Huan-Xiang Zhou

Huan-Xiang Zhou
  • PhD
  • Professor and Endowed Chair at University of Illinois Chicago

About

469
Publications
45,034
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
22,990
Citations
Current institution
University of Illinois Chicago
Current position
  • Professor and Endowed Chair
Additional affiliations
August 2017 - present
University of Illinois Chicago
Position
  • Chair
January 1989 - March 1995
National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health
Position
  • Visiting Fellow and Visiting Associate
August 2002 - August 2017
Florida State University
Position
  • Professor
Education
September 1984 - December 1988
Drexel University
Field of study
  • Physics
June 1980 - June 1984
Wuhan University
Field of study
  • Physics

Publications

Publications (469)
Article
It is now clear that membrane association of intrinsically disordered proteins or intrinsically disordered regions regulates many cellular processes, such as membrane targeting of Src family kinases and ion channel gating. Residue-specific characterization by nuclear magnetic resonance spectroscopy, molecular dynamics simulations, and other techniq...
Preprint
Full-text available
Protein-DNA condensates mediate transcription and regulate gene expression and DNA replication and repair. The intermolecular bridging forces stabilizing condensates have direct roles in these processes. Here we use optical tweezers to measure bridging forces. In the presence of protamine, a single condensate is observed on a 20.5-knt single-strand...
Preprint
Full-text available
CrgA is a key transmembrane (TM) protein in the cell division process of Mycobacterium tuberculosis ( Mtb ), the pathogen responsible for tuberculosis. While many of the Mtb divisome proteins have been identified, their structures and interactions remain largely unknown. Previous studies of CrgA using oriented-sample solid-state NMR have defined th...
Article
Full-text available
The low-complexity domain of hnRNPA1 (A1-LCD) phase separates in a salt-dependent manner. Unlike many intrinsically disordered proteins (IDPs) whose phase separation is suppressed by increasing salt concentrations, the phase separation of A1-LCD is promoted by >100 mM NaCl. To investigate the atypical salt effect on A1-LCD phase separation, we carr...
Preprint
Full-text available
The remarkable capability of Tardigrade to survive under extreme conditions has been partially attributed to Dsup, an intrinsically disordered, highly positively charged protein. Dsup has been shown to bind to DNA in vitro, a property that has been associated with the capability of Dsup to exhibit stress-protective effects when expressed in mammali...
Article
Full-text available
How the sequences of intrinsically disordered proteins (IDPs) code for functions is still an enigma. Dynamics, in particular residue-specific dynamics, holds crucial clues. Enormous efforts have been spent to characterize residue-specific dynamics of IDPs, mainly through NMR spin relaxation experiments. Here, we present a sequence-based method, Seq...
Preprint
The low-complexity domain of hnRNPA1 (A1-LCD) phase separates in a salt-dependent manner. Unlike many intrinsically disordered proteins (IDPs) whose phase separation is suppressed by increasing salt concentrations, the phase separation of A1-LCD is promoted by > 100 mM NaCl. To investigate the atypical salt effect on A1-LCD phase separation, we car...
Preprint
How the sequences of intrinsically disordered proteins (IDPs) code for functions is still an enigma. Dynamics, in particular residue-specific dynamics, holds crucial clues. Enormous efforts have been spent to characterize residue-specific dynamics of IDPs, mainly through NMR spin relaxation experiments. Here we present a sequence-based method, SeqD...
Preprint
Full-text available
Alzheimer's disease (AD) is caused by the assembly of amyloid-beta (Aβ) peptides into oligomers and fibrils. Endogenous Aβ aggregation may be assisted by cell membranes, which can accelerate the nucleation step enormously, but knowledge of membrane-assisted aggregation is still very limited. Here we used extensive MD simulations to structurally and...
Preprint
The low-complexity domain of hnRNPA1 (A1-LCD) phase separates in a salt-dependent manner. Unlike many intrinsically disordered proteins (IDPs) whose phase separation is suppressed by increasing salt concentrations, the phase separation of A1-LCD is promoted by > 100 mM NaCl. To investigate the atypical salt effect on A1-LCD phase separation, we car...
Preprint
The low-complexity domain of hnRNPA1 (A1-LCD) phase separates in a salt-dependent manner. Unlike many intrinsically disordered proteins (IDPs) whose phase separation is suppressed by increasing salt concentrations, the phase separation of A1-LCD is promoted by > 100 mM NaCl. To investigate the atypical salt effect on A1-LCD phase separation, we car...
