
982 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 6, JUNE 2011

Efficient Algorithm for Training Interpolation
RBF Networks with Equally Spaced Nodes

Hoang Xuan Huan, Dang Thi Thu Hien, and Huynh Huu Tue

Abstract— This brief paper proposes a new algorithm to train
interpolation Gaussian radial basis function (RBF) networks in
order to solve the problem of interpolating multivariate functions
with equally spaced nodes. Based on an efficient two-phase
algorithm recently proposed by the authors, Euclidean norm
associated to Gaussian RBF is now replaced by a conveniently
chosen Mahalanobis norm, that allows for directly computing
the width parameters of Gaussian radial basis functions. The
weighting parameters are then determined by a simple iterative
method. The original two-phase algorithm becomes a one-phase
one. Simulation results show that the generality of networks
trained by this new algorithm is sensibly improved and the
running time significantly reduced, especially when the number
of nodes is large.

Index Terms— Contraction transformation, equally spaced
nodes, fixed-point, output weights, radial basis functions, width
parameters.

I. INTRODUCTION

Interpolation of functions is a very important problem
in numerical analysis with a large number of applications
[1]–[5]. The case of 1-D had been studied and solved by
Lagrange, using polynomial as forms of interpolating func-
tions. However, the multivariable problems have attracted
interest of researchers only in the second half of the 20th
century, when pattern recognition, image processing, computer
graphics and other technical problems dealing with partial dif-
ferent equations were born. Several techniques were proposed
to solve the approximation and interpolation problems such as
multiple-layered perceptron, radial basis function (RBF) neural
networks, k-nearest neighbor (K-NN) and locally weighted
linear regression [6]. Among these methods, RBF networks
are commonly used for interpolating multivariable functions.
The RBF approach was first proposed by Powell as an efficient
technique to solve the multivariable function interpolation [7].
Broomhead and Lowe had adapted this method to build and
train neural networks [8].

In a multivariate interpolation RBF network of a func-
tion f , the interpolation function is of the form: ϕ(x) =
∑M

k=1 wkh(||x − vk ||), σk)+w0 with interpolation conditions
ϕ(xk) = yk , for all k = 1, . . . , N , where {xk}N

k=1 is a set
of n-dimensional vectors (called as interpolation nodes) and

Manuscript received February 11, 2010; revised February 19, 2011;
accepted February 19, 2011. Date of publication May 13, 2011; date of
current version June 2, 2011. This work was supported in part by the National
Foundation for Science and Technology Development.

H. X. Huan is with the College of Technology, Vietnam National University,
Hanoi, Vietnam (e-mail: huanhx@vun.edu.vn).

D. T. T. Hien is with the University of Transport and Communications,
Hanoi, Vietnam (e-mail: dthien@uct.edu.vn).

H. H. Tue is with the Bac-Ha International University, Hanoi, Vietnam
(e-mail: huynhhuutue@bhiu.edu.vn).

Digital Object Identifier 10.1109/TNN.2011.2120619

1045–9227/$26.00 © 2011 IEEE

yk = f (xk) is a measured value of function f at respective
interpolation node (in approximation networks, these equations
are approximated), real functions h(||x − vk ||, σk) are called
as RBFs with center vk(M ≤ N), where wk and σk are
unknown parameters that we have to determine. The general
approximation (known as generality property) was discussed
in [9] and [10].

The most common kind of RBFs [2], [11], [12] is of
Gaussian form h(||x − v||, σ) = e−||x−v ||2/σ 2

, where ν and
σ are, respectively, the center and the width parameters of the
RBFs.

For noiseless data with a small number of interpolation
nodes, they are employed as centers of RBFs such that the
number of nodes is equal to the number of RBFs to be used
(M = N). Given preset widths, the output weights satisfying
the interpolation conditions are unique and the corresponding
RBF networks are called as interpolation ones.

For the case of large number of interpolation nodes, the
Gauss elimination method or other direct methods using
matrix multiplication have the complexity of O

(
N3
)
, fur-

thermore, accumulated errors quickly increase. On the other
hand, optimization techniques used to minimize the sum of
squared errors converge too slowly and give large final errors.
Therefore, one often chooses M smaller than N [12]. To
choose the number of neurons M and determine the centers
vk of the corresponding RBFs are still open research problems
[13], [14]. To avoid these obstacles, the authors recently
proposed an efficient algorithm to train interpolation RBF
networks with very large number of interpolation nodes with
high precision and short training time [15], [16].

In practice, like in computer graphics as well as in tech-
nical problems involving partial differential equations, for the
interpolation problem, one often has to deal with the case of
equally spaced nodes [1], [3], [5]. This brief paper is based on
the training algorithm proposed by Hoang, Dang, and Huynh
[15], referred from now on as HDH algorithm. This HDH
training algorithm has two phases: 1) in the first, it iteratively
computes the RBF width parameters, and 2) in the second,
the weights of the output layer are determined by the simple
iterative method.

