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SUMMARY

Polar orbiting satellites remotely sense the earth and its atmosphere, producing data
sets that give daily global coverage. For any given day, the data are many and spa-
tially irregular. Our goal in this article is to predict values that are spatially regular at
different resolutions; such values are often used as input to general circulation models
(GCMs) and the like. Not only do we wish to predict optimally, but because data
acquisition is relentless, our algorithm must also process the data very rapidly. This
article presents a new statistical prediction methodology that preserves “mass balance”
across resolutions and computes spatial predictions and prediction (co)variances ex-
tremely fast. Data from the Total Ozone Mapping Spectrometer (TOMS) instrument,
on the Nimbus-7 satellite, are used for illustration.

Key words: Change-of-resolution Kalman filter, change of support, EM algorithm, hetero-

geneous variances, mass balance, multi-resolution, TOMS, tree-structured model.

1 INTRODUCTION

The general statistical problem posed in this article is that of fast, statistically optimal,
spatial prediction of global processes based on spatially irregular data. Importantly, the
spatial predictions are needed at different spatial resolutions; thus, one of the challenges is
to make the predictions and the prediction (co)variances consistent across resolutions. By

combining several small regions into a larger region and several larger regions into an even



larger region, and so forth, we build up a scheme for changing resolutions. Then, an acyclic
directed graph can be constructed by drawing arrows from larger “parent” regions to smaller
“child” regions, which provides a framework for a statistical model that is autoregressive in
levels of resolution (Chou et al., 1994; Huang and Cressie, 2000).

This article concentrates on the special case of autoregressive tree-structured models
(e.g., Chou et al., 1994; Luettgen and Willsky, 1995a, 1995b; Fieguth and Willsky, 1996),
where the optimal spatial prediction procedures are shown to be extremely fast. Imagine a
bathtub whose tap is always running. The tub has a capacity of one day of water and we
need to keep emptying it so that no overflow occurs. The analogy between water and data
is obvious. Using the usual stochastic methods of spatial prediction (e.g., Cressie, 1993,
Sect. 5.9.1), is like trying to empty the bathtub with a small bucket.

The approach we take here for optimal spatial prediction is easily able to handle large-
to-massive amounts of daily data, without overflow into the next day’s processing time. The
problem was motivated by the need to process massive amounts of global data obtained from
satellites remotely sensing the earth and its atmosphere. Further, the results are needed at
different resolutions to accommodate the requirements of scientists studying regional and
global processes. In this article, we develop a mass-balanced, change-of-resolution Kalman
filter that is statistically optimal, very fast, and consistent across changes of resolution.

A basic physical requirement of the model is that of “mass balance”. For example, if
total column ozone (TCO) is measured in Dobson units per unit volume, then the TCO of
a parent region should be equal to the volume-weighted average of its children’s TCO. We
explicitly incorporate this requirement into the state equation of our tree-structured model,
from which we produce resolution-consistent optimal spatial predictions. Mass balance in
one-dimensional nested models for count data is presented by Kolaczyk (1999).

In this article, we demonstrate that autoregressive tree-structured models can also han-
dle missing data or different data sources that are themselves at different levels of spatial
resolution (e.g., the problem of combining satellite data, ground-station data, balloon data,

and so forth). Moreover, heterogeneous variances due to change of spatial support are ac-



counted for in the model. In the past, these models have been used in situations where only
variables at the finest scale are of practical interest. However, being able to find statistically
optimal spatial predictors at different levels of resolution is a particularly appealing feature
for environmental data, since the required level of resolution often depends on whether the
data are to be used in local, regional, or global calculations. For example, consider spatial
prediction of TCO, where spatially regular “level-3” data are given at the finest scale of 1 de-
gree latitude by 1.25 degree longitude. Although the predicted value of a larger area (e.g., a
4 degree latitude by 5 degree longitude cell) could be obtained by taking a volume-weighted
average of the corresponding finest-scale predicted values, the prediction (co)variances of
these larger regions do not follow in a likewise simple manner. The algorithm we present in
this article gives both optimal predictions and prediction (co)variances, at differing spatial
resolutions, rapidly.

In Section 2, we review general tree-structured models and the associated change-of-
resolution Kalman-filter algorithm. The mass-balanced, tree-structured model is introduced
in Section 3. Estimation of parameters based on maximum likelihood via the EM algorithm
is also given. Section 4 presents an application to TCO satellite data collected from the
Total Ozone Mapping Spectrometer (TOMS) instrument. A discussion of the important
features of our model, of the associated spatial-prediction algorithm, and of future research

problems is provided in Section 5.

