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In this paper, an analytical technique, the so-called Fourier Spectral method (FSM), is extended

to the vibration analysis of a rotating Rayleigh beam considering the gyroscopic e®ect. The

model presented can have arbitrary boundary conditions speci¯ed in terms of elastic constraints
in the translations and rotations or even in terms of attached lumped masses and inertias. Each

displacement function is universally expressed as a linear combination of a standard Fourier

cosine series and several supplementary functions introduced to ensure and accelerate the

convergence of the series expansion. Lagrange's equation is established for all the unknown
Fourier coe±cients viewed as a set of independent generalized coordinates. A numerical model is

constructed for the rotating beam. First, a numerical example considering simply supported

boundary conditions at both ends is calculated and the results are compared with those of a

published paper to show the accuracy and convergence of the proposed model. Then, the
method is applied to one real work piece structure with elastically supported boundary condi-

tions updated from the modal experiment results including both the frequencies and mode

shapes using the method of least squares. Several numerical examples of the updated model are
studied to show the e®ects of some parameters on the dynamic characteristics of the work piece

subjected to moving loads at di®erent constant velocities.
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1. Introduction

Machining has a long history and turning is one of the widely used machining

technologies and is carried out on a lathe. As excessive vibration and chatter may

occur under certain conditions during a turning process, vibration in metal cutting is

familiar to machine tool operators. As a kind of rotating parts in a machine, the

dynamic characteristics of the work piece is of vital importance: A high level of rotor

vibration not only reduces the machining accuracy of the work piece leading to poor

surface quality but also causes damage to the machine or transmit vibration to the

supporting structure.1 Therefore, vibration problems compel a machinist to reduce

cutting speeds well below the capacity of a machine or tool. There are several reasons

why vibration problem occurs during turning, some of which are related to the

vibration characteristics of cutters (nose radius, insert size, entering angle, materials

used etc.) and work pieces while others related to the complex interaction at the

interface between the work piece and the cutter where especially the regeneration of

waviness is encountered.

A work piece is ¯xed in a lathe which should be regarded as a structure elastically

supported at both ends. This means the dynamics of the lathe is also (partly) in-

cluded when the dynamics of the work piece is studied. The problem of elastically

supported beams subjected to moving loads has received little attention.2,3 The main

purpose of this paper is to investigate the e®ect of complex boundary conditions on

the dynamic characteristics of rotating work pieces under moving loads whilst other

parts of lathes such as cutters and so on are neglected here. The work piece is

modeled as a rotating member subjected to a three-directional moving load.4 Many

researchers have studied the e®ect of moving loads on the dynamic characteristics of

rotating structures.

Katz et al.5 established models of rotating beams based on Euler–Bernoulli,

Rayleigh and Timoshenko beam theories with simply supported boundary conditions

subject to a load moving at a constant velocity. Xiao and Yang6 investigated linear

and nonlinear dynamic models of a rotating Euler–Bernoulli beam with °exible

support as °exible multi-body systems. Kuo and Tu7 studied the dynamic stability

and vibration control for a rotating elastic beam connected with an end mass driven

by a direct current motor. Huang and Hsu8 investigated the resonance of a rotating

cylindrical shell excited by harmonic moving loads. A general modal expansion

method was adopted to obtain the response of the shell under a harmonic moving load

analytically. Lin and Trethewey9 modeled the moving dynamic loads induced by the

movement of a spring-mass-damper system of elastic beams using a ¯nite element

formulation. Argento and Scott10 researched a simply supported Timoshenko beam

considering nonconstant load velocity. Argento and Morano11 studied a spinning

pinned–pinned and clamped–clamped Timoshenko beam subjected to an axially ac-

celerating distributed line load of de°ection-dependent magnitude. The assumed

mode method was used by Lee12 to express the kinetic and potential energy and then

equations of motion were derived by using Hamilton's principle with various
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combinations of constant and nonconstant axial speeds of the moving load simulated.