Preprint
Full-text available
The low-complexity domain of hnRNPA1 (A1-LCD) phase separates in a salt-dependent manner. Unlike many intrinsically disordered proteins (IDPs) whose phase separation is suppressed by increasing salt concentrations, the phase separation of A1-LCD is promoted by > 100 mM NaCl. To investigate the atypical salt effect on A1-LCD phase separation, we car...
Preprint
Full-text available
Condensates formed by intrinsically disordered proteins mediate a myriad of cellular processes and are linked to pathological conditions including neurodegeneration. Rules of how different types of amino acids (e.g., π-π pairs) dictate the physical properties of biomolecular condensates are emerging, but our understanding of the roles of different...
Preprint
Full-text available
We present a method, FMAPS(q), for calculating the structure factor, S(q), of a protein solution, by extending our fast Fourier transform-based modeling of atomistic protein-protein interactions (FMAP) approach. The interaction energy consists of steric, nonpolar attractive, and electrostatic terms that are additive among all pairs of atoms between...
Preprint
Biomolecular condensates, formed through phase separation, are upending our understanding in much of molecular, cell, and developmental biology. There is an urgent need to elucidate the physicochemical foundations of the behaviors and properties of biomolecular condensates. Here we aim to fill this need by writing a comprehensive, critical, and acc...
Article
Full-text available
Phase separation has emerged as an important mechanism explaining the formation of certain biomolecular condensates. Biological phase separation is often driven by the multivalent interactions of modular protein domains. Beyond valency, the physical features of folded domains that promote phase separation are poorly understood. We used a model syst...
Preprint
Full-text available
In sperm cells, protamine replaces histones to compact DNA 10-20 times more than in somatic cells. To characterize the extreme compaction, we employed confocal microscopy and optical tweezers to determine the conformations and stability of protamine-bound λ-DNA. Confocal images show increasing compaction of λ-DNA at increasing protamine concentrati...
Article
Full-text available
Amyloid beta (Aβ) aggregation is a slow process without seeding or assisted nucleation. Sodium dodecyl sulfate (SDS) micelles stabilize Aβ42 small oligomers (in the dimer to tetramer range); subsequent SDS removal leads to a 150-kD Aβ42 oligomer. Dodecylphosphorylcholine (DPC) micelles also stabilize an Aβ42 tetramer. Here we investigate the deterg...
Article
Full-text available
The SARS-CoV-2 E protein is a transmembrane (TM) protein with its N-terminus exposed on the external surface of the virus. At debate is its oligomeric state, let alone its function. Here, the TM structure of the E protein is characterized by oriented sample and magic angle spinning solid-state NMR in lipid bilayers and refined by molecular dynamics...
Article
Full-text available
Liquid-liquid phase separation of protein solutions has regained heightened attention for its biological importance and pathogenic relevance. Coarse-grained models are limited when explaining residue-level effects on phase equilibrium. Here we report phase diagrams for γ-crystallins using atomistic modeling. The calculations were made possible by c...
Preprint
Full-text available
ATP is an abundant molecule with crucial cellular roles as the energy currency and a building block of nucleic acids and for protein phosphorylation. Here we show that ATP mediates the phase separation of basic intrinsically disordered proteins (bIDPs). In the resulting condensates, ATP is highly concentrated (apparent partition coefficients at 200...
Article
Full-text available
The SAM/SAH riboswitch binds S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) with similar affinities. Mg²⁺ is generally known to stabilize RNA structures by neutralizing phosphates, but how it contributes to ligand binding and conformational transition is understudied. Here, extensive molecular dynamics simulations (totaling 120 μs) pre...
Preprint
Full-text available
Dynamics is a crucial link between sequence and function for intrinsically disordered proteins (IDPs). NMR spin relaxation is a powerful technique for characterizing the sequence-dependent backbone dynamics of IDPs. Of particular interest is the 15N transverse relaxation rate (R 2), which reports on slower dynamics (10s of ns up to 1 μs and beyond)...
Preprint
How the sequences of intrinsically disordered proteins (IDPs) code for functions is still an enigma. Dynamics, in particular residue-specific dynamics, holds crucial clues. Enormous efforts have been spent to characterize residue-specific dynamics of IDPs, mainly through NMR spin relaxation experiments. Here we present a sequence-based method, SeqD...
Preprint
Full-text available
Amyloid beta (Aβ) aggregation is a slow process without seeding or assisted nucleation. Sodium dodecyl sulfate (SDS) micelles stabilize Aβ42 small oligomers (in the dimer-tetramer range); subsequent SDS removal leads to a 150-kD Aβ42 oligomer. Dodecylphosphorylcholine (DPC) micelles also stabilize an Aβ42 tetramer. Here we characterize the detergen...