2 TREE-STRUCTURED MODELS

One important use of the statistical methodology presented in this article is the rapid
processing of satellite data on a global scale. The US National Aeronautic and Space
Administration (NASA) is sponsoring a program called the Earth Observing System (EOS),
which consists of a series of satellites to measure the chemical and physical processes of the
earth and its atmosphere (NASA, 1992). An important part of this project is to produce
regularly spaced spatio-temporal (level-3) data on grid cells at various resolutions, based

on irregularly sampled (level-2) satellite data.



One simple way to produce daily level-3 data is to use the sample mean (or median)
of those level-2 data that fall in a grid cell for that day. However, this approach fails to
capture spatial dependencies inherent in the level-2 data; the closer together they are, the
more alike they tend to be. In order to incorporate the spatial information, we may regard
the level-2 data as being generated from a stochastic process. A general spatial model can

be written as:
Y(s) = u(s) +n(s); se€D, (1)

where D is a spatial region of interest, u(-) is a deterministic mean process, and 7(-) is a
zero-mean spatially colored stochastic process. The goal is to obtain the optimal predictor
and the prediction (co)variance of different aggregations of Y (). At a given resolution and

location D,,, where |D,| = fDu 1ds > 0, we wish to predict:

1
| D

Yo = /D Y (s)ds = tu + 1, (2)

based on the noisy data Z = (z,,,. .. ,zuN)', where p,, and 7,, are defined analogously to y,,,

1
| D, |

Zu;

/ Y(s)ds + ey,
D,

€y, Tepresents measurement error, and |D,,| > 0; ¢ = 1,..., N. If all the first moments and
the second moments of the spatial variables are known, the optimal (linear) predictor of v,

is given by
Ju = pu + cov (ny, Z) (UGT(Z))il(Z —p),

where g = (fiay, - - ,uuN)'. When we have massive amounts of data, it may not be com-
putationally feasible to compute g, directly, since we first have to estimate variance and
covariance entries, and then we have to take the inverse of an extremely high-dimensional
matrix. The difficulties are only exacerbated when many different prediction regions are
considered.

There are several problems that are of considerable challenge here. First, the method-

ology to produce statistically optimal level-3 data should take spatial dependencies into



account. Second, since level-3 data will be used in regional, national, or even global moni-
toring programs, we have to produce optimal predictions and prediction variances so that
no statistical contradictions appear after aggregating or disaggregating. That is, we require

a type of “mass balance” based on the simple equation,

J
W=
i=1

where D, = D,, U---UD,, and {va} are disjoint. Third, and of equal importance, optimal

| Do,
‘D yvj ’

ol

predictions for massive mounts of data should be produced rapidly. All of these challenges

will be dealt with using tree-structured models.
2-1 Hidden Tree-Structured Model

Consider a (multivariate) Gaussian random process {y,, : u € U} indexed by the nodes of
a directed tree (U, E), where U is the set of nodes, and FE is the set of directed edges. Let
ug denote the root of the tree, and let pa(u) denote the parent of a node u € U \ {up}. We

say that u is a leaf of the tree if it has no children. Then

E = {(pa(u),u) :u e U\ {up}}.

A hidden multivariate Gaussian tree-structured process {y, : u € U} on the tree (U, E)
is defined as follows. Assume that the Gaussian process evolves from parents to children in

an autoregressive manner according to the following:

z, = Cuy,+e; uwel,

where {z,} are (potential) observations, {y,} are the hidden, zero-mean, Gaussian state
vectors that are to be predicted, {A,} and {C,} are deterministic matrices, {w, } and {e,}

are independent, zero-mean, Gaussian vectors with covariance matrices,

W,

var (wy); u €U\ {up},

®, = var(e,); uw€eU,



{y.} and {e,} are independent, and y,,(,) and w, are independent for u € U \ {ug}. The
goal is to obtain statistically optimal predictors of the state vectors {y, } based on available
data {zy,,. .., Zuy }-

Note that the covariance between any two variables y, and y, on the tree can be
computed recursively along the paths from their first common ancestor an(u,u') to u and
u’. That is,

cov (Yy, Yuy) = Auy -+ Ay 007 (Y (u)) (A - - Aur)' (4)
where (an(u,u'),uy,...,u) and (an(u,u’),u},... u') are the paths from an(u,u’) to u and

u', respectively.
2-2  Change-of-Resolution Kalman Filter

Chou et al. (1994) developed a fast, change-of-resolution Kalman-filter algorithm for tree-
structured models; a Bayesian version of this is given below. The algorithm consists of two
steps, the leaves-to-root filtering step, followed by the root-to-leaves smoothing step. In
the leaves-to-root filtering step, the algorithm goes from the leaves of the tree, recursively
computing the optimal predictor of the state vector y,, based on the data observed at node
u and its descendent nodes. Once the root ug is reached, the optimal predictor of y,  is
obtained, based on all the data. In the root-to-leaves smoothing step, the algorithm goes
from the root of the tree, recursively computing the optimal predictor of the state vector y,,
at a node u based on all the data. These two steps, though more complicated, are analogous
to the filtering step and the smoothing step of the standard Kalman filter in time series.
The algorithm has also been extended to more general graphical Markov models by Huang
and Cressie (2000).