Stochastic dynamic response of a rotating simply supported beam subjected to a

random force with constant mean value moving at a constant speed along the beam

was analyzed by Zibdeh and Juma.13 El-Saeidy14 presented the ¯rst ¯nite element

formulation for the dynamic analysis of a rotating shaft with or without nonlinear

boundary conditions under a moving load arising from nonlinear rolling bearings. Yau

et al.3 investigated the dynamic response of bridge girders with elastic sti®ness at both

ends under moving train loads. Wang et al.15 studied the resonance and sub-reso-

nance acceleration response of a two-span continuous railway bridge subjected to

moving train loadings. Chen and Tsao16 analyzed the stability of regenerative chatter

in a turning process with the work piece modeled as a cantilever beam. Ouyang and

Wang17 presented a dynamic model for the vibration of a rotating Timoshenko beam

subjected to a three-directional moving surface load in the axial direction in which the

bending moment to the axial surface load component is included.

A lot of work related to the complex interaction between the cutter and the work

piece has been done by researchers. Ganguli et al.18 studied the relationship between

instability of regenerative chatter and structural damping, and active damping was

included to enhance the stability limits of the system. Insperger et al.19 investigated

the nonlinear dynamics of a state-dependent delay model of the turning process

which revealed that the Hopf bifurcation depended on the feed rate by modeling the

system as a 2 DOF oscillator excited by the cutting force. Litak et al.20 examined the

regenerative cutting process of a single DOF nonsmooth model with a friction

component and a time delay term. For most of the research, the vibration char-

acteristics of work pieces are not considered in detail or even neglected. Dai and

Wang21 presented one novel methodology with the work piece discretized into ¯nite

beam elements and the cutter modeled as one oscillator considering the nonlinear

electrical features of the drive motor of machining system. Han et al.22 presented

a dynamic model for the vibration in turning operation taking into account the

regenerative mechanism with the work piece modeled as a cantilever beam rotating

about its longitudinal axis.

In this paper, a rotating beam excited by moving loads is dealt with using the

Fourier Spectral method (FSM) which was previously proposed by Li23 and has also

extended to structures such as coupled rectangular plates recently by Du et al.24 The

model is meant to approximate the turning of a work piece on a lathe. The objective

is not trying to establish an improved metal cutting theory. The rotating work piece

during the machining process contains two main parts: The work piece and the

spindle with chuck. For simpli¯cation, the spindle with chuck is modeled as a lumped

mass with 5 DOF attached to the work pieces with several springs. At the other end,

several springs are also presented. All the related parameters are obtained based on

the model updating theory25 considering both the frequencies and mode shape data

from experiment. After that, the dynamic characteristics of the work piece are an-

alyzed based on the obtained parameters.

Moving Force-Induced Vibration of a Rotating Beam

1450035-3

In
t. 

J.
 S

tr
. S

ta
b.

 D
yn

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
r 

B
in

gl
in

 L
v 

on
 0

9/
09

/1
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2. Dynamic Model

According to the characteristics of the rotating work piece system, it can be modeled

as shown in Fig. 1: The work piece itself is represented by a rotating Rayleigh beam

while the spindle (with chuck) is simpli¯ed as one lumped mass connected to the

beam with translational springs kyc, kzc and rotational springs Kyc, Kzc. As the

spindle (with chuck) was also supported by the main body of lathe, two translational

springs kym, kzm and two rotational springs Kym, Kzm are included in the model. The

work piece is allowed to bend in both the xy and zx planes. Torsional vibration of the

work piece is not considered as the ¯rst torsional frequency is much higher than

the ¯rst several bending frequencies. As a result of the complexity of the model, only

the parameters contained in the x-y plane are plotted.