In the case of equally spaced data, their coordinates can be
expressed as xi1,i2,...in = (xi1

1 , . . . , xin
n), where xik

k = x0
k +

ik ∗ hk , hk being the constant steps in the kth dimension and
ik varies from 1 to Nk . When the Euclidian norm ||x || =√

x T x associated to RBF is replaced by a Mahalanobis norm
||x ||A = √

x T Ax with A conveniently chosen as specified
in Section III-A, by exploiting the characteristic of uniformly
spaced data, the width parameters can now be predetermined
so that the originally proposed technique becomes one-phase
algorithm.

As the training time for the original algorithm is mainly
spent in the first, the obtained one-phase algorithm is there-
fore very efficient. Furthermore, the generality is sensitively
improved.

The rest of this brief paper is organized as follows. In
Section II, interpolation RBF networks and the HDH algorithm
[15] are briefly introduced. Section III is dedicated to the
new algorithm for the interpolation problem with equally

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 6, JUNE 2011 983

spaced nodes. Simulation results are shown in Section IV.
Some conclusions are presented in the final section.

II. INTERPOLATION RBF NETWORKS AND THE HDH
ALGORITHM

This section briefly presents the HDH algorithm and its
related concepts (see [15] for more details).

A. Interpolation RBF Network

Multivariate Interpolation Problem: Consider the prob-
lem of interpolation with noiseless data. Let f be a mul-
tivariate function f : D(⊂ Rn) → Rm and the sample
set{xk, yk}N

k=1; {xk}N
k=1 ⊂ D such that f (xk) = yk; k =

1, . . . , N . Let ϕ be a function of a known form satisfying

ϕ(xi) = yi ∀i = 1, . . . , N. (1)

The points xk and the function ϕ are, respectively, called as
interpolation nodes and the interpolation function of f . ϕ is
used to approximate f on the domain D. Powell proposed
to exploit RBFs for the interpolation problem [7]. In the
following section, we will sketch the Powell technique using
Gaussian radial function (for further details see [12], [17]).

Interpolation Technique Based on RBFs: Without loss of
generality, it is assumed that m is equal to 1. The interpolation
function ϕ has the following form:

ϕ(x) =
N∑

k=1

wkϕk(x)+w0 (2)

where
ϕk(x) = e−∥∥x−xk

∥
∥2
/σ 2

k ; ∀k = 1, . . . , N (3)

where ‖u‖ is a norm of u (in this brief paper, it is the Euclidean
norm) and xk is called as center of RBF ϕk , wk and σk , are
parameters such that ϕ satisfying interpolation conditions (1)

ϕ(xi) =
N∑

k=1

wkϕk(x
i)+w0 = yk; ∀i = 1, . . . , N. (4)

For each k, parameter σk (called width parameter of RBF)
is used to control the width of the Gaussian basis function
ϕk , when

∥
∥x − xk

∥
∥ > 3σk , then ϕk(x) is almost negligible.

Consider the N × N matrix �

� = (ϕk,i
)

N×N

where

ϕk,i = ϕk(x
i) = e

−||xi −xk ||2
σ2

k (5)

with the chosen parameters σk . If all nodes xk are pairwise
different, then the matrix� is positive-definite [18]. Therefore,
with given w0, the solution w1, . . . , wN of (2) always exists
and is unique.

In the case where the number of RBFs is less than N ,
their center might not be an interpolation node and (2) may
not have any solution, the problem is then finding the best
approximation of f using any optimum criteria. Usually,
parameters wk and σk are determined by the least mean square
method [12], which does not correspond to our situation.

Furthermore, determining the optimum center is still an open
research problem as mentioned above.

Interpolation RBF Network Architecture: An interpolation
RBF network is a 3-layer feedforward neural network which
is used to interpolate a multivariable real function f : D(⊂
Rn) → Rm . It is composed of n nodes of the input layer,
represented by the input vector x ∈ Rn ; there are N neurons
in the hidden layer, of which the kth neuron center is the inter-
polation node xk and; its kth output is ϕk(x); finally the output
layer contains m neurons which determine interpolated values
of f (x). Given the fact that in the HDH algorithm, each neuron
of the output layer is trained independently when m > 1,
we can then assume m = 1 without loss of generality. There
are different training methods for interpolation RBF networks,
but as shown in [15], the HDH algorithm offers the best-known
performance (with regard to training time, training error and
generality) and is briefly presented in the following section.