Preprint
Full-text available
The SARS-CoV-2 E protein is a transmembrane (TM) protein with its N-terminus exposed on the external surface of the virus. Here, the TM structure of the E protein is characterized by oriented sample and magic angle spinning solid-state NMR in lipid bilayers and refined by molecular dynamics simulations. This protein has been found to be a pentamer,...
Preprint
Full-text available
Liquid-liquid phase separation of protein solutions has regained heightened attention for its biological importance and pathogenic relevance. Coarse-grained models are limited when explaining residue-level effects on phase equilibrium. Here we report phase diagrams for γ-crystallins using atomistic modeling. The calculations were made possible by c...
Preprint
Full-text available
Power law distributions are widely observed in chemical physics, geophysics, biology, and beyond. The independent variable x of these distributions has an obligatory lower bound and in many cases also an upper bound. Estimating these bounds from sample data is notoriously difficult, with a recent method involving O(N^3) operations, where N denotes...
Article
Full-text available
Kinetics of NMDA receptor (NMDAR) ion channel opening and closing contribute to their unique role in synaptic signaling. Agonist binding generates free energy to open a canonical gate at the M3 helix bundle crossing. Single channel activity is characterized by clusters, or periods of rapid opening and closing, that are separated by long silent peri...
Article
Full-text available
Mtb infects a quarter of the worldwide population. Most drugs for treating tuberculosis target cell growth and division. With rising drug resistance, it becomes ever more urgent to better understand Mtb cell division. This process begins with the formation of the Z-ring via polymerization of FtsZ and anchoring of the Z-ring to the inner membrane. H...
Article
Full-text available
Power law distributions are widely observed in chemical physics, geophysics, biology, and beyond. The independent variable x of these distributions has an obligatory lower bound and in many cases also an upper bound. Estimating these bounds from sample data is notoriously difficult, with a recent method involving O(N^3) operations, where N denotes...
Preprint
Full-text available
The SAM/SAH riboswitch binds S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) with similar affinities. Mg ²⁺ is generally known to stabilize RNA structures by neutralizing phosphates, but how it contributes to ligand binding and conformational transition is understudied. Here, extensive molecular dynamics simulations (totaling 120 μs) id...
Article
Full-text available
Tau, as typical of intrinsically disordered proteins (IDPs), binds to multiple targets including microtubules and acidic membranes. The latter two surfaces are both highly negatively charged, raising the prospect of mimicry in their binding by tau. The tau‐microtubule complex was recently determined by cryo‐electron microscopy. Here, we used molecu...
Article
Allosteric regulation of intrinsically disordered proteins (IDPs) is still vastly understudied compared to the counterpart of structured proteins. Here we used molecular dynamics simulations to characterize the regulation of the IDP N-WASP by the binding of its basic region with intermolecular and intramolecular ligands (PIP 2 and an acidic motif,...
Preprint
Full-text available
How the sequences of intrinsically disordered proteins (IDPs) code for functions is still an enigma. Dynamics, in particular residue-specific dynamics, holds crucial clues. Enormous efforts have been spent to characterize residue-specific dynamics of IDPs, mainly through NMR spin relaxation experiments. Here we present a sequence-based method, SeqD...
Article
Human WASP and N-WASP are homologous proteins that require the binding of multiple regulators, including the acidic lipid PIP2 and the small GTPase Cdc42, to relieve autoinhibition before they can stimulate the initiation of actin polymerization. Autoinhibition involves intramolecular binding of the C-terminal acidic and central motifs to an upstre...
Article
Full-text available
The brains of Alzheimer’s disease (AD) patients contain numerous amyloid plaques that are diagnostic of the disease. The amyloidogenic proteins Aβ40 and Aβ42 are derived by the processing of the amyloid precursor protein (APP) by two proteases called β-secretase and γ-secretase. Aβ42 differs from Aβ40 in having two additional hydrophobic amino acid...
Preprint
Full-text available
Previous reports revealed that sodium dodecyl sulfate near its critical micelle concentration can drive the assembly of Aβ42 along an oligomeric pathway. This pathway produces a 150 kDa peptide oligomer (approximately 32 peptide molecules or protomers) that does not aggregate further into amyloid fibrils. Solid-state nuclear magnetic resonance (NMR...
