;

• Setting (urban or rural);

• Mood (positive or negative).

The length of the poem and the degree of formality are used
to search in the knowledge base for the most appropriate
strophic form, while setting and mood are used in the vo-
cabulary selection. Besides these parameters, the user is
also asked to provide a prose paraphrase of the intended
message that will be used in the planning of the poem draft.
Each line is generated with a case-base reasoning (CBR)
approach:

1. Retrieve step: for each sentence in the intended mes-
sage, a specific verse is retrieved from a corpus of verse
examples.

2. Reuse step: a draft of the line is constructed based on
the part-of-speech (POS) structure of the chosen verse
as a template.

3. Revise step: the draft is presented to be validated or
corrected by the user.

4. Retain step: validated poems are analysed and stored
in order to add the corresponding information to the
verses database, making it possible to reuse them in
further generations.

3.7 COLIBRI

COLIBRI [4] is a poetry generation system very similar
to ASPERA. It also uses the CBR method for generation
but the cases are stored in a very flexible representation us-
ing a Description Logic System. COLIBRI incorporates an
application-dependent ontology, called CBROnto, that im-
proves the inference power of the system as well as the rep-
resentation and use of more explicit and general knowledge.

3.8 McGonnagall

Hisar Manurung’s McGonnagall is the result of an evo-
lutionary approach to generate poetry, that is described in
his thesis [12]. Although the thesis is dated from 2004, a
computational model for poetry generation [14] and an ar-
chitecture based on the model [13] were presented earlier,
in 2000.

Manurung formulated the poem generation process as a
state space search problem using stochastic hill-climbing
search, where a state in the search space is a possible text
with all its underlying representation, and a move can occur
at any level of representation, from semantics to phonetics.

The stochastic hill-climbing search model is an evolu-
tionary algorithm with two stages: evaluation and the evo-
lution. A set of evolutionary individuals is formed based
on initial information, target semantics and target phonet-
ics. During the evaluation, the individuals are scored based
on different aspects, such as surface form, phonetic pattern
and semantics. In the evolution stage, individuals are se-
lected according to their scores. The subset consisting of
the individuals with higher scores is selected for reproduc-
tion to produce mutated and, hopefully, better versions of
the poem. Since mutation may occur at different levels of
representation, operators must take special care to preserve
consistency. The operators presented in [14] include a se-
mantic explorer, a semantic realiser and a syntactic para-
phraser.

In McGonnagall, phonetic patterns are represented in
the same way they are in Manurung’s chart system [11].
The grammars are represented with the Lexicalized Tree
Adjoining Grammar formalism and flat-semantics is used,
where each individual is basically associated with a set of
propositions.

All the three properties that, according to Manurung
[12], poetic text must hold (referred in Section 2.2), are sat-
isfied by McGonnagall’s output.

3.9 Tra-la-Lyrics

Tra-La-Lyrics [16] is a system that aims to generate text
based on the rhythm of a song melody, given as input. After
analysing the lyrics of a set of songs written in Portuguese,

4



it was observed that, most of the times, strong beats in the
rhythm are associated with the lexical stress in the words.
Using the sequence of strong and weak beats as a rhythmic
pattern, the task of generating song lyrics is very similar to
the generation poetry.

Taking that into consideration and adding other usual
features in song lyrics like rhymes and repetition, three
strategies, with different complexities, were developed in
order to generate the lyrics [15]:

• Random words: the only constraints when choosing
the words are rhythmic. It is however possible to setup
the probability of reusing words and the probability of
having rhymes in specific places.

• Generative grammar: the word choice follows not only
rhythmic constraints but also syntactical constraints
(given by sentence templates). The syntactical con-
straints take priority over the rhythmic constraints, but
the rhythm is still suited most of the times. If none of
the constraints can be satisfied, backtracking is used.
This strategy also supports the setup of the probabil-
ity of reusing words, probability of using words with
given roots and it also tries to stop grammatical sen-
tences in the same beats that musical sentences end.

• Generate and test: words following sentence templates
are generated and evaluated against musical sentences.
After several generations, the sentence that fits better
the rhythm is chosen.

3.10 Generation using vector space model

Wong and Chun [19] present an approach to generate
”modern haikus” using text found in blogs. They believe
that with this approach the generated haikus will be more
human-understandable and will have more realism than tra-
ditional approaches that, eventually guided by provided
keywords or patterns, build poems from the scratch.

The proposed approach uses a keyword lexicon and a
line repository. The keyword lexicon consists of 50 words
commonly used in haiku writing while the line repository
contains fragments of sentences, found in blogs. These
fragments are originated from the segmentation of sen-
tences where the keywords are used and have four words
at most.

The haiku generation process starts by choosing three
keywords from the lexicon to form the general picture.
Then, fragments using these keywords are searched in the
line repository. Two keywords are extracted from each one
of the given fragment, using a weighing scheme to evaluate
how important a word is in a sentence. In the final step, vec-
tors are used to describe the semantic relationship of sen-
tence pairs. For each possible pair of sentences, a query is

created, with a keyword from each sentence. The result of
this query in Yahoo! is assigned to the corresponding el-
ement in a vector. The sentences chosen for the resulting
haiku are the ones with the most semantically related pair
of vectors.