First, we introduce some notation. Boldface will be used to denote either a vector, a set

of vectors, or a matrix. Denote u < v’ if &' = u or ' is a descendent of u. For u € U, let

Uy, = {u:u=<ud},
. 1; =z, is observed at u,
Tu = 0; otherwise,

Z

{Z’u:fy’u:l}a



Z, = {zu’ Y =1, UIEUu}u

Z: = {zu' Y =1, u' € U, \ {U}},
gul\zm = E(yul‘ZUQ)a
gzﬂm = E(yul‘Z:‘n),

Uy E(y,l Z),

V. = wvar(y,),

Ful\uz = wvar (yul‘ Zu2) ,
Zl\uz = var (ym‘zzz)’
r, = var(y,|2),
Fulaw = cov (yuvyuz‘ Z) = cov (@ul “Yuys guz - yuz) :

Also, for u € U \ {uop}, let

Vpa(u) AZL V. ! )

Vv

pa(u) — Vpa(u)Agvzlequa(u)'

Note that {V',} can be computed recursively; from (3), we have that
V.= Aqua(u)A; + Wy welU \ {UO}

In the leaves-to-root filtering step, we start with the leaves and proceed towards the root
of the tree, against the directions of the edges. At each node u, Yy and Ty, are obtained
recursively. Using conditional distribution results for multivariate Gaussian processes, for

a leaf u € U, we have

N —1
Yuju = ’YuVuC;L (CuVuC;L + (}u) Zus (5)

For u € U that is not a leaf, let ch(u) = (ch(u,1),...,ch(u,n,))" denote the vector of the

children of u, where n,, is the number of children of the node u. We have, for i = 1,...,n,,



the following recursions:

Yuleh(ui) = Bch(u,i)gch(u,i)\ch(u,i)7 (7)
Coujenui)y = Benui)Lehu,i)ch(ui) Ben(ui) T Beh(u,i)» (8)
Yuu = T (2 L en(uiy Yulch(u) ) (9)

i
= {V +Z(u\chm u)} , (10)
Guw = T (vuc;V; 2+ (Th) 90 (11)
Lo = T =l Cl (C TG+ ‘%)7 CuT,- (12)

At the root ug, we have

yuo = yuo "uo ?

r,, = T

up|ug*

The root-to-leaves smoothing step moves from the root to the leaves in the direction of

the edges, such that g, and I', can be computed recursively, for v € U:

Yy = Qu\u + Fu\uBuI‘pal(u)‘u (Qpa(u) - :gpa(u)\u) ) (13)
1 —1
r, = Fu\u + Fu‘uBurpa(u)\u (Fpa(u) o Fpa(u)\u) Fpa(u)\uB“Fu‘u' (14)

Complete derivation of the algorithm can be found in Chou et al. (1994) and via a Bayesian
approach by Huang and Cressie (2000).
Luettgen and Willsky (1995a) show that the prediction errors g, — y,; u € U, also

follow a multi-resolution tree-structured model. That is,

Qu “Yu = Gu (@pa(u) - ypa(u)) + su; uelU \ {uU}a (15)
where

G, = I‘u‘uBuI‘pal(u)‘u; ueU\{up},

Ypa(u) — Ypa(u) and {§, 1 u € U\ Uy} are independent, zero-mean, and Gaussian for u €
U\ {uo}, and

var (§,) =R, =V - Vpa(u)A;V;lAqua(u); uwe U\ {up}.

pa(u)

8



Note that G,; u € U, can be computed in the leaves-to-root filtering step. From (4) and
(15), for any u,u’ € U, we can obtain the prediction covariance between any two variables

as:

Fu,u’ = Ccov (@u —Yu gu’ - yu’)

= Gu1 - Gy var (Qan(u,u’) - yan(u,u’)) (Gu’l e Gu’)la
where the notation is the same as in eq. (4). In particular, we have
Fu,pa(u) = G’urpa(u); u € U\ {U’U} (16)

These formulas are needed later in the EM algorithm that is used to obtain maximum
likelihood estimators of the model parameters; see Section 3.3.