Based on the Rayleigh beam theory, the strain energy of the beam system can be

expressed as (modi¯ed from Ref. 4)

V ¼ 1

2

Z l

0

EI
d2v

dx2

 !
2

þ d2w

dx2

 !
2

 !
dx

þ 1

2
ky0v

2 þKy0

dv

dx

� �
2

þ kz0w
2 þKz0

dw

dx

� �
2

� � ����
x¼0

þ 1

2
ky1v

2 þKy1

dv

dx

� �
2

þ kz1w
2 þKz1

dw

dx

� �
2

� � ����
x¼l

� 1

2

Z l

s

Px

dv

dx

� �
2

þ dw

dx

� �
2

� �
dx; ð1Þ

where l is the beam length, and s is the instantaneous horizontal location of the

moving force; v and w are the °exural displacements of the neutral axis in the two

perpendicular directions in the plane of the beam's circular cross section, E and I are,

respectively, the Young's modulus and the moment of area; ky0, kz0, ky1 and kz1 are

the linear spring constants, and Ky0, Kz0, Ky1 and Kz1 are the rotational spring

constants at x ¼ 0 and x ¼ l, respectively, x is the longitudinal coordinate of the

beam.

Rotating 
beam

Spindle 
with chuck

Ω

x

y

z

0yk

0yK

1ymk
1ymK

ck

cK

1yK
1yk

( )s t
yP

xP

zP

Fig. 1. Rotating parts subjected to a moving load with three perpendicular forces.
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The kinetic energy of the rotating beam system will then be

Ts ¼
1

2

Z l

0

Id
@ 2v

@x@t

 !
2

dxþ 1

2

Z l

0

Id
@ 2w

@x@t

 !
2

dxþ 1

2

Z l

0

�A
@v

@t

� �
2

dx

þ 1

2

Z l

0

�A
@w

@t

� �
2

dxþ 1

2
�Ip

Z l

0

@w

@t

@ 2v

@x@t
� @v

@t

@ 2w

@x@t

� �
dxþ 1

2
�2Ipl; ð2Þ

where Id ¼ �Ar2=4, Ip ¼ 2Id, �v ¼ dv=dx, �w ¼ dw=dx, � is the density, r is the

radius of the shafting, � is the constant angular speed of the work piece rotating

about the longitudinal axis.

The virtual work done by forces Py, Pz, and moment Mz is

�W ¼ Py�vðs; tÞ þ Pz�wðs; tÞ þMz

@�w

@x

����
x¼s

; ð3Þ

where, the bending moment Mz is resulted from the translation of the axial force

Px as

Mz ¼ �Pxr: ð4Þ
As previously done for beam and rectangular plate,23,24 the displacement will be

sought as

vðxÞ ¼
X1
m¼0

Am cos�lmxþ
X4
k¼1

ðCk�
k
l ðxÞÞ ¼ ªT®; ð5Þ

wðxÞ ¼
X1
m¼0

Bm cos�lmxþ
X4
k¼1

ðDk�
k
l ðxÞÞ ¼ ªT¯; ð6Þ

where

� 1l ðxÞ ¼
9l

4�
sin

�x

2l

� �
� l

12�
sin

3�x

2l

� �
; ð7aÞ

� 2l ðxÞ ¼ � 9l

4�
cos

�x

2l

� �
� l

12�
cos

3�x

2l

� �
; ð7bÞ

� 3l ðxÞ ¼
l3

�3
sin

�x

2l

� �
� l3

3�3
sin

3�x

2l

� �
; ð7cÞ

� 4l ðxÞ ¼ � l3

�3
cos

�x

2l

� �
� l3

3�3
cos

3�x

2l

� �
; ð7dÞ

and

ª ¼ fcos �l1x; . . . ; cos�lNx; �
1
l ðxÞ; � 2l ðxÞ; � 3l ðxÞ; � 4l ðxÞgT;

® ¼ fA0;A1; . . . ;AN ;C1; . . . ;C4gT;

¯ ¼ fB0;B1; . . . ;BN ;D1; . . . ;D4gT:
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Using Eqs. (5)–(7), Eqs. (1) and (2) can then be rewritten as