4. Concluding remarks

The automatic generation of poetry is a complex and in-
teresting topic for research since it involves several levels
of language. However, what makes this task even more in-
teresting, is that some of those levels do not really have to
be strictly present. Two different categorisations of poetry
generation systems were presented in this paper and actual
systems were described. As one can notice, while some ap-
proaches simply rely on satisfying the metrics and including
poetic features, others are more concerned with syntax and
semantics and yet they are all valuable contributions, since
there are different genres of poetry and, usually, the trans-
mitted message does not even have to be always completely
accurate.

As it happens for other creative objects, it is difficult to
objectively evaluate the quality of a poem. There is how-
ever work on defining objective criteria for assessing how
creative the output of a system is [17]. Despite being impos-
sible to state that computer generated poems have reached
the quality of poems written by humans, there is no doubt
that the whole set of attempts on this subject provided rich
contributions for research on this area and were able to pro-
duce very interesting results.

References

[1] K. Binsted. Machine humour: An implemented model of
puns. PhD thesis, University of Edinburgh, Scotland, 1996.

[2] L. Bourbeau, D. Carcagno, E. Goldberg, R. Kittredge, and
A. Polguère. Bilingual generation of weather forecasts in an
operations environment. In Proceedings of the 13th confer-
ence on Computational linguistics, pages 318–320, Morris-
town, NJ, USA, 1990. Association for Computational Lin-
guistics.

[3] S. Bringsjord and D. A. Ferrucci. Artificial Intelligence and
Literary Creativity: Inside the Mind of BRUTUS, a Story-
telling Machine. Lawrence Erlbaum Associates, Hillsdale,
NJ., 1999.

[4] B. Dı́az-Agudo, P. Gervás, and P. A. González-Calero. Po-
etry generation in colibri. In ECCBR ’02: Proceedings of the
6th European Conference on Advances in Case-Based Rea-
soning, pages 73–102, London, UK, 2002. Springer-Verlag.

[5] P. Gervás. Wasp: Evaluation of different strategies for the
automatic generation of spanish verse. In Wiggins, G. (Ed.).
Proceedings of the AISB00 Symposium on Creative & Cul-
tural Aspects and Applications of AI & Cognitive Science,
Birmingham, UK, 2000.

5



[6] P. Gervás. An expert system for the composition of for-
mal spanish poetry. Journal of Knowledge-Based Systems,
14:200–1, 2001.

[7] P. Gervás. Exploring quantitative evaluations of the creativ-
ity of automatic poets. In Workshop on Creative Systems,
Approaches to Creativity in Artificial Intelligence and Cog-
nitive Science, 15th European Conference on Artificial Intel-
ligence, 2002.

[8] P. Gervás, B. Lönneker-Rodman, J. C. Meister, and
F. Peinado. Narrative models: Narratology meets artificial
intelligence. In Basili, Roberto and Lenci, Alessandro (Ed.).
International Conference on Language Resources and Eval-
uation. Satellite Workshop: Toward Computational Models
of Literary Analysis, Genova, Italy, 2006.

[9] S. Kim, H. Alani, W. Hall, P. H. Lewis, D. E. Millard, N. R.
Shadbolt, and M. J. Weal. Artequakt: Generating tailored bi-
ographies with automatically annotated fragments from the
web. In Semantic Authoring, Annotation and Knowledge
Markup (SAAKM) 2002 Workshop at the 15th ECAI, pages
1–6, 2002.

[10] R. P. Levy. A computational model of poetic creativity with
neural network as measure of adaptive fitness. In Proceed-
ings of the ICCBR-01 Workshop on Creative Systems, 2001.

[11] H. Manurung. A chart generator for rhythm patterned text.
In Proceedings of the First International Workshop on Liter-
ature in Cognition and Computer, 1999.

[12] H. Manurung. An evolutionary algorithm approach to poetry
generation. PhD thesis, University of Edinburgh, 2004.

[13] H. Manurung, G. Ritchie, and H. Thompson. A flexible in-
tegrated architecture for generating poetic texts, 2000.

[14] H. Manurung, G. Ritchie, and H. Thompson. Towards a com-
putational model of poetry generation. In AISB00 Sympo-
sium on Creative & Cultural Aspects and Applications of AI
& Cognitive Science, 17th-18th April 2000, U. of Birming-
ham, England., 2000.

[15] H. R. Gonçalo Oliveira, F. A. Cardoso, and F. C. Pereira.
Exploring different strategies for the automatic generation of
song lyrics with tra-la-lyrics. In Neves, J. & Santos, M. &
Machado, J.M. (Ed.). New Trends in Artificial Intelligence,
pp. 57-68, Guimares, Portugal, 2007.

[16] H. R. Gonçalo Oliveira, F. A. Cardoso, and F. C. Pereira.
Tra-la-lyrics: an approach to generate text based on rhythm.
In Cardoso, A. & Wiggins, G. (Ed.). Proceedings of the 4th.
International Joint Workshop on Computational Creativity,
London, UK, 2007.

[17] G. Ritchie. Assessing creativity. In Proceedings of the
AISB01 Symposium on Artificial Intelligence and Creativity
in Arts and Science, pages 3–11, 2001.

[18] G. Ritchie, R. Manurung, H. Pain, A. Waller, R. Black, and
D. O’Mara. A practical application of computational hu-
mour. In Cardoso, A. & Wiggins, G. (Ed.). Proceedings of
the 4th. International Joint Workshop on ComputationalCre-
ativity, London, UK, 2007.

[19] M. T. Wong and A. H. W. Chun. Automatic haiku genera-
tion using vsm. In Proceeding of 7th WSEAS Int. Conf. on
Applied Computer & Applied Computational Science (ACA-
COS ’08), Hangzhou, China, 2008.

6