Preprint
Full-text available
Human WASP and N-WASP are homologous proteins that require the binding of multiple regulators, including the acidic lipid PIP2 and the small GTPase Cdc42, to relieve autoinhibition before they can stimulate the initiation of actin polymerization. Autoinhibition involves intramolecular binding of the C-terminal acidic and central motifs to an upstre...
Preprint
Full-text available
Tau, as typical of intrinsically disordered proteins (IDPs), binds to multiple targets including microtubules and acidic membranes. The latter two surfaces are both highly negatively charged, raising the prospect of mimicry in their binding by tau. The tau-microtubule complex was recently determined by cryo-EM. Here we used molecular dynamics simul...
Article
Full-text available
Phase separation of intrinsically disordered proteins (IDPs) is a phenomenon associated with many essential cellular processes, but a robust method to compute the binodal from molecular dynamics simulations of IDPs modeled at the all-atom level in explicit solvent is still elusive, due to the difficulty in preparing a suitable initial dense configu...
Chapter
While the roles of biomolecular condensates in health and disease are being intensely studied, it is equally important that their physical properties are characterized in order to achieve mechanistic understanding. Here we share some of the protocols developed in our lab for measuring thermodynamic and materials properties of condensates. These inc...
Preprint
Full-text available
The opening and closing kinetics of NMDA receptors (NMDARs) contribute to their unique role in synaptic computation. NMDARs are heterotetramers composed of the obligate GluN1 and typically some combination of GluN2 subunits. The initial step in ion channel opening is agonist binding, which generates free energy that propagates to the ion channel to...
Article
For intrinsically disordered proteins (IDPs), a pressing question is how sequence codes for function. Dynamics serves as a crucial link, reminiscent of the role of structure in sequence-function relations of structured proteins. To define general rules governing sequence-dependent backbone dynamics, we carried out long molecular dynamics simulation...
Preprint
Full-text available
Mycobacteria tuberculosis (Mtb) inflicts a quarter of the worldwide population. Most drugs for treating tuberculosis target cell growth and division. With rising drug resistance, it becomes ever more urgent to better understand Mtb cell division. This process begins with the formation of the Z-ring via polymerization of FtsZ and anchoring of the Z-...
Article
Bacterial cell division begins with the formation of the Z-ring via polymerization of FtsZ and the localization of Z-ring beneath the inner membrane through membrane anchors. In Mycobacterium tuberculosis (Mtb), SepF is one such membrane anchor, but our understanding of the underlying mechanism is very limited. Here we used molecular dynamics simul...
Preprint
Full-text available
Bacterial cell division begins with the formation of the Z-ring via polymerization of FtsZ and the localization of Z-ring beneath the inner membrane through membrane anchors. In Mycobacterium tuberculosis (Mtb), SepF is one such membrane anchor, but our understanding of the underlying mechanism is very limited. Here we used molecular dynamics simul...
Article
Full-text available
The functional processes of many proteins involve the association of their intrinsically disordered regions (IDRs) with acidic membranes. We have identified the membrane-association characteristics of IDRs using extensive molecular dynamics (MD) simulations and validated them with NMR spectroscopy. These studies have led to not only deep insight in...
Article
Full-text available
Artificial intelligence recently achieved the breakthrough of predicting the three-dimensional structures of proteins. The next frontier is presented by intrinsically disordered proteins (IDPs), which, representing 30% to 50% of proteomes, readily access vast conformational space. Molecular dynamics (MD) simulations are promising in sampling IDP co...
Preprint
Phase separation of intrinsically disordered proteins (IDPs) is a phenomenon associated with many essential cellular processes, but a robust method to compute the binodal from molecular dynamics simulations of IDPs modeled at the all-atom level in explicit solvent is still elusive, due to the difficulty in preparing a suitable initial dense configu...
Article
Biomolecular condensates inside cells contain dozens to hundreds of macromolecular components and are surrounded by many others. Our computational studies predicted that macromolecular regulators have matching effects on the phase equilibrium and interfacial tension of condensates. Here we validate this prediction experimentally and characterize th...
Article
We present a mean-field theoretical model, along with molecular dynamics simulations, to show that the multiphase organization of multi-component condensates is a second phase transition. Whereas the first phase transition that leads to the separation of condensates from the bulk phase is driven by overall attraction among the macromolecular compon...
Preprint
Full-text available
For intrinsically disordered proteins (IDPs), a pressing question is how sequence codes for function. Dynamics serves as a crucial link, reminiscent of the role of structure in sequence-function relations of structured proteins. To define general rules governing sequence-dependent backbone dynamics, we carried out long molecular dynamics simulation...