V ¼ 1

2

Z l

0

EIð®Tª 00ª 00T®þ ¯Tª 00ª 00T¯Þdx

þ 1

2
ðkx0®TªªT®þKx0®

Tª 0ª 0T®þ ky0¯
TªªT¯þKy0¯

Tª 0ª 0T¯Þ
����
x¼0

þ 1

2
ðkx1®TªªT®þKx1®

Tª 0ª 0T®þ ky1¯
TªªT¯þKy1¯

Tª 0ª 0T¯Þ
����
x¼l

� 1

2

Z l

s

Pxð®Tª 0ª 0T®þ ¯Tª 0ª 0T¯Þdx; ð8Þ

Ts ¼
1

2

Z l

0

Id®
: Tª 0ª 0T®: dxþ 1

2

Z l

0

Id¯
: T
ª 0ª 0T¯

:
dx

þ 1

2

Z l

0

�A®
: TªªT®

:
dxþ 1

2

Z l

0

�A¯
: T
ªªT¯

:
dx

þ 1

2
�Ip

Z l

0

ð®Tª 0ª 0T¯
: � ¯Tª 0ª 0T®: Þdxþ 1

2
�2Jp; ð9Þ

where the over dot represents the derivative with respect to time t and the prime

represents the derivative with respect to x.

Lagrange's equations of motion can then be obtained

Id

Z l

0

ª 0ª 0Tdxþ �A

Z l

0

ªªTdx

 !
®
:: þ �Ip

Z l

0

ðª 0ª 0TÞdx¯:

þ EI

Z l

0

ª 00ª 00Tdxþ ðkx0ªªT þKx0ª
0ª 0TÞ

����
x¼0

 

þ ðkx1ªªT þKx1ª
0ª 0TÞ

����
x¼l

� Px

Z l

s

ª 0ª 0Tdx

!
®

¼ Pyª
Tjx¼s � Pxrª

0Tjx¼s; ð10Þ

Id

Z l

0

ª 0ª 0Tdxþ �A

Z l

0

ªªTdx

 !
¯
:: � �Ip

Z l

0

ª 0ª 0Tdx®:

þ EI

Z l

0

ª 00ª 00Tdxþ ðky0ªªT þKy0ª
0ª 0TÞ

����
x¼0

 

þ ðky1ªªT þKy1ª
0ª 0TÞ

����
x¼l

� Px

Z l

s

ª 0ª 0Tdx

!
¯

¼ Pzª
Tjx¼s: ð11Þ
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The other components in Fig. 1, the kinetic energy for the spindle and the strain

energy for the springs can be expressed as

Tspindle ¼
1

2
mmðv: 2m þ w

: 2
mÞ þ

1

2
Jdð _�2

ym þ _�
2
zmÞ þ

1

2
Jpð�2 � 2� _�zm�ymÞ ð12Þ

and

Vspindle ¼
1

2
kcyðªT

®jx¼l � vmÞ2 þ
1

2
kczðªT

¯jx¼li � wmÞ2

þ 1

2
Kcðª 0T®jx¼l � �ymÞ2 þ

1

2
Kcðª 0T¯jx¼l � �zmÞ2; ð13Þ

wheremm is the mass of the spindle and v
:
m and w

:
m are the velocities of the spindle in

the y and z directions, respectively; �
:
ym and �

:
zm are the instantaneous angular

velocities about the x and y axes which are ¯xed on the spindle and rotate with it; Jd
and Jp are the diametrical moment of inertia about the shaft line and polar moment

of inertia about any axis perpendicular to the shaft line.

With Eqs. (10)–(13), the ¯nal equations of motion can then be expressed in a

matrix form as,

M€qþ �G_qþ ðKþKpðtÞÞq ¼ FðtÞ; ð14Þ
where q ¼ f®T

;¯
T
; vm;wm; �ym; �zmgT. The detailed matrix information can be seen

in Appendix A.

3. Numerical Results and Discussion

First, in order to compare with the numerical results from the literature, the material

and geometrical properties for the ¯rst example are taken from Ref. 4. The related

beam parameters are as follows: l ¼ 1m, E ¼ 2:07� 1011 Pa, and � ¼ 7700Kg m�3.

In this example, Eqs. (5) and (6) are truncated to N ¼ 10, respectively. The nu-

merical results of the dynamic responses in terms of the instantaneous relative de-

°ection vp=vs at the location of the moving load are given, where vp is the de°ection

at the point of the moving load and vs is the static de°ection of the stationary beam

at x ¼ l=2 when the moving load is applied at the same point as the static load. Non-

dimensional parameter of � ¼ �r=2l is used, and � ¼ 2:5!1 in which !1 ¼
ð�=lÞ2 ffiffiffiffiffiffiffiffiffiffiffi

El�A
p

is the fundamental frequency of the stationary beam. Reasonable

values of Px ¼ 600N, Py ¼ �300N, Pz ¼ �1000N are used. The boundary condi-

tions for the rotating beam in Ref. 4 are simply supported at both ends. For this

example, such boundary conditions can be simulated by setting all the linear springs

to a very big number while the other rotational springs to zero, say, ky0 ¼ kz0 ¼
ky1 ¼ kz1 ¼ 1010 and Ky0 ¼ Kz0 ¼ Ky1 ¼ Kz1 ¼ 0. The Newmark method (with � ¼
0:25 and � ¼ 0:5) is used in this paper. In Figs. 2 and 3, the numerical results of vp=vs
are plotted at velocity u ¼ 2m/s of two radii r ¼ 0:095m and 0.019m, respectively.

By comparing with the results from Ref. 4, it is shown that the present method

can be applied to the moving load problems. It can be clearly observed from the
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¯gure that the phenomenon that the moment would amplify the contributions of the

higher harmonics is also observed. By comparing these two ¯gures, it can be easily

found that the °uctuation is lower for the shaft with a smaller radius. This can be

explained via looking at Eq. (4): with a smaller radius, the shaft would also expe-

rience a smaller moving bending moment (�PxrÞ, which is the main reason for these

°uctuations.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
with Mz

without Mz

Fig. 2. Dynamic response obtained using realistic speed and axial cutting force with u ¼ 2m/s and

r ¼ 0:095m.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
with Mz

without Mz

Fig. 3. Dynamic response obtained using realistic speed and axial cutting force with u ¼ 2m/s and

r ¼ 0:019m.
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3.1. Model updating of the work piece

Inevitably, there always exist some di®erences between a real structure or machine

and the theoretical model due to the assumptions used in the development of the

mathematical model and inaccurate structural properties used in the model.25 For

analyzing the dynamic characteristics of the work piece which is more or less elas-

tically supported, classical boundaries such as simply-supported or clamped–clamped

ones, are not enough. In model updating, the correct model must be used and the

corresponding sensitive parameters be selected. As for the work piece shown in

Fig. 4, the spindle (with chuck) should also be included in the dynamic analysis of

the rotating beam as it would also rotate with the work piece. Besides, the tail stock

is also elastic. In this paper, the spindle with chuck is modeled as one rigid body with

mass ms and inertia Is in two directions y and z; and the tail stock is modeled as

linear springs.

The connection between the beam and the spindle is modeled as two linear springs

and two rotational springs: kcy;Kcy and kcz;Kcz. As the spindle is supported by

bearings, the connection between the spindle and its support is also represented by

four springs: kcy;Kcy and kcz;Kcz in the y and z directions. The connection between

the beam and the tailstock is at the center of the cross section which is called the dead

center. So it is di±cult to transfer any moment between the beam and the tailstock

via such a small point (dead center) contact; therefore, the rotational springs are

neglected and only two translational springs are added between the tailstock and the

beam. It should be said that at the chuck end of the work piece, a length of around

5mm is inserted into the work piece holder. The connection between the beam and

the holder is presented by two translational springs and two rotational springs. For

this lathe, those two translational springs are set to be in¯nite, which is veri¯ed in the

following model updating procedure. Modal testing on the work piece in the lathe

provides measured frequencies and modes required in model updating.