B. Review of the HDH Algorithm

In the first phase of the two-phase HDH algorithm, radial
parameters σk are determined by balancing between the error
and the convergence rate. In the second phase, weight para-
meters wk are obtained by finding the fixed point of a given
contraction transformation accordingly selected. Let us denote
by Section I the N × N identity matrix, W = [w1, . . . , wN]T ,
Z = [z1, . . ., zN]T , respectively, two vectors in N-dimensions
space RN , where

zk = yk −w0 ∀k ≤ N (6)

and let
� = I −� = [ψk, j

]

N×N (7)

where � is given in (5), then

ψk, j =
{

0; if : k = j

−e−||x j−xk ||2/σ 2
k ; if : k �= j.

(8)

Equation (2) can now be rewritten as

W = �W + Z (9)

w0 in (3) is chosen as the average of yk values. Now, for each
k ≤ N , let us define qk > q with

qk =
N∑

j=1

∣
∣ψk, j

∣
∣.

Given an error ε and two positive constants q < 1 and
α < 1, the algorithm computes parameters σk and W∗, solution
of (9). In the first phase, for each k ≤ N, σk is determined such
that qk < q , while replacing σk by σk/α, we have qk > q .
With these values, the norm ‖ψ‖∗ of matrix � given by (6)
is less than q , such that an approximate solution W∗ of (9)
will be found in the next phase by a simple iterative method.

The norm of N-dimension vector u is given by

‖u‖∗ = max

{∣
∣u j
∣
∣

j
≤ N

}

. (10)

984 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 6, JUNE 2011

The ending condition is chosen by the following:
q

1 − q

∥
∥
∥W 1 − W 0

∥
∥
∥∗ ≤ ε. (11)

The above algorithm always ends after a finite number of
steps, of which the solution satisfies the following inequality:

∥
∥
∥W 1 − W∗

∥
∥
∥∗ ≤ ε. (12)

Its complexity is O
(
(T + c) nN2

)
, where c and T are given

constants [15]. The training time of phase 1 only depends
on the number of interpolation nodes and that of phase 2 on
‖Z‖∗ = max |Zi = yi − 1/n

∑N
i=1 yi | but not on the variation

of the interpolated function f .

III. INTERPOLATION PROBLEM WITH EQUALLY SPACED

NODES AND NEW TRAINING ALGORITHM

A nice feature of the HDH algorithm is that it computes
the RBFs widths in such a way that the matrix � to be used
in the second phase is of diagonal dominance, which is the
desired property that allows for a very efficient determination
of the output weights by the simple iterative method. Due to
this efficiency, the HDH algorithm can handle interpolation
networks with a very large number of nodes.

Experimental results show that the first phase of the HDH
algorithm consumes a high percentage of the total running time
(see Section IV-A below). The objective of this brief paper
is to precompute these RBF widths for the case of equally
spaced nodes so that the HDH algorithm will become one-
phase algorithm.

A. Problem with Equally Spaced Nodes

From now on, we consider a problem that the interpolation
nodes are equally spaced. In these cases, we can express each
interpolation node by a multi-index node as

xi1,i2,...in = (xi1
1 , . . . , xin

n); xik
k = x0

k + ik ∗ hk;
k = 1, . . . , n (13)

where hk(k = 1, . . . , n) is the changing step of parameter xk ,
n is the number of dimensions, ik are taken in range between 1
and Nk (Nk are scale numbers of the kth dimension).

In (3), the values of each radial function are the same at
points which are equidistant to the center, and its level surfaces
are spherical. This choice does not conveniently suit situations
where interpolation steps {hk; k = 1, . . . , n} strongly deviate
from each other. In these cases, instead of Euclidean norm,
we consider a Mahalanobis norm defined by ‖x‖A = √

x T Ax ,
where A is a diagonal matrix

A =

⎛

⎜
⎜
⎜
⎜
⎝

1
a2

1
0 ... 0

0 1
a2

2
... 0

...

0 0 ... 1
a2

n

⎞

⎟
⎟
⎟
⎟
⎠
.

ak are fixed positive parameters which will be conveniently
chosen later on, in order to allow for constructing our proposed

efficient algorithm. Equations (1) and (3) are then rewritten as
follows:

ϕ(x) =
N1,...Nn∑

i1,...in=1

wi1,...inϕi1,...in(x)+ w0 (14)

where

ϕi1,...in(x) = e−∥∥x−xi1,...in
∥
∥2

A/σ
2
i1,...in . (15)

The N × N matrix � expressed in (5) is rewritten as: � =(
ϕ

j1,..., j n
i1,...,in

)

N×N
(N = N1 . . . Nn), where

ϕ
j1,..., j n
i1,...,in = ϕi1,...in(x

j1,..., j n) = e−∥∥x j1,..., jn−xi1,...in
∥
∥2

A/σ
2
i1,...in .

(16)
The entries of the Matrix � = I −� are defined as follows:

�
j1,..., j n

i1,...,in =
{

0; if : j1, . . . , jn = i1, . . . , 1n

−e−∥∥x j1,..., jn−xi1,...,in
∥
∥2

A/σ
2
i1,...,in .