The change-of-resolution Kalman-filter algorithm presented above does not have mass
balance. Therefore, although it represents a start, the algorithm does not guarantee ag-
gregation consistency for predictions and prediction variances. Moreover, we have yet to
develop a method for model-parameter estimation and a way to incorporate heterogeneous

variances. Solutions to these problems are given in the next section.

3 MUuLTI-RESOLUTION TREE-STRUCTURED MODELS

In the last decade, there has been a lot of research interest in multi-resolution meth-
ods, including multi-resolution representations of signals based on wavelet transforms (e.g.,
Daubechies, 1988; Mallat, 1989; Meyer, 1992), and multi-resolution stochastic models link-
ing coarser-scale variables to finer-scale variables in an autoregressive manner via trees (e.g.,
Chou et al., 1994; Luettgen and Willsky, 1995a, 1995b; Fieguth and Willsky, 1996). An
advantage of using these methods is that many signals naturally have multi-scale features.
Moreover, fast implementation algorithms can usually be developed. In this article, we
develop a basic multi-resolution tree-structured model and then enhance it to include mass
balance and heterogeneous variances. We also describe an EM-algorithm for estimating

model parameters.



3-1 Basic Model

Consider a tree with J scales. Assume that there are N; nodes at the first scale (the
coarsest scale), and each node at the j-th scale has n; children; j =1,...,J — 1. So, there
are N; = Ning---n;_1 nodes at the j-th scale; j = 2,...,J. For example, if Ny = 1 and

ny =--- =mny_1 =4, we obtain a quadtree; see Figure 1.

Figure 1 here

In all that is to follow, we consider the univariate case, where only one variable y is to
be predicted at different locations and different resolutions. In (1) and (2), let the nodes of
the tree be locations at the centroid of the corresponding disjoint subregions { D ;. }, where
Upty'Dig =+ =Up’ ' Dy = D with [Djy| = -+ = [Dj ;1] > 0; j =1,...,J. This
assumption of equal number of children and equal areas within a resolution is made for
simplicity and will be relaxed later, in Section 3.4. Consider a spatial process {Y(s) : s €

D}. Forj=1,...,J, k=0,...,N; — 1, let

),
Yik = T Y(s)ds
P Dkl I,

be the hidden state variable we would like to predict at resolution j and location k and,
without loss of generality, we denote the n; children of y;k by yji1,kn;s- - Yja1, (kr1)n; 1-
Thus, the parent of y; becomes y; i x/p, ,j for j =2,....J, k =0,...,N; — 1, where
[z] denotes the largest integer less than or equal to z. A multi-resolution, tree-structured

model is given as:
Yik = Yj1,k/n;_1] T Wik j=2,...,J, k=0,...,N; — 1, (17)
Zik = Yik+eig J=1,...,J, k=0,...,N; —1, (18)
where {z; 1} are (potential) observations, €, ~ N(0,®;.): 7=1,...,J, k=0,...,N; -1,
are independent, zero-mean, Gaussian random variables representing measurement errors,
yig ~ N(O, 0?); k=0,...,N; — 1, independently,

Wik~ N(O,O'JQ-); j=2,...,J, k=0,...,N; — 1, independently,

3

10



y;k and €; are independent for j = 1,...,J, k=0,...,N; — 1, and y; 14 and w;; are

independent for j =2,....J, k=0,...,N; — 1. Note that, for j =1,...,J,
'UC”"(Y]‘) = 0'3 IN]- + 0']2‘711-]\7]-,1 ® (1”]’—1 I;Zj—l) + -+ U%INl ® (1n1'--nj711’n1~~~nj,1)7 (19)

where Y; = (yj,[], e ,yj,er)’, I, is the m x m identity matrix, and 1,, is the m x 1 vector
whose entries are all 1.

Many environmental variables of interest are in per-unit-area or per-unit-volume units.
Hence, for physical reasons, we should see the average of all the offspring variables of a

parent node at the (J — 1)-th scale to be equal to their parent variable. That is, we should

see 1
nj—1—
1
Yi-1k = E Yskny 1415 k=0,...,N; 1 -1
nj1 =

However, this mass-balance equation does not hold for the model (17), because the corre-
sponding {w} typically do not add to zero. Thus, in this basic model, only the finest-scale
variables are meaningful. In what follows, we propose a simple way to ensure mass balance

by imposing a linear constraint on the {w;;}.