The work piece modeled as a single Rayleigh beam has the following properties:

l ¼ 0:5m, E ¼ 2:04� 1011 Pa, and � ¼ 7817:4Kg m�3, radius r ¼ 0:018515m. The

Fig. 4. Rotating part of the turning machine.
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spindle with chuck is simpli¯ed as lumped mass with mm ¼ 26Kg, Jd ¼ 0:22Kg m2

and Jp ¼ 0:44Kg m2. Two modal tests were performed both in the horizontal plane

(x-zÞ and vertical plane (x-yÞ to update all the unknown spring constants: ky0;Kcy;

kym1;Kym1 in the x-y plane and kz0;Kcz; kzm1;Kzm1 in the x-z plane. The theoretical

and experimental modes must be paired correctly when comparing two sets of fre-

quencies. For comparing experimental results of the work piece with predicted results

by the FSM on the stationary beam, the modal assurance criterion (MAC) is used

here25:

MACjk ¼
ðªmj

TªakÞ2
ðªak

TªakÞðªmj
TªmjÞ

; ð15Þ

where ªmj is the measured mode and ªak the analytical mode. The MAC is often

used to pair mode shapes derived from analytical models with those obtained ex-

perimentally. It is easy to apply and does not require an estimate of the system

matrices.

Then the model updating problem can therefore be cast as

min
x

Xn
h¼1

	h

�hðxÞ � �mh

�hðxÞ
����

����2

2

þ �hjj1�MAChhðxÞjj22
� 	

; ð16Þ

where x is the vector containing all unknown parameters, �h is the kth analytical

frequency, and �mh, the kth measured frequency, 	h and �h are positive scalars to

weigh each hth single frequency and mode. In this example, the ¯rst ¯ve frequencies

and modes are used to update these four parameters. Based on a nonlinear pro-

gramming method, one possible optimum is found for these four parameters:

kz0 ¼ 2:06e10N/m, Kcz ¼ 4:47e4Nm/rad, kzm1 ¼ 7:21e7N/m, Kzm1 ¼ 4:34e5Nm/

rad. The comparison between the ¯rst ¯ve frequencies calculated using these four

updated parameters with those from experiment is shown in Table 1.

From this table, it can be seen that the errors of the ¯rst ¯ve frequencies are very

small, especially for the ¯rst three frequencies. As for the MAC calculated between the

numerical results and the experimental results, only the ¯fth MAC is smaller than 0.8,

which is reasonable; for higher order modes, the error from the test would be greater

without the increase in the number of sensors used, and thus, the measured mode

Table 1. Comparison of the ¯rst ¯ve modes between the numerical results and the

experimental results.

Natural frequency (Hz)

Modes Experimental (Hz) Numerical (Hz) Di®erence (%) MAC

1 229 229.7 �0.31 0.823

2 252 251.8 0.07 0.933

3 337 342.1 �1.50 0.851

4 1280 1218.4 5.06 0.879

5 2740 2672.4 2.53 0.434
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Fig. 5. Dynamic response of the rotating shaft considering elastically supported boundary conditions
subjected to moving load at u ¼ 6:25mm/s: (a) Zero initial condition considered; (b) initial static de-

°ection considered and (c) FFT of the response w at the middle point of the shaft.
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Fig. 6. Dynamic response of the shaft considering elastically supported boundary conditions subjected to
moving load at u ¼ 6:25mm/s (without considering the gyroscopic e®ect): (a) Zero initial condition

considered; (b) initial static de°ection considered and (c) FFT of the response w at the middle point of the

shaft.
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Fig. 5. (Continued)
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shape could become less reliable. Other sources of errors include the assumption that

other parts of the lathe are rigid. Despite the above errors, approximately, the

mathematical model obtained through model updating can be used to simulate the

dynamic characteristics of the beam system subjected to moving load.
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Fig. 6. (Continued)
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3.2. Numerical results based on the updated parameters

With the updated model, some more numerical examples are presented considering a

constant moving load. As this paper is mainly focused on work pieces with elastic

boundary conditions, the °uctuation of the cutting depth h is neglected and the three

force components applied to the work piece are considered constant here. The fol-

lowing values of cutting forces measured from Test No. 1 reported in Ref. 22 are

used: Px ¼ 391N, Py ¼ �428N, and Pz ¼ �1046N. Apparently, the responses of the

system are mainly a®ected by two causes: The initial conditions and the moving

loads. Here, two di®erent initial conditions are considered: (1) zero displacements

and velocities and (2) nonzero initial static displacement obtained with the forces at

the starting time t ¼ 0 applied to the beam at x ¼ 0. Dynamic response of the work

piece subjected to three force components and the induced bending moment Mz

moving at di®erent speeds are plotted below.