(17)

Radii σi1,...,in are determined so that matrix � is a contrac-
tion transformation, in order to ensure that the phase two of
the HDH algorithm can be correctly applied.

It means that, given a constant q ∈ (0, 1), choose σi1,...,in
such that

qi1,...,in =
∑

j1,..., j n

∣
∣
∣ψ

j1,..., j n
i1,...,in

∣
∣
∣ ≤ q < 1. (18)

Taking (14) into account, it implies that

�
j1,..., j n

i1,...,in =

⎧
⎪⎨

⎪⎩

0,where : j1, . . . , jn = i1, . . . , in

−e
−

n∑

p=1
(j p−ip)2

h2
p

a2
p
/σ 2

i1,...,in
.

(19)

Then, qi1,...,in can be re-written as follows:

qi1,...,in =
∑

j1,..., j n �=i1,...,in

e
−

n∑

p=1
(j p−ip)2

h2
p

a2
p
/σ 2

i1,...,in

=
n∏

p=1

Np∑

j p=1

e
− h2

p

σ2
i1,...,in a2

p
(j p−ip)2

− 1. (20)

Finally, if we set ap = h p , then

qi1,...,in =
n∏

p=1

Np∑

j p=1

e
− (j p−ip)2

σ2
i1,...,in − 1. (21)

The following theorem is the basis of the new algorithm.
Theorem 6: For all q ∈ (0, 1), if all σi1,...,in are chosen

such that

σi1,...,in ≤
[

ln

(
6

n
√

1 + q − 1

)]− 1
2

then qi1,...,in < q < 1.

(22)
Proof: In fact, with jp, i p ∈ {1, . . . , Np

}
, the right-hand

side member (RHS) of (21) can be bounded by

qi1,...,in <

(

1 + 2
∞∑

k=1

e
− k2

σ2
i1,...,in

.

)n

− 1. (23)

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 6, JUNE 2011 985

Procedure QHDH Algorithm
Begin

End

Setting σ
i1,..,in

= σ// chosen among Eqs (28), (29);

Find W* by simple iterative method;// The same
phase 2 of HDH Algorithm described in section II;

Fig. 1. Procedure of training RBF network with equally spaced nodes.

(a) (b)

Fig. 2. Influence of RBFS with star as center. (a) Euclidean norm.
(b) Mahalanobis norm.

A sufficient condition to insure (18) is
(

1 + 2
∞∑

k=1

e
− k2

σ2
i1,...,in

.

)n

− 1 ≤ q < 1. (24)

That is equivalent to

∞∑

k=1

e
− k2

σ2
i1,...,in . ≤

n
√

1 + q − 1

2
. (25)

To simplify the notation, let us denote σi1,...,in by σ . Given
the condition that q < 1 and n ∈ N , the RHS of (25) is all the
time upper-bounded by 1/2. Let us consider just the first term
of the left-hand side member (LHS) of (25). We then have

e
− 1
σ2 <

1

2
, that gives σ <

1√
ln 2

. (26)

On the other hand, the LHS of (25) can be bounded as
follows:
∞∑

k=1

e
− k2

σ2 = e
− 1
σ2

∞∑

k=1

e
− k2−1

σ2 = e
− 1
σ2

(

1 +
∞∑

k=2

e
− k2−1

σ2

)

= e
− 1
σ2

(

1 +
∞∑

k=1

e
− (k+1)2−1

σ2

)

< e
− 1
σ2

(

1 +
∞∑

k=1

e
− k2

σ2

)

< e
− 1
σ2

⎛

⎝1 +
∞∫

0

e
− t2

σ2 dt

⎞

⎠ = e
− 1
σ2

(

1 + σ

√
π

2

)

.

Using (26), we obtain
∞∑

k=1

e
− k2

σ2 < e
− 1
σ2

(

1 +
√
π/ log(1)

2

)

≈ 2.085e
− 1
σ2 < 3e

− 1
σ2 .

(27)
Equation (27) shows that (25) is satisfied when

3e−1/σ 2
i1,...,in ≤ (n

√
1 + q − 1)/2 or equivalently, (25) is

satisfied when

σi1,...,in ≤
√
√
√
√

1

ln
(

6
n√1+q−1

) .

TABLE I

COMPARISON OF TRAINING TIME OF NETWORKS

Number of Nodes QHDH HDH

1071 (N1 = 51, h1 = 0.2, N2 = 21, h2 = 1) 10 in 32 in

5271 (N1 = 251, h1 = 0.04, N2 = 21, h2 = 1) 275 in 1315 in

10251(N1 = 201, h1 = 0.05, N2 = 51, h2 = 0.4) 765 in > 2h

TABLE II

COMPARISON OF TRAINING ERROR AND TRAINING TIME OF NETWORKS

Test
Function

QHDH,
q = 0.9

σ = 0.5568
Training
Time =

18 in

HDH,
q = 0.9
α = 0.9
Training
Time =

35 in

QTH σ =
0.07252
SSE =

0.0013856
Training
Time =

48 in

QTL σ =
0.07215
SSE =

0.0016743
Training
Time =

46 in

Average
Error

Average
Error

Average
Error

Average
Error

Y2 3.85E-09 7.84E-08 6.95E-05 7.16E-05

Remark 8: For practical purpose, it is more convenient to
choose all σi1,...,in identical and equal to σ with two different
possibilities.