3-2  Homogeneous, Mass-Balanced, Tree-Structured Models

Define
! .
ych(j,k) = (yj+1,kn]'7'"1yj+1,(k+1)n]-71> y )= ]-a"'aji]-a k,‘ZO,,N]*].,
/
Weh(jk) = (ijJm]., e ,wj+1’(k+1)nj,1) ;o =1...,.J-1, k=0,...,N; — 1,
1 .
HWE_%—E%uﬁ]:L”J

That is, Yep(j k) and wep(j k) consist of all the children of y;  and w, j, respectively. Then,

a multi-resolution, mass-balanced, tree-structured model is given as follows:
Yeh(ik) = Yikln, + Wengpy; J=1,-..,J =1, k=0,...,N; -1, (20)
Zik = Ykt Ejk; j=1...,J, k=0,...,N; — 1, (21)

where {z; 1} are (potential) observations, €, ~ N(0,®;;); 5 =1,...,J, k=0,...,N; -1

3

are independent, zero-mean, Gaussian random variables representing measurement errors,

11



and
wepgy ~ N (0,07 Hy): j=1,...,J -1, k=0,...,N; — 1,
so that
1, Wen(jk) = 0-
Comparing (20) and (21) with (17) and (18), the new feature of the model is that we now

have constraints on {wch(jyk)}, which imply that, for j =1,...,J -1, k=0,...,N; — 1,

RS _ 1y = 22

n_j zZ(:) Y, knj+l = n—] njYeh(jk) = Yjk - (22)
This is precisely mass balance. Now, not only are the finest-scale variables meaningful,
as in the basic model in Section 3.1, but so too are the variables at all the other scales.
By treating each ycp(;x) as a single node for j = 1,...,J -1, k =0,...,N; — 1, the
mass-balanced, tree-structured model given by (20) and (21) can be regarded as a vector

tree-structured model on tree (U, E) without constraints, where

U = {(L,k):k=0,...,N, —1}U{ch(j,k):j=1,...,J =1, k=0,...,N; — 1},
E = {((1,k), ch(1,k)) :k=0,...,N, — 1}

u{(ch(j—uk/n,-,l]),ch(j,k)) j=2,. 1, k:O,...,Nj—l}.

Therefore, the change-of-resolution Kalman filter given in Section 2.2 can be applied, and
we can obtain meaningful optimal predictors and prediction variances at multi-resolutions
simultaneously. It should be noted that the prediction algorithm based on the mass-balanced
model sacrifices some computational efficiency, because some scalar divisions are replaced
by small matrix inversions at each grid node.

Note that for j =1,...,J -1, k=0,...,N; — 1,

var (Yen(ix) ) = var (v3) L, + 71 Ha,.

12



Therefore, for j =1,...,J -1, k=0,...,N; — 1,

-1 n; — 1
) = I,.
{var (ych(J,k)) } (nj — 1) var (y;x) + njasz "

2
Oj+1 1/

+ 9 n; n]-7
var (Y k) ((nj — Vwar (yjx) + ”j0j+1)

has a closed-form expression and can be easily computed as part of the multi-resolution
Kalman-filter. Also note that, for j = 1,...,.J, the variance of Y; = (yjyo, e ,yijj,l)/ is

given by

var(Y;) = UJQ-IN], + (0]2-71 - 0]2-/71];1) Iy, |\ ® <1nj,1 1;”,1> do

+ (U% - U%/nl) IN1 &® (1711---711‘711;11---71]‘,1) : (23)

Comparing (19) and (23) for a fixed scale 5 € {1,...,J}, it follows that the joint dis-
tribution of Y; has the same form as that for an unconstrained tree-structured model if
02-271 > a?/ni,l; 1 = 2,...,7 — 1. Therefore, if one starts with an unconstrained tree-

structured model, there exists a mass-balanced, tree-structured model such that the covari-

ance structures match at the finest resolution, j = J.
3-:3  Parameter Estimation

The vector of model parameters 8 = (0’%, ce ,0'?])’ can be estimated by maximizing the
likelihood function assuming that the measurement-error variances {®;;} are known. In
practice, this knowledge comes from information supplied with the measuring device or

from independent experiments. Let
Yy = (v{,....Y)),
Z = {zj’k CYik = 1},
where for j=1,...,J, k=0,...,N; — 1,

- _ J 1, if zjx is observed,
Vik 0, otherwise.

13



Note that Y is actually determined by a proper subset,
Y =Y \{yjpn,_,d=2,...., k=0,...,N;_ — 1},

since we have the constraints given by (22).