Article
The protein structure prediction problem is solved, at last, thanks in large part to the use of artificial intelligence. The structures predicted by AlphaFold and RoseTTAFold are becoming the requisite starting point for many protein scientists. New frontiers, such as the conformational sampling of intrinsically disordered proteins, are emerging.
Preprint
Full-text available
Artificial intelligence recently achieved the breakthrough of predicting the three-dimensional structures of proteins. The next frontier is presented by intrinsically disordered proteins (IDPs), which, representing 30% to 50% of proteomes, readily access vast conformational space. Molecular dynamics (MD) simulations are promising in sampling IDP co...
Article
Full-text available
Riboswitches are naturally occurring RNA elements that control bacterial gene expression by binding to specific small molecules. They serve as important models for RNA-small molecule recognition and have also become a novel class of targets for developing antibiotics. Here, we carried out conventional and enhanced-sampling molecular dynamics (MD) s...
Article
A theoretical study on the shape dynamics of phase-separated biomolecular droplets is presented, highlighting the importance of condensate viscoelasticity. Previous studies on shape dynamics have modeled biomolecular condensates as purely viscous, but recent data have shown them to be viscoelastic. Here, we present an exact analytical solution for...
Article
Full-text available
Phase-separated biomolecular condensates must respond agilely to biochemical and environmental cues in performing their wide-ranging cellular functions, but our understanding of condensate dynamics is lagging. Ample evidence now indicates biomolecular condensates as viscoelastic fluids, where shear stress relaxes at a finite rate, not instantaneous...
Preprint
Full-text available
We present a mean-field theory for the multiphase organization of multi-component biomolecular condensates and validate the theory by molecular dynamics simulations of model mixtures. A first phase transition results in the separation of the dense phase from the bulk phase. In a second phase transition, the components in the dense phase demix to lo...
Preprint
Full-text available
The crowded cellular environments provide ample opportunities for proteins to interact with bystander macromolecules, yet direct evidence, let alone residue-specific information, for such nonspecific binding is rare. Here, by combining NMR spectroscopy and atomistic modeling, we investigated how crowders influence the association equilibrium and ki...
Preprint
Full-text available
Riboswitches are naturally occurring RNA elements that control bacterial gene expression by binding to specific small molecules. They serve as important models for RNA-small molecule recognition and have also become a novel class of targets for developing antibiotics. Here, we carried out conventional and enhanced-sampling molecular dynamics (MD) s...
Preprint
Full-text available
Virtual screening is receiving renewed attention in drug discovery, but progress is hampered by challenges on two fronts: handling the ever increasing sizes of libraries of drug-like compounds, and separating true positives from false positives. Here we developed a machine learning-enabled pipeline for large-scale virtual screening that promises br...
Preprint
Full-text available
Molecular dynamics simulations are widely used to determine equilibrium and dynamic properties of proteins. Nearly all simulations nowadays are carried out at constant temperature, with a Langevin thermostat among the most widely used. Thermostats distort protein dynamics, but whether or how such distortions can be corrected has long been an open q...
Article
Full-text available
The interfacial tension of phase‐separated biomolecular condensates affects their fusion and multiphase organization, and yet how this important property depends on the composition and interactions of the constituent macromolecules is poorly understood. Here we use molecular dynamics simulations to determine the interfacial tension and phase equili...
Preprint
Full-text available
Phase-separated biomolecular condensates must respond agilely to biochemical and environmental cues in performing their wide-ranging cellular functions, but our understanding of condensate dynamics is lagging. Ample evidence now indicates biomolecular condensates as viscoelastic fluids, where shear stress relaxes at a finite rate, not instantaneous...
Preprint
Full-text available
The interfacial tension of phase-separated biomolecular condensates affects their fusion and multiphase organization, and yet how this important property depends on the composition and interactions of the constituent macromolecules is poorly understood. Here we use molecular dynamics simulations to determine the interfacial tension and phase equili...
Article
Biomolecular condensates, largely by virtue of their material properties, are revolutionizing biology, and yet, the physical understanding of these properties is lagging. Here, I show that the viscoelasticity of condensates can be captured by a simple model, comprising a component where shear relaxation is an exponential function (with time constan...
Preprint
Full-text available
Phase-separated biomolecular condensates often appear as micron-sized droplets. Due to interfacial tension, the droplets usually have a spherical shape and, upon deformation, tend to recover their original shape. Likewise, interfacial tension drives the fusion of two droplets into a single spherical droplet. In all previous studies on shape dynamic...

Network

Cited By