1)

σi1,...,in = σ0 =
[

ln

(
6

n
√

1 + q − 1

)]− 1
2

. (28)

2) With given n, q and γ > 1 choosing σ = σ0γ
m , where

m is the largest integer such that

N∑

k=1

e
− k2

σ2 ≤
n
√

1 + q − 1

2
. (29)

In this case, using the same approach as in (21)–(24), it is
easy to show that (22) is satisfied. The complexity is of the
order O(N), which is almost negligible, compared to other
orders.

B. New Training Algorithm QHDH

Now, with given positive constant q<1, parameters σi1,...,in
are preset by one of the three possible choices defined in
(28) and (29). Based on the above theorem, the output layer
weights can be determined by using the second phase of the
HDH algorithm. Thus, the new algorithm is named as QHDH
(abbreviation of Quick HDH) which is specified in Fig. 1.

C. Algorithm Complexity

The complexity of this algorithm is due to two actions:
computing � and computing the output weights. The com-
plexity associated to the computation of � is O(nN2). To
compute the output weights warranting a given error ε, we
need at most T iterations with T = (ln(ε(1 − q)/‖Z‖∗)/ ln q)
[15], each iteration has the complexity O(N2) so that the total
complexity of the algorithm is O((n + T)N2).

986 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 6, JUNE 2011

D. Discussion on the Algorithm

One good feature of Gauss RBF neural networks is their
local character, meaning that only data in their neighborhood
can influence their behavior (see [6]). For this reason it
is suggested to choose small width for RBFs [19, p.289].
However, for points far away from the center, values of RBFs
are negilible so that the interpolation errors at these points
become inacceptable. This behavior is illustrated in Fig. 2(a).
The following experiments show that the width chosen by our
method gives better performance when compared to Haykin
or Looney choices [12], [17]. Moreover, with the Mahalanobis
norm ‖x‖A = √

x T Ax defined in Section III-A, with any
hk , points far from centers are still strongly influenced by
RBFs [see Fig. 2(b)]. Thank to this property, the generality of
the networks when using the Mahalanobis norm offers better
performance compared to Euclidean norm. These features are
in fact observed in following simulation results.

IV. SIMULATION STUDY

In [15], the complexity and the convergence of the HDH
algorithm have been analyzed, as the QHDH algorithm is a
sibling of the HDH one, it still has all advantages of the HDH
one. The goal of the following simulations is to compare
the training time, training error and the generality of the
networks trained by the QHDH algorithm with respect to those
trained by the HDH algorithm and some one-phase gradient
algorithms.

In the scenarios of simulation, we are interested in com-
paring the running time, the training error and the generality
of QHDH, HDH [15], LMS/SSE [12, pp.98–100] with two
different choices of width parameters σ = 1/(2N)1/n [12,
p.99] and (σ = D max/

√
2N) [17, p.299], where Dmax is the

maximum distance between two interpolation nodes. In the
following, the last two algorithms are denoted as QTL and
QTH. To avoid repetition, we only present numerical results
for the case where σ is defined by (28).

Given the fact that the QHDH running time linearly depends
on the data space dimensions, for the simulation convenience,
we just need low dimension spaces to illustrate its perfor-
mance. On the other hand, the performance of QHDH and
HDH are perfectly determined so that for the convenience
of comparison, to avoid the burden of presentation, we just
look at 10 randomly chosen points farthest from centers in
the interpolation domain for the interpolation error.

Noiseless data are generated with four different functions.
The first function with two-variables y1 = 1 + (2x1+

cos(3x1)) /(x1x2 + 1) where x1 ∈ [0, 3.5] and x2 ∈ [0, 7]
provide a case where different numbers of interpolation nodes
are used to compare the training time with respect to the HDH
algorithm.

The last three ones of three-variables

y2 = x1 + cos (x2 + 1)+ sin(x3 + 1)+ 2,

x1 ∈ [0, 1] , x2 ∈ [0, 2] , x3 ∈ [0, 3]

y3 = x2
1 x2 + sin (x2 + x3 + 1)+ 1,

x1 ∈ [0, 1] , x2 ∈ [0, 2] , x3 ∈ [0, 3]

y4 = x2
1 x2 + x3 + sin (x2 + x3 + 1)+ 1,

x1 ∈ [1, 2] , x2 ∈ [0, 2] , x3 ∈ [0, 3]

give more complex cases to be studied, in order to illustrate
the performance of the QHDH algorithm. We are going to
compare the training error and the network generality of
QHDH with respect to the ones of HDH algorithm, the QTL
algorithm and the QTH algorithm. Furthermore, comparing the
algorithm generality for different choices of σ will show the
best choice for the training process.

The tests are run on a computer with the following configu-
ration: on Intel Pentium IV Processor, 3.0 GHz, and 512 MB
DDR RAM. The ending condition is the error ε = 10−6.

A. Comparison of Training Time

The simulation results are presented in Table I for the two-
variable function in order to compare training time of networks
trained by the QHDH algorithm and by the HDH algorithm.

The training time of networks trained by the QHDH
algorithm is reduced significantly in comparison to those of
networks trained by the HDH algorithm.

B. Comparison of Training Error

The experiment results are presented in Table II for the
three-variable function y2 with 1331 nodes, where N1 = 11,
h1 = 0.1; N2 = 11; h2 = 0.2; N3 = 11; h3 = 0.3. After the
training is completed, the average training error is computed
over 100 randomly chosen interpolation nodes.

The experiment results have shown that the training error
and the training time of the QHDH algorithm are the best
among these four algorithms.

C. Comparison of Generality

The network generality trained by different algorithms is
analyzed for two cases by computing errors: 1) at 10 points
which are farthest ones from interpolation nodes, and 2) at
100 random points using cross validation method [20].

1) Comparison at the Farthest Points: The experiment
results are presented in Table III for the three-variable function
y2 with 1331 nodes, where N1 = 11, h1 = 0.1, N2 = 11,
h2 = 0.2, N3 = 11, h3 = 0.3. After the training is finished,
we take 10 random points which are the farthest ones from
interpolation nodes in the interpolated domain.

The experiment results have shown that the QHDH algo-
rithm has a runtime much shorter and its generality much
better than those trained by other algorithms.

2) Comparison by Cross-Validation: In this section, we are
going to compare the average absolute error computed over
100 randomly chosen nodes, namely the cross-validation error,
for the three training methods: QHDH, QTL, and QTH for all
four functions with σ = γmσ0, where γ = 1.1 and m ≥ −1.

Table IV shows the cross-validation error corresponding to
the two-variable function y1 with 1296 interpolation nodes
and with N1 = N2 = 36, h1 = 0.1, h2 = 0.2. Table V
shows results for three other functions y2, y3 and y4 with 1331
interpolation nodes with N1 = N2 = N3 = 11, h1 = 0.1,
h2 = 0.2, h3 = 0.3.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 6, JUNE 2011 987

TABLE III

COMPARISON OF GENERALITY OF NETWORKS AT 10 FARTHEST POINTS

Co-ordinate of
Checked Point

Original
Function

Value

QHDH: q = 0.9,
σ = 0.5568 Training

Time = 18 in

HDH: q = 0.9, α = 0.9
Training Time = 35 in

QTH: σ = 0.07252,
SSE = 0.0013856

Training Time = 48 in

QTL: σ = 0.07215
SSE = 0.0016743

Training Time = 46 in

x1 x2 x3
Interpolation

Value
Error

Interpolation
Value

Error
Interpolation

Value
Error

Interpolation
Value

Error

0.25 1.1 0.2 2.67719298 2.61873 0.058462981 2.587851 0.0893423 0.108851 2.568342 0.298539 2.378654

0.45 0.9 0.4 3.11216016 2.97086 0.141300163 3.325614 0.2134542 0.237326 2.874834 0.424728 2.687432

0.35 1.3 0.5 2.68121897 2.61761 0.063608965 2.602756 0.0784632 0.493676 2.187543 0.462473 2.218746

0.15 0.9 1 2.73600786 2.65512 0.08088786 2.82574 0.0897323 0.640525 2.095483 0.53864 2.197368

0.45 1.1 1.3 2.69085911 2.63282 0.058039108 2.612116 0.0787432 0.561016 2.129844 0.360984 2.329875

0.25 1.3 1.6 2.09922535 2.28295 0.183724649 2.249048 0.1498224 0.223732 1.875493 0.204642 1.894583

0.35 0.7 2.1 2.26273617 2.34536 0.082623832 2.361169 0.0984326 0.07928 2.183456 0.049862 2.212875

0.45 0.9 1.9 2.36595976 2.44444 0.078480238 2.463603 0.0976436 0.217583 2.148377 0.078399 2.287561

0.65 0.7 1.7 2.94853539 2.7636 0.184935386 3.146968 0.1984324 0.60088 2.347655 0.420098 2.528438

0.75 0.9 1.9 2.66595976 2.62388 0.042079762 2.578279 0.0876803 0.833472 1.832488 0.183307 2.482652

Average error 0.097414294 0.1181747 2.224351 2.321818

TABLE IV

COMPARISON OF GENERALITY OF NETWORKS AT 100 RANDOM POINTS FOR Y1

Test
Function

QHDH, q = 0.9 QTH:
σ = 0.1537218

SSE = 0.001552

QTL:
σ = 0.0196419
SSE = 0.00174σ = 0.546818 σ = 0.6015 σ = 0.66165 σ = 0.7218 σ = 0.79398

Average Error Average Error Average Error Average Error Average Error Average Error Average Error

Y1 0.0932212 0.0512532 0.025595 0.0152543 diverging 1. 583921 5. 548693

TABLE V

COMPARISON OF GENERALITY OF NETWORKS AT 100 RANDOM POINTS FOR Y2 , Y3 AND Y4

Test
Function

QHDH, q = 0.9 QTH:
σ = 0.07252

SSE = 0.0013856

QTL:
σ = 0.07215459
SSE = 0.0016743σ = 0.50618 σ = 0.5568 σ = 0.61248 σ = 0.66816 σ = 0.734976

Average Error Average Error Average Error Average Error Average Error Average Error Average Error

Y2 0.10701 0.0677356 0.0375895 0.0192477 diverging 2.0143854 2.1349864

Y3 0.11147 0.0708092 0.0392766 0.0202813 diverging 2.1013045 2.1835982

Y4 0.23456731 0.0851456 0.0813783 0.0787494 diverging 2.158693 2. 2178432

From experimental results we can conclude that networks
trained by the QHDH algorithm offer much better performance
than trained by the QTH algorithm and by the QTL algorithm.
Furthermore, it is observed that when σ increases, under the
constraint defined by (29), the interpolation network generality
is improved.

V. CONCLUSION

The HDH algorithm for training interpolation RBF networks
presented in [15] improves significantly the quality of net-
works. On the other hand, in cases of equally spaced nodes, it
does not exploit any advantage of this uniform distribution
of nodes. By replacing Euclidean norm in Gaussian radial
functions by an appropriately chosen Mahalanobis norm, we
can conveniently preset the width parameters, and then use
the second phase of the HDH algorithm to train interpolation

networks. This new one-phase algorithm does not only reduce
seriously the networks training time but also improves signif-
icantly the network generality. Simulation results show that
the QHDH is really powerful when applied to problems with
large number of interpolation nodes.

In practice, for arbitrarily distributed nodes of noisy data,
the approximation problem might be solved by the following
approach. The first step is to construct an appropriate uniform
grid and at the nodes of this newly formed grid, the values
of the target approximation function are computed by the
linear regression technique applied to their K-NN points.
Finally the interpolation RBF networks can be constructed
in applying the QHDH algorithm over this new uniform
grid.

One last interesting point to be mentioned is that in a
recent research work [20], a kind of “optimum” choice for

988 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 6, JUNE 2011

the RBF parameters is proposed; but its complexity is O(N3).
Our proposed method, while not optimum in any sense, has
the complexity O(N2). This is why for large size problems,
our algorithm is up to now the only one that can handle the
situation.

REFERENCES

[1] R. H. Bartels, J. C. Beatty, and B. A. Barsky, An Introduction on Splines
for Use in Computer Graphics & Geometric Modeling. San Mateo, CA:
Morgan Kaufmann, 1987.

[2] E. Blanzieri, “Theoretical interpretations and applications of radial basis
function networks,” Inf. Telecomun., Univ. Trento, Trento, Italy, Tech.
Rep. DIT-03-023, 2003.

[3] M. D. Buhmann, Radial Basis Functions: Theory and Implementations.
Cambridge, U.K.: Cambridge Univ. Press, 2004.

[4] R. S. Buss, 3-D Computer Graphics: A Mathematical Introdution with
OpenGL. Cambridge, U.K.: Cambridge Univ. Press, 2003.

[5] P. J. Olver, “On multivariate interpolation,” Studies Appl. Math., vol.
116, no. 2, pp. 201–240, Feb. 2006.

[6] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.
[7] J. D. Powell, “Radial basis function approximations to polynomials,” in

Proc. Numer. Anal., Dundee, U.K., 1987, pp. 223–241.
[8] D. S. Bromhead and D. Lowe, “Multivariable functional interpolation

and adaptive networks,” Complex Syst., vol. 2, no. 3, pp. 321–355, 1988.
[9] J. Park and I. W. Sandberg, “Approximation and radial-basis-function

networks,” Neural Comput., vol. 5, no. 2, pp. 305–316, Mar. 1993.
[10] T. Poggio and F. Girosi, “Networks for approximating and learning,”

Proc. IEEE, vol. 78, no. 9, pp. 1481–1497, Sep. 1990.
[11] E. Hartman, J. D. Keeler, and J. M. Kowalski, “Layered neural net-

works with Gaussian hidden units as universal approximations,” Neural
Comput., vol. 2, no. 2, pp. 210–215, 1990.

[12] C. G. Looney, Pattern Recognition Using Neural Networks: Theory and
Algorithm for Engineers and Scientist. New York: Oxford Univ. Press,
1997.

[13] M. Bortman and M. A. Aladjem, “A growing and pruning method for
radial basis function networks,” IEEE Trans. Neural Netw., vol. 20, no.
6, pp. 1039–1045, Jun. 2009.

[14] J. P.-F. Sum, C.-S. Leung, and K. I.-J. Ho, “On objective function,
regularizer, and prediction error of a learning algorithm for dealing with
multiplicative weight noise,” IEEE Trans. Neural Netw., vol. 20, no. 1,
pp. 124–138, Jan. 2009.

[15] H. X. Huan, D. T. T. Hien, and H. T. Huynh, “A novel efficient two-phase
algorithm for training interpolation radial basis function networks,”
Signal Process., vol. 87, no. 11, pp. 2708–2717, Nov. 2007.

[16] D. T. T. Hien, H. X. Huan, and H. T. Huynh, “Multivariate interpolation
using radial basis function networks,” Int. J. Data Mining, Model.
Manage., vol. 1, no. 3, pp. 291–309, Jul. 2009.

[17] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1999.

[18] C. A. Micchelli, “Interpolation of scattered data: Distance matrices and
conditionally positive definite functions,” Const. Approx., vol. 2, no. 1,
pp. 11–22, 1986.

[19] M. H. Mousoun, Fundamental of Artificial Neural Networks. Cambridge,
MA: MIT Press, 1995.

[20] G. E. Fasshauer and J. G. Zhang, “On choosing ‘optimal’ shape
parameters for RBF approximation,” Numer. Algorith., vol. 45, nos. 1–4,
pp. 345–368, 2007.

Embedded Feature Ranking for Ensemble
MLP Classifiers

Terry Windeatt, Rakkrit Duangsoithong, and Raymond Smith

Abstract— A feature ranking scheme for multilayer perceptron
(MLP) ensembles is proposed, along with a stopping criterion
based upon the out-of-bootstrap estimate. To solve multi-class
problems feature ranking is combined with modified error-
correcting output coding. Experimental results on benchmark
data demonstrate the versatility of the MLP base classifier in
removing irrelevant features.

Index Terms— Classification, multilayer perceptrons, pattern
analysis, pattern recognition.

I. INTRODUCTION

Whether an individual classifier or an ensemble of classifiers
is employed to solve a supervised learning problem, finding
relevant features for discrimination is important. Most previous
research on feature relevancy has focussed on individual clas-
sifiers, but in this brief the issue is addressed for an ensemble
of multilayer perceptron (MLP) classifiers. The extension of
feature relevancy to classifier ensembles is not straightforward,
because of the inherent trade-off between accuracy and diver-
sity [1]. The trade-off has long been recognised, and arises
because diversity must decrease as base classifiers approach
the highest levels of accuracy. There is no consensus on the
best way to measure ensemble diversity, and the relationship
between irrelevant features and diversity is not known.

Feature relevancy is particularly important for small sample
size problems, that is when the number of patterns is fewer
than the number of features [2]. With tens of features in the
original set, feature selection using an exhaustive search is
computationally prohibitive. Since the problem is known to
be NP-hard [3], a greedy search scheme is required, and filter,
wrapper and embedded approaches have been developed [4].
The advantage of an embedded method is that feature selection
is inherent in the classifier itself, and there is no reliance upon
a measure that is independent of the classifier.

Feature ranking is conceptually one of the simplest search
schemes for feature selection, and has the advantage of
scaling up to hundreds of features. Uni-dimensional feature-
ranking methods consider each feature in isolation, but are
disadvantaged by the implicit orthogonality assumption [4],
whereas multi-dimensional methods consider correlations with
remaining features. In this brief, we propose an ensemble of
MLP classifiers that incorporates multi-dimensional feature
ranking based on MLP weights. The ensemble contains a
simple parallel multiple classifier system (MCS) architecture
with homogenous MLP base classifiers.

It is generally believed that MLP weights in a single
classifier are not suitable for identifying relevant features [5].

Manuscript received November 9, 2010; revised March 24, 2011; accepted
March 27, 2011. Date of publication May 13, 2011; date of current version
June 2, 2011. This work was supported in part by the U.K. Government,
Engineering and Physical Sciences Research Council, under Grant E061664/1.

The authors are with the Centre for Vision Speech and Signal Process-
ing, Faculty of Electronics and Physical Sciences, University of Sur-
rey, Guildford Surrey GU2 7XH, U.K. (e-mail: t.windeatt@surrey.ac.uk;
R.Duangsoithong@surrey.ac.uk; Raymond.Smith@surrey.ac.uk).

Digital Object Identifier 10.1109/TNN.2011.2138158

1045–9227/$26.00 © 2011 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