In Fig. 5, response of the work piece subjected to the moving load at

u ¼ 6:25mm/s is presented. In Fig. 5(a), it can be seen that the response °uctuates

at relatively high frequencies when the initial displacements and velocities are set to

be zero. In this example, at t ¼ 0, as zero displacements and velocities are included;

the e®ect of the forces behaves as if it is suddenly applied to the beam as impact. In

order to study such a kind of impact, static de°ection of the beam system with the

initial force at t ¼ 0 applied at x ¼ 0 is calculated and included as the initial dis-

placements. Results under such an initial condition are shown in Fig. 5(b). In order

to understand the e®ect of the initial conditions to the dynamic response of the beam,

free vibration of the beam system with the initial displacement set to be the static

de°ection in Fig. 5(b) are also calculated as shown in Fig. 5(c). It can be seen that

the response with higher frequencies in Fig. 5(a) disappears signi¯cantly in Fig. 5(b).

In Fig. 6, the responses of the work piece neglecting the gyroscopic e®ect are also

given; the °uctuation in the z direction has disappeared. Generally speaking, for

Rayleigh Beams, the displacements in the y direction and z direction are independent

from each other when the gyroscopic e®ect is neglected. As the bending moment is

only applied in the xy plane and the °uctuation is mainly caused by the moving

moment Mz, it should be clear that the °uctuation in the z direction vanishes when

gyroscopic coupling is absent. For thorough understanding of the e®ect of rotating,

Table 2. The ¯rst six natural frequencies of the work piece with
and without considering gyroscopic e®ect.

Natural frequencies (Hz)

Modes With gyroscopic e®ect Without gyroscopic e®ect

1 210.4 229.7

2 247.8 229.7

3 251.5 251.8

4 254.9 251.8

5 341.6 342.1

6 342.7 342.1
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Fig. 7. Dynamic response of the rotating shaft considering elastically supported boundary conditions
subjected to moving load at u ¼ 6:25mm/s (without considering the bending momentMzÞ: (a) Zero initial
condition considered and (b) initial static de°ection considered.
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Fig. 8. Dynamic response of the rotating shaft considering elastically supported boundary conditions

subjected to moving load at u ¼ 125mm/s: (a) Zero initial condition considered and (b) initial static

de°ection considered.
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Fig. 9. Dynamic response of the rotating shaft considering elastically supported boundary conditions

subjected to moving load at u ¼ 2m/s: (a) Zero initial condition considered and (b) initial static de°ection

considered.
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Fig. 10. Dynamic response of the rotating shaft considering elastically supported boundary conditions

subjected to moving load at u ¼ 10m/s: (a) Zero initial condition considered and (b) initial static de-

°ection considered.
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Fig. 11. Dynamic response of the rotating shaft considering elastically supported boundary conditions
subjected to moving load at u ¼ 50m/s: (a) Zero initial condition considered and (b) initial static de-

°ection considered.
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in Figs. 5(c) and 6(c), Fast Fourier Transform (FFT) of the response w at the middle

point of the beam are given, more frequencies are involved in Fig. 5(c). The ¯rst six

natural frequencies of the work piece with and without considering Gyroscopic e®ect

are also given in Table 2.

As the contributions of the higher frequencies are very small, as can be seen from

Figs. 5(c) and 6(c), only the frequencies smaller than 350Hz are given. By comparing

these ¯gures, it can be clearly seen that both for numerical simulation and for real

manufacturing process, the initial condition should be taken good care of as they may

have a big e®ect on the ¯nal results.

In Fig. 7, the responses of the work piece without considering the bending

moment Mz are plotted. The °uctuation with higher frequencies response becomes

very small compared with that in Fig. 5, which means that, the bending moment Mz

plays a more important role in exciting higher frequency responses than the other

two translational forces.

In Figs. 8–11, the responses at di®erent constant moving load velocities from

125mm/s to 50,000mm/s are also presented. With a higher velocity, the di®erence

between the response with zero initial conditions and static de°ection initial condi-

tions becomes smaller.