From (20) and (21), the complete log-likelihood function based on ¥ and Z can be

written as
logL (0:Y' Z) = ! -1 -
0g (, ; ) = ¢ 5s ( yjk) — - logoi — Z k)’
Js V=1 1 k=0
_1N;—-1
J—1Nj n | 1 1
-2 7 108 0%1 + g (Ve ~ 541 1)
j=1 k=0 J

where ¢ is a constant,

!
yi:h(]k) (y]+1 kn]+1a"'ayj+1,(k+1)nj71> ; 7:]-an7]-’ k,‘ZO,...,Nj*l,

and

HIL], =1,,1— %171],,11;],,1; j=2,...,J.
J
Although the “incomplete” log-likelihood based only on Z is Gaussian, it has a com-
plicated covariance matrix and is difficult to maximize directly. Instead, we apply the EM
(Expectation-Maximization) algorithm (e.g., Dempster et al., 1977) and treat Y as miss-
ing data. The EM algorithm is an iterative procedure starting with some initial estimator

5(0)

(7] Each iteration consists of two steps, the expectation step (E-step) followed by the

maximization step (M-step). At the i-th iteration, we evaluate

E (1ogL(0;YT, Z) |Z) , (25)

in the E-step, where E;_; denotes the conditional expectation based on the parameter 9(2

obtained from the (i — 1)-th iteration. We then find the 9" that maximires (25) in the

M-step. The procedure is repeated until convergence. It has been shown that the likelihood

14



always increases at each iteration and the algorithm is guaranteed to converge under mild

conditions (see Dempster et al., 1977; Wu, 1983; Boyles, 1983).

Forj=1,...,J, k=0,. —1, let
Igj,k = E( )7
and for j=1,...,J -1, k=0,...,N; — 1, let

Bingw = 7 (Vi Z).
ch(jk) — ch]k
f _

Fch(j,k) = 1)(17“( ch]k ‘Z)
T — f

Fj+1,j,k = (:m)(ych(j’k), yj,k‘Z).

Upon taking conditional expectations in (25), conditional on the observed data Z, we have

in the E-step,

E (1ogL(0;YT,Z) |Z)

1 1
— _ — F }_ _1 2 {F 2}
c 20, Z {( gk = 9ak)" + Lok 5 10801 207 Lk (G)
e k=0
J—1N;—1
(n; —1) 2 1 . , .

72 Z { 5 logojy + 902 (ych(],k) Yik nfl) (HIM)

j=1 k=0

1 -1
~f oA t t
% (ych(j,k) yﬂyklnfl) * 207, tr ((an) Fch(a‘:k))

1

0'

Jj+1

Ly (gt ) ' o Ne g (gt
n]fl n; j+1,4.k 20_ 2 n],l n; n]‘fl .
J

Note that at the i-th iteration, the expectations that are in the definitions of the terms

" 5(—1)
{6} ATk} {Fj:h(j,k)}’ and {1";4_1’]-’,6} assume the parameter value 6

, and they are
computed using the change-of-resolution Kalman-filter algorithm given by (5)-(14) and (16).
Now consider the M-step. It is not difficult to see that E (log L(6; Y, Z) | Z) achieves

1ts maximum at

15



Nj—1
1 J , 1
2 -1 A t of i
i+l = N;(n,; — 1) Z {(ych(j,k) yy,klnrl> (Hnj> (ych(j,k) yy,klnrl>
k=0

i) pt ' F\ g

tir (H”f) Lengry ) —21n,1 (Hnj> Lk
I} 1 —1 .

+Fj,k ]'njfl(Hnj) ]-njfl ; .7:1,...,J*1.

At the i-th iteration, this yields parameter estimate 9(2). Now return to the E-step and

repeat until convergence.
3-4  Heterogeneous, Mass-Balanced, Tree-Structured Models

In this section, we shall construct tree-structured models whose variances within a given
resolution may be heterogeneous. This may happen because the number of children may
differ from node to node or the children’s spatial supports may differ. First, we introduce
some definitions and notation. Let {Y (s) : s € D} be a spatial process defined on a spatial

region of interest D, with |D| > 0.

Definition 1 A collection of subsets {D;, C D:j=1,...,.J, k=0,...,Nj — 1} is called

a nested partitioning on D, where |D| > 0, if the following conditions hold:
(’L) ‘Dj,k‘>07 j=1,...,J,k:0,...,Nj—1,‘
(ii) {Dj:k=0,...,N; — 1} are disjoint, and UZ’:Bl Dy =D, for each j=1,...,J;

(iii) Given any Djy; 7 =2,...,J., k=0,...,N; —1, there ezxists a k' € {0,...,N;_; — 1}

such that D C Dj_1 . We denote (j — 1, k') = pa((j, k).

Note that given a nested partition {D;, C D:j=1,...,.J, k=0,...,N; — 1}, one can
define an associated tree with nodes {(j,k) : j=1,...,J, k=0,...,N; — 1}, and directed
edges
E = {(pa((4,k)),(5,k) :j=2,...,J, k=0,...,N; — 1}.
Forj=1,....J, k=0,...,Nj—1, let

1
yj,k = — Y(s)ds,
G5k JD; g
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where a;; = |D; 1| denotes the cell areas, and n; ;. is the number of children of y; ;. Further,

let

!
Yeh(jk) = (ych(j,k,l)a s 7ych(j,k,nj,k)) ;o J=1...,J-1 k=0,... aN] -1

denote the vector of values associated with the children of y; ;, let

!
Qch(jk) = (ach(j,k,l)a s 1ach(j,k,nj,k)) ;o J=1...,J-1, k=0,... aN] -1

denote the vector of the children’s cell areas, define V;, = var(y;x); 7 = 1,...,J, k =
0, . ,Nl — 1, and define ‘/ch(j,k,l) = var(ych(jyk,l)); _] — 1, ey J — 1, k= 07 A ,Nl — 1, l=
1, <y Ty k-

A heterogeneous, mass-balanced, tree-structured model is defined as:

Yeh(jk) — yj,klnj,k + Weh(j,k)s j=L....J -1 k=0,... aN] -1 (26)

zjik = Ykt J=1,...,J, k=0,...,N; —1, (27)

where {z; 1} are (potential) observations, €, ~ N(0,®,.): 7=1,...,J, k=0,...,N; -1,
are independent, zero-mean, Gaussian random variables representing measurement errors,

and

!

Wen(jk) = (Wen(k1) - -+ s Wen(ikng ) ~ N (0, Wch(j,k)) ,

with Wep(;x) obtained from eq. (31) in the Appendix, by substituting n;k, @cp(jr), and

!
2 2\ :
(Vch(j,k,l) ~ Viks- s Ven(ikm, ) — ij> for n, @, and (o7,...,0;), respectively. Hence,

Aen(jryWeh(h) =0 F=1....J =1, k=0,....N; = 1. (28)
From (26) and (28), we obtain the mass balance:
Ty iy Yeh(ih) = GkYki  J =1, d =1, k=0, Nj— 1.

That is, the whole is equal to the sum of its parts.
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Note that for j = 1,...,J, if nj = njo = --- = njn,-1, then the variance of Y; =

! . .
(yj,Ua . ayj,qu) is given by

7

var(Y;) = W; +W;1 ® <1nj lln) +- W ® <1n2---n]‘711;m---nj,1)

02 In @ (Lngony o Ly, ) (29)

where W; = W, and
Wenii-1.0) 0
W, = Coj=2,..,J—1.
0 WenG-1,n,_,-1)

Also note that it is not always possible to achieve mass balance with the statistical
model (26) and (27) based on given variance parameters {V;}. This is as it should be,
since it is a warning that the parent-child relationship in (26) is not reasonable, given a
large heterogeneity of variances. However, for multi-resolution models whose areas and
numbers of children are homogeneous within each resolution, the heterogeneous, mass-
balanced, tree-structured model given by (26) and (27) becomes a homogeneous, mass-
balanced, tree-structured model given by (20) and (21), which is well defined, and (29) has

the same form as (23).

4 TotAL COLUMN OZONE OVER THE GLOBE

The problem of measuring total column ozone (TCO) has been of interest to scientists for
decades. Ozone depletion results in an increased transmission of ultraviolet radiation (290-
400 nm wavelength) through the atmosphere. This is mostly deleterious due to damage to
DNA and cellular proteins that are involved in biochemical processes, affecting growth and
reproduction.

Relatively few measurements of TCO were taken in the first quarter of the twentieth
century; however, with the invention of the Dobson spectrophotometer, researchers gained
the ability to measure efficiently and accurately TCO abundance (London, 1985). A system
of ground-based stations has provided important TCO measurements for the past 40 years;

however, the ground-based stations are relatively few in number and provide poor geographic
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coverage of the earth. The advent of polar-orbiting satellites has dramatically enhanced the
spatial coverage of measurements of TCO.

The Nimbus-7 polar-orbiting satellite was launched on October 24, 1978 with the Total
Ozone Mapping Spectrometer (TOMS) instrument aboard. The TOMS instrument scans
in three-degree steps to an extreme of 51 degrees on each side of nadir, in a direction
perpendicular to the orbital plane (McPeters et al., 1996). Each scan takes roughly eight
seconds to complete, including one second for retrace (Madrid, 1978). The altitude of
the satellite and scanning pattern of the TOMS instrument are such that consecutive orbits
overlap, with the area of overlap depending on the latitude of the measurement. The TOMS
instrument covers the entire globe in a 24-hour period. NASA receives the data, calibrates it
(level 1), and pre-processes it to yield spatially and temporally irregular TCO measurements
(level 2). The level-2 data are subsequently processed to yield a spatially and temporally
uniform level-3 data product that is released widely to the scientific community. The level-3
data product uses 1 degree latitude by 1.25 degree longitude (1° x 1.25°) equiangular grid
cells.

There are several approaches that have been or can be used to handle large volumes
of polar-orbiting satellite data. Fang and Stein (1998) use a moving average with seasonal
dependence to investigate variations in zonal ozone levels for a fixed latitude. Niu and Tiao
(1995) introduce a class of space-time regression models for analysis at a fixed latitude.
Both papers use NASA’s level-3 data product based on the TOMS instrument. Zeng and
Levy (1995) propose a three-dimensional interpolation technique to fill in missing values for
grid-cell locations at certain time points. Other possible approaches are geostatistical (e.g.,
Cressie, 1993, Ch. 3), although the disadvantage of kriging is that it does not handle large
volumes of data well.

Level-2 TCO values and NASA’s level-3 data product based on the TOMS instrument
were obtained from the Ozone Processing Team of NASA/Goddard, Distributed Active
Archive Center, and were stored in Hierarchical Data Format as developed by the National

Center for Supercomputing Applications at the University of Illinois. Also, ground-station
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data (Section 4.2) were obtained from the World Ozone Data Center, Downsview, Ontario,
to provide a standard against which to compare different level-3 data products.

Dobson and co-workers showed the dependence of TCO on latitude almost 70 years
ago (Dobson et al., 1929). Figure 2 shows the latitude dependence of ozone zonal means
using the TOMS data for October 1, 1988 (Gabrosek et al., 1999). To obtain the figure, we
computed the median of all level-2 data from that day, that fell within a 1° x 1.25° grid cell,
and we repeated the calculation for all 180x288 such grid cells. Then all grid-cell values
at a given degree of latitude were averaged to produce a quantity we call the TCO zonal
mean. Throughout the article, we use the convention that negative latitudes correspond to

the Southern Hemisphere and positive latitudes to the Northern Hemisphere.

Figure 2 here

Recall that our goal is to produce a level-3 data product for all 1° x 1.25° grid cells,
on a daily basis, from the spatially irregular level-2 data referred to above. Based on the
development in Section 2 and 3, we derive optimal spatial predictions of TCO using a
heterogeneous, mass-balanced, tree-structured model; see Section 4.1. In Section 4.2, we
apply our methodology to the TOMS data for October 1, 1988. Eventually, we shall apply
this methodology to level-2 data from NASA’s Earth Observing System (EOS). Just one
EOS instrument, the Multi-angle Imaging SpectroRadiometer (MISR) will generate roughly
80 gigabytes of data per day (Kahn, 1996), and its vehicle, the Terra satellite, has multiple
instruments that will generate data equivalent to all the information stored in the library

of Congress every seven weeks for at least six years (Kahn, 1998).
4-1 Mass-Balanced, Tree-Structured Models for TCO

Our spatial analysis of the TOMS data proceeds on the spatially irregular, zonal-mean-

corrected TCO values:

level-2 residual TCO = level-2 TCO — zonal mean, (30)
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on a given day (here, October 1, 1988). This correction allows us to assume that (30)
has zero mean, which is an important component of the tree-structured models given in
Section 3.

Using the notation of Section 3, consider a multi-resolution tree structure with J = 5
resolutions. There are N; = 40 nodes at the first resolution, n; = 9 children of each of these
nodes at the second resolution, ny = 9 children of each of these nodes at the third resolution,
n3 = 4 children of each of these nodes at the fourth resolution, and ns = 4 children of each of
these nodes at the fifth and finest resolution. Thus, Ny = 360, N3 = 3240, Ny = 12960, and
N5 = 51840. We use equiangular grid cells for all five scales. For each scale j =1,...,5, the
grid cells (7,0), ..., (5, N; — 1) are defined according to the lexicographic order of longitude-
latitude pairs. Specifically, grid cell (j,k) is defined to be between longitudes i;; and
ijk + 45(Nj/N1)"'/? and between latitudes I, ; and 1, 5 + 36(N;/N1)~'/2, where

ijkg = 45(N;/Ny)? [k/(5(Nj/N1)1/2)} —180; j=1,...,5, k=0,...,N; — 1,
Lx = 36(N;/N;)/2 (k _ [k/(5(Nj/N1)1/2)D —90; j=1,....5, k=0,...,N; -1,

[#] denotes the largest integer less than or equal to z, and note that 5(N;/Np)'/2 is the
number of grid cells for a given longitude at scale 5 = 1,...,5. Therefore, for scale 7 =
1,...,5, a consecutive sequence of grid cells starting from the south pole and finishing at the
north pole is given by (4,0),..., (j, