Huaiying Yao

Huaiying Yao
  • Ph D
  • Professor (Full) at Institute of Urban Environment, Chinese Academy of Sciences

About

224
Publications
46,037
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,758
Citations
Current institution
Additional affiliations
October 2012 - present
soil microbiology
Position
  • Principal Investigator

Publications

Publications (224)
Article
Reducing N2O emissions dominated by denitrification from strongly acidic tea plantation soils has become vital for tea plantation soil ecosystems, therefore, the aim of the present study was to evaluate the effect of the procyanidins (Biological denitrification inhibitor) on the soil properties and N2O emissions in the tea plantation soils. A 21-da...
Article
Full-text available
Priming effects of soil organic matter decomposition are critical to determine carbon budget and turnover in soil. Yet, the overall direction and intensity of soil priming remains under debate. A second-order meta-analysis was performed with 9296-paired observations from 363 primary studies to determine the intensity and general direction of primin...
Article
Two obligately acidophilic, mesophilic and aerobic soil ammonia-oxidising archaea were isolated from a pH 4.5 arable sandy loam (UK) and pH 4.7 acidic sulphate paddy soil (PR China) and designated strains Nd1 T and Nd2 T , respectively. The strains shared more than 99 % 16S rRNA gene sequence identity and their genomes were both less than 2 Mb in l...
Article
Full-text available
Straw return is regarded as a widely used field management strategy for improving soil health, but its comprehensive effect on crop grain yield and quality remains elusive. Herein, a meta-analysis containing 1822 pairs of observations from 78 studies was conducted to quantify the effect of straw return on grain yield and quality of three main crops...
Article
Simple anaerobic digestion is insufficient to completely remove residual parent antibiotics and antibiotic resistance genes (ARGs) from animal manure. ARG prevalence in swine biogas slurry-irrigated soils threatens human health. However, comprehensive analysis of antibiotic residues, high-resolution resistance gene profiles, and pathogenic microbio...
Article
Full-text available
The degradation of biodegradable microplastics (MPs) can either stimulate or inhibit the decomposition of soil organic carbon (SOC), but the factors influencing these phenomena remain unclear. In this study, we used the 13 C natural abundance to differentiate between carbon dioxide (CO 2) arising from the mineralization of SOC and poly(lactic acid)...
Article
Full-text available
Legume/cereal intercropping is an example of classic nitrogen-efficient planting that can effectively improve crop yield and nutrient-utilization efficiency. However, the interaction between rhizosphere microorganisms and rhizodeposition and the related ecological mechanisms remain unclear. We conducted a pot experiment using ¹³CO2 continuous label...
Article
Full-text available
The soil environment plays an important role in urban ecosystems. To study the heavy metal contamination of soil in Beilun District, Ningbo, we collected soil samples from 60 points in urban and peri-urban areas of Beilun District and analyzed the spatiotemporal variation and sources of heavy metal pollution in various land-use types. The results s...
Article
Full-text available
Purpose To clarify the geographical distribution pattern of asymbiotic nitrogen activity and diazotrophic community in paddy soils, and to understand the primary environmental driving factors driving asymbiotic nitrogen fixation rate (ANFR) and community diversity. Materials and methods The ANFR and the environmental driving factors of diazotrophi...
Article
Full-text available
Chemoautotrophic canonical ammonia oxidizers (ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB)) and complete ammonia oxidizers (comammox Nitrospira) are accountable for ammonia oxidation, which is a fundamental process of nitrification in terrestrial ecosystems. However, the relationship between autotrophic nitrification and the...
Article
Microplastics (MPs) are emerging pollutants of terrestrial ecosystems. The impacts of MP particle size on terrestrial systems remain unclear. The current study aimed to investigate the effects of six particle sizes (i.e., 4500, 1500, 500, 50, 5, and 0.5 μm) of polyethylene (PE) and polyvinyl chloride (PVC) on soil respiration, enzyme activity, bact...
Article
Full-text available
DNA-based stable isotope probing (DNA-SIP) technology has been widely employed to trace microbes assimilating target substrates. However, the fractions with labelled universal genes are sometimes difficult to distinguish when detected by quantitative real-time PCR. In this experiment, three paddy soils (AQ, CZ, and NB) were amended with 0.1% glucos...
Preprint
Full-text available
The soil environment plays an important role in urban ecosystems. To study the heavy metal contamination of soil in Beilun District, Ningbo, we collected soil samples from 60 points in urban and peri-urban areas of Beilun District and analyzed the spatiotemporal variation and sources of heavy metal pollution in various land-use types. The contents...
Article
Full-text available
Soybean–maize intercropping system can improve the utilization rate of farmland and the sustainability of crop production systems. However, there is a significant gap in understanding the interaction mechanisms between soil carbon (C), nitrogen (N), and phosphorus (P) cycling functional genes, rhizosphere microorganisms, and nutrient availability....
Article
The utilization of antibiotics increases the prevalence of antibiotic resistance genes (ARGs) in various matrices and poses the potential risk of ARG transmission, garnering global attention. Antimicrobial peptides (AMPs) represent a promising novel category of antimicrobials that may address the urgent issue of antibiotic resistance. Here, a zebra...
Article
Disinfectants and antibiotics are widely used for the prevention and control of bacterial infectious diseases. Frequent disinfection is thought to exacerbate antibiotic resistance. However, little is known about how disinfectants and antibiotics co-induce changes in the soil antibiotic resistance genes (ARGs). This study determined the ARG profiles...
Article
Soil carbon and nitrogen cycles affect agricultural production, environmental quality, and global climate. Iron (Fe), regarded as the most abundant redox-active metal element in the Earth's crust, is involved in a biogeochemical cycle that includes Fe(III) reduction and Fe(II) oxidation. The redox reactions of Fe can be linked to the carbon and nit...
Article
Plant carbon (C) released into the rhizosphere will ultimately impact the bulk soil, varying with soil water status. However, the microbial communities involved, and how they vary between rhizosphere and bulk soil, and under varying water regimes, are little understood. Here, within a continuous 13 CO 2 labeling chamber, a rhizobox-like system was...
Article
Full-text available
Continuous cropping is the primary cultivation method in Chinese facility agriculture, and the challenge of it stands as a global issue in soil remediation. Growing tomatoes continuously on the same plot for an extended period can result in outbreaks of tomato bacterial wilt. It is caused by the soil-borne bacterium Ralstonia solanacearum, a widesp...
Article
Full-text available
Microplastics (MPs) can affect phosphorus (P) cycling in paddy fields by changing soil properties and microbial community function, but their impact on soil P availability remains unclear. A laboratory incubation experiment was applied to explore the effect of different MPs on the soil available P content. Amendment with nonbiodegradable MPs signif...
Article
Full-text available
Background and aims Paddy management results in frequent redox cycles of the soil and thus changes in the terrestrial iron (Fe) cycle. We intended to test that the increasing duration of paddy management and the increasing frequency of soil redox cycles leave their fingerprint on Fe isotope composition of paddy systems, which could subsequently be...
Article
Full-text available
Rare earth elements (REEs) are considered to be emerging contaminants due to their widespread use and lack of recycling. Phytolacca americana L. has great potential for REEs phytoextraction. Our understanding of REEs in P. americana focuses mostly on root absorption and xylem translocation, but the role of phloem translocation has received little a...
Article
Full-text available
The presence of biodegradable microplastics (MPs) has the potential to affect soil pH, and possibly accelerate or inhibit the loss of soil inorganic carbon (SIC) in calcareous soils. However, most researchers have focused on the release of biotic carbon dioxide (CO 2) from soils following MP amendments, and few studies have investigated SIC-derived...
Article
Clarifying the effects of elevated CO2 concentration (e[CO2]) on CH4 emissions from paddy fields and its mechanisms is a crucial part of the research on agricultural systems in response to global climate change. However, the response of CH4 fluxes from rice fields to long-term e[CO2] (e[CO2] duration >10 years) and its microbial mechanism is still...
Article
Full-text available
To investigate whether elevated CO2 (eCO2) changes the influence of nanoparticles (NPs) on soil microbial communities and the mechanisms, various nano-ZnO (0, 100, 300, and 500 mg·kg⁻¹) and CO2 concentrations (400 and 800 µmol·mol⁻¹) were applied to tomato plants (Solanum lycopersicum L.) in growth chambers. Plant growth, soil biochemical propertie...
Article
Nonbiodegradable microplastics (MPs) are emerging contaminants in the environment and potentially threaten soil health. In recent years, the impact of MPs on soil ecology has attracted widespread attention, but the responses of soil respiration and enzyme activity to MPs exposure remain unclear. Here, a meta-analysis including 1980 observations was...
Article
Understanding and quantifying the impact of elevated tropospheric carbon dioxide concentration (e [CO2]) on methane (CH4) globally is important for effectively assessing and mitigating climate warming. Paddies and wetlands are the two important sources of CH4 emissions. Yet, a quantitative synthetic investigation of the effects of e [CO2] on CH4 em...
Article
The presence of microplastics (MPs) under flooded conditions is beneficial for nitrifiers and denitrifiers to produce nitrous oxide (N2O), but their dose effect remains unclear. This study evaluated the impact of different doses of polyethylene (PE) MPs on the release of N2O from paddy soils cultivated for different years. Compared with unpolluted...
Article
Full-text available
Biofilms are microbial aggregation membranes that are formed when microorganisms attach to the surfaces of living or nonliving things. Importantly, biofilm properties provide microorganisms with protection against environmental pressures and enhance their resistance to antimicrobial agents, contributing to microbial persistence and toxicity. Thus,...
Article
Film mulching decreased soil organic C content in soil aggregates with 0.053–0.25 mm diameter. Fiber-shaped microplastics readily combined with the soil aggregates of 0.053–0.25 mm in diameter. Film- and granule-shaped microplastics were dominant in 0.25–2 mm soil aggregates. Natural and human activities changed the shape and size distribution of p...
Article
Antibiotics overuse and misuse increase the emergence of multidrug-resistant bacterial strains, which often leads to the failure of conventional antibiotic therapies. Even worse, the tendency of bacteria to form biofilms further increases the therapeutic difficulty, because the extracellular matrix prevents the penetration of antibiotics and trigge...
Article
Full-text available
Tea plantations are an important N2O source. Fertilizer-induced N2O emission factors of tea plantations are much higher than other upland agricultural ecosystems. According to the basic information on characteristics and knowledge of N2O emissions from tea plantations around the world, we comprehensively reviewed N2O emission characteristics, produ...
Article
Increasing evidence shows that fertilization plays a key role in improving nitrogen (N) storage and increasing N supply capacity in paddy soils. How fertilizer regimes (N application rate, substitution rate, and fertilizer type) and environmental variables (soil pH and SOM) affect N pools, nitrification processes (abundance of nitrifying microorgan...
Article
Tea gardens have been widely documented to be hotspots for nitrogen (N) oxide emissions (i.e., nitrous oxide (N2O) and nitric oxide (NO)). However, a quantitative understanding of N oxide emissions related to different fertilizer regimes and the main controlling factors is lacking. Here, we performed a meta-analysis of 56 peer-reviewed publications...
Article
Plastic mulched agricultural fields in Xinjiang are regarded as potential "hotspots" of microplastic (MP) contamination in China, whereas the abundance of MPs in this region is still unclear. As a carbonaceous material, current conventional methods for measuring soil organic carbon (SOC) generally do not separate the MPs from soils, which probably...
Article
Microplastics (MPs) can affect soil organic carbon (C) cycling in paddy soil by changing microbial function and soil properties. In this study, a laboratory incubation experiment was applied to explore the effect of poly-ethylene (PE) MP on methane (CH4) and carbon dioxide (CO2) emissions from paddy soils after rice straw addition. Moreover, the mi...
Article
The co-culture of rice and poultry/aquatic animals has become a popular strategy to ensure the critical ecological functions and economic benefits of this ecosystem in recent years. Yet, quantitative synthetic effects of co-culture models on ecological functions and economic benefits in paddy fields are poorly understood. This study conducted a met...
Article
Full-text available
Biochar applied to soil can reduce nitrous oxide (N 2 O) emissions produced by freeze–thaw processes. Nonetheless, how biochar modification affects N 2 O emissions during freeze–thaw cycles is not completely clear. In our research, during freeze–thaw cycles, microcosm experiments were conducted to investigate the effects of maize straw biochar (MB)...
Article
Antibiotic resistance genes (ARGs) are global pollutants that pose a potential risk to human health. Benzalkonium chloride (C12) (BC) disinfectants are thought to exert selection pressure on antibiotic resistance. However, evidence of BC-induced changes in antibiotic resistance in the soil environment is lacking. Here, we established short-term soi...
Article
Full-text available
Intercropping systems can flexibly use resources such as sunlight, heat, water, and nutrients in time and space, improve crop yield and land utilization rates, effectively reduce continuous cropping obstacles and the occurrence of diseases and insect pests, and control the growth of weeds. Thus, intercropping is a safe and efficient ecological plan...
Article
Black soldier fly larvae (larvae) can digest organic wastes and degrade contaminants such as oxytetracycline (OTC). However, compared to the kinetic processes and enhanced mechanisms used in the traditional microbial degradation of OTC, those employed by larvae are largely uncharacterized. To obtain further details, a combined analysis of larval de...
Preprint
Full-text available
Intercropping systems can flexibly use resources such as sunlight, heat, water, and nutrients in time and space, improve crop yield and land utilization rates, effectively reduce continuous cropping obstacles and the occurrence of diseases and insect pests, and control the growth of weeds. Thus, intercropping is a safe and efficient ecological plan...
Article
Microplastics can perturb microbial nutrient-mining strategies. However, the mechanism by which microplastics affect the resource-acquisition strategies of crops in agricultural systems remains unknown. The nutrient-acquisition potential of crops and microbes was investigated under treatments with two common microplastics (polyethylene [PE] and pol...
Article
Full-text available
The recently discovered complete ammonia oxidizer (comammox Nitrospira) contains clades A and B that were established an independent one-step nitrification process; however, little is known about their environmental drivers or habitat distributions in agricultural soils. Previous studies on comammox Nitrospira in paddy soils have mainly focused on...
Article
Full-text available
Soil carbon dioxide (CO2) and nitrous oxide (N2O) emissions are two main greenhouse gases that play important roles in global warming. Studies have shown that microplastics, biochar, and earthworms can significantly affect soil greenhouse gas emissions. However, few studies have explored how their interactions affect soil CO2 and N2O emissions. A m...
Article
Full-text available
Metal oxide nanoparticles (NPs) have been widely used in industrial and agricultural production and introduced into soils. The impact of these nanoparticles on soil nitrous oxide (N2O) emission is unclear. We conducted a microcosm experiment to investigate the effects of titanium oxide nanoparticles (TiO2 NPs), copper oxide nanoparticles (CuO NPs),...
Article
Full-text available
Due to selective pressure from the widespread use of antibiotics, antibiotic resistance genes (ARGs) are found in human hosts, plants, and animals and virtually all natural environments. Their migration and transmission in different environmental media are often more harmful than antibiotics themselves. ARGs mainly move between different microorgan...
Article
The lateral transport of soil organic carbon (SOC) induced by soil loss has global significance for understanding the terrestrial carbon budget. On the Tibetan Plateau, this is regulated by a complex interplay of environmental factors including soil properties, terrain attributes, climate variables, and vegetation conditions. However, it remains un...
Article
Full-text available
Purpose The aim of study was to revisit the assumptions of the MicroResp™ method and to determine the factors that control the substrate induced respiration (SIR) profiles. The following hypotheses were addressed: (1) SIR changes as a result of substrate form, incubation duration and soil type and (2) prolonged incubation of soils within the MicroR...
Article
Full-text available
E-waste generation has become a major environmental issue worldwide. Heavy metals (HMs) in e-waste can be released during inappropriate recycling processes. While their pollution characteristics have been studied, the migration and transformation of different multi-metal fractions in soil–plant system of e-waste dismantling sites is still unclear....
Article
Leaf wax n-alkane compositions have been widely applied to reconstruct paleoclimate histories in peat deposits, yet understanding of how the n-alkanes vary during seasonal plant growth remains limited. Here we report variations in the molecular and wax-derived n-alkane hydrogen isotope (δ2Halk) in the three dominant vascular plant species (Sanguiso...
Article
The accumulation of microplastics (MPs) in terrestrial ecosystems can affect greenhouse gases (GHGs) production by changing soil structure and microbial functions. In this study, microcosm experiments were conducted to investigate the impact of polyethylene (PE) MP addition on soil carbon dioxide (CO2) and nitrous oxide (N2O) emissions from paddy s...
Article
The ever-growing antibiotic-resistant bacteria pose a huge threat to public health. Restoring the susceptibility of ineffective antibiotics by inorganic nanomaterials and combining the photothermal and antibiotic effects could be an optional strategy to combat this resistance. Here, cefotaxime (CTX) loaded tellurium nanoparticles (Te NPs) were fabr...
Article
Various carbon sources as substrates and electron donors can produce methane via different metabolic pathways. In particular, the methane produced by rice cultivation has a severe impact on climate change. However, how Fe³⁺, the most abundant oxide in paddy soil, mediates the methanogenesis of different carbon sources is unknown. In this study, we...
Article
Full-text available
Soil fertility management is one of the most important factors affecting crop production. The use of organic manures, including green manure, is an important strategy to maintain and/or improve soil fertility for sustainable crop production. Green manure generally refers to crops that can provide fertilizer sources for agricultural cash crops and i...
Article
Microplastics (MPs) can alter microbial communities and carbon (C) cycling in agricultural soils. However, the mechanism by which MPs affect the decomposition of microbe-driven soil organic matter remains unknown. We investigated the bacterial community succession and temporal turnover during soil organic matter decomposition in MP-amended paddy so...
Article
Agricultural land occupies nearly half of the earth’s surface, and farming activities account for nearly 60% of total anthropogenic N2O emissions. The manufactured nitrogen (N) fertilizers applied to soils are major sources of N2O emissions from agricultural systems. Among the synthetic N fertilizers, urea has the highest nitrogen content of all so...
Article
With the continuous increase in shrimp (Litopenaeus vannamei) aquaculture production, the widespread use of antibiotics as a means of preventing and treating diseases has adversely affected the environment, animal health and symbiotic microorganisms in gut environments. At the same time, antibiotic resistance genes (ARGs) are widespread in aquacult...
Article
The co-culture of rice and aquiculture/poultry has become a popular strategy to ensure the critical ecological functions and economic benefits of this ecosystem in recent years. Yet, quantitative synthetic effects of co-culture models on ecological functions and economic benefits in paddy fields are poorly understood. This study conducted a meta-an...
Article
The use of plastic film in agriculture strongly affects the decomposition of soil organic carbon (SOC) and the release of methane (CH4) and nitrous oxide (N2O) by influencing soil biogeochemical processes. However, no systematic conclusions have been reached regarding the effect of plastic film mulching on SOC stocks and greenhouse gas (GHG) budget...
Article
Full-text available
An elevated CO2 (eCO2) fumigation experiment was carried out to study the influence of various CO2 concentrations on microorganisms involved in the incorporation of root-derived C in greenhouse soil systems. In this study, 400 and 800 µmol·mol−1 CO2 fumigation treatments were conducted during tomato planting. Phospholipid fatty acid (PLFA) profilin...
Article
The accumulation of microplastics (MPs) in agricultural fields can not only disguise soil organic carbon (SOC) storage but also affect the production of carbon dioxide (CO2) by microbial decomposition. However, little is known about the impact of this emerging pollutant on soil CO2 emissions and the functional genes related to SOC degradation. In t...
Article
Applying biochar in association with crop residues might optimize costs and effectiveness in the reclamation of saline soils. Here, we explored the potential effects of biochar in association with crop residue amendments on soil greenhouse gas (GHG) emissions, and microbial communities. Previously, we found that soil N2O emission significantly incr...
Article
Full-text available
Intestinal bacteria are crucial for the healthy aquaculture of Litopenaeus vannamei, and the coastal areas of China are important areas for concentrated L. vannamei cultivation. In this study, we evaluated different compositions and structures, key roles, and functional potentials of the intestinal bacterial community of L. vannamei shrimp collecte...
Article
Full-text available
Zinc oxide nanoparticles (ZnO NPs) are widely used and exposed to the soil environment, but their effect on soil nitrous oxide (N2O) emissions remains unclear. In this study, a microcosm experiment was conducted to explore the effects of different ZnO NPs concentrations (0, 100, 500, and 1000 mg kg−1) on N2O emissions and associated functional gene...
Article
In light of the limited resources of phosphorus (P) fertilizer, investigating the response of organic P (Po)-mineralizing microbial communities on the resource supply can be an avenue to optimize P recycling in agricultural systems. The alkaline phosphomonoesterase (alkaline PAse)-encoding gene PhoD is universally occurring in soil microorganisms....
Article
Full-text available
Functional antimicrobial peptides (AMPs) are an important class of effector molecules of innate host immune defense against pathogen invasion. Inability of microorganisms to develop resistance against the majority of AMPs has made them alternatives to antibiotics, contributing to the development of a new generation of antimicrobials. Due to extensi...
Article
Full-text available
Antibiotic bacterial residue is a unique hazardous waste, and its safe and effective disposal has always been a concern of pharmaceutical enterprises. This report presents the effective treatment of hazardous waste—antibiotic bacterial residue—by black soldier fly larvae (larvae), oxytetracycline bacterial residue (OBR), and soya meal with mass rat...
Article
Mean oceanic CO2 values have already risen and are expected to rise further on a global scale. Elevated pCO2 (eCO2) changes the bacterial community in seawater. However, the ecological association of seawater microbiota and related geochemical functions are largely unknown. We provide the first evidence that eCO2 alters the interaction patterns and...
Article
Full-text available
Soil organic matter (SOM) plays an important role in the field of climate change and terrestrial ecosystems. SOM in large areas, especially in urban areas, is difficult to monitor and estimate by traditional methods. Urban land structure is complex, and soil is a mixture of organic and inorganic constituents with different physical and chemical pro...

Network

Cited By