4. Conclusions

In this study, a FSM is extended for the vibration analysis of rotating beams with

arbitrary boundary conditions as a representation of a work piece being turned.

Regardless of the actual boundary conditions involved, each of the displacement

solutions is invariably expressed as an accelerated cosine series supplemented by

several analytical functions. Thus, this method can be universally applied to beams

with arbitrary elastic boundary conditions. In the mathematical model of the ro-

tating work piece on a lathe, the work piece holder is also included and simpli¯ed as

one lumped mass and inertia. More realistic boundary conditions at the chuck and

tail stock are identi¯ed as translational and rotational springs based on modal test

results. After this, the vibration of the rotating beam with updated boundary

conditions subject to moving load is simulated. The numerical results show that the

elastic boundary conditions and the moving speed both have some in°uence on the

dynamic response of the rotating beam system subjected to moving load. For

moving load problems with elastic boundary conditions, initial conditions should be

taken good care of as the dynamic responses could be easily in°uenced by them,

especially when the moving speed is very slow. The presented method can be easily

extended to rotating beams with more complex boundary conditions such as more

sophisticated supporting systems or even to multi-span beam systems subjected to

moving loads.
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Appendix A. Supplemental Information for Eq. (14)

The matrices M, G, K and Kp, and force vector F in Eq. (14) can be written as

follows:

M ¼

Id

Z l

0

ª 0ª 0Tdx

þ �A

Z l

0

ªªTdx

0
BBB@

1
CCCA 0 0 0 0 0

0

Id

Z l

0

ª 0ª 0Tdx

þ �A

Z l

0

ªªTdx

0
BBB@

1
CCCA 0 0 0 0

0 0 mm 0 0 0

0 0 0 mm 0 0

0 0 0 0 Jd 0

0 0 0 0 0 Jd

2
66666666666666666666666666664

3
77777777777777777777777777775

; ðA:1Þ

G ¼

0 Ip

Z l

0

ðª 0ª 0TÞdx 0 0 0 0

�Ip

Z l

0

ª 0ª 0T 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 �Jp

0 0 0 0 ��Jp 0

2
66666666666666664

3
77777777777777775

; ðA:2Þ
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K ¼

K		 0 �kcyªjx¼l 0 �Kcª
0jx¼l 0

0 K�� 0 �kczªjx¼li 0 �Kcª
0jx¼l

�kcyª
Tjx¼l 0 kcy 0 0 0

0 �kczª
Tjx¼li 0 kcy 0 0

�Kcª
0Tjx¼l 0 0 0 Kc 0

0 �Kcª
0Tjx¼l 0 0 0 Kc

2
666666664

3
777777775
;

ðA:3Þ
where

K		 ¼ EI

Z l

0

ª 00ª 00Tdxþ ðkx0ªªT þKx0ª
0ª 0TÞ

����
x¼0

 

þ ðkx1ªªT þKx1ª
0ª 0TÞ

����
x¼l

!
þ ðkcyªjx¼lª

Tjx¼l þKcª
0jx¼lª

0Tjx¼lÞ;

ðA:4Þ

K�� ¼ EI

Z l

0

ª 00ª 00Tdxþ ðky0ªªT þKy0ª
0ª 0TÞ

����
x¼0

 

þ ðky1ªªT þKy1ª
0ª 0TÞ

����
x¼l

!
þ ðkczªjx¼liª

Tjx¼li þKcª
0jx¼lª

0Tjx¼lÞ;

ðA:5Þ

KpðtÞ ¼

K p
		 0 0 0 0 0

0 K p
�� 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
66666664

3
77777775
; ðA:6Þ

Kp
		 ¼ �Px

Z l

s

ª 0ª 0Tdx; ðA:7Þ

K p
�� ¼ �Px

Z l

s

ª 0ª 0Tdx; ðA:8Þ

F ¼ fPyª
Tjx¼s � Pxrª

0Tjx¼s;Pzª
Tjx¼s; 0; 0; 0; 0gT: ðA:9Þ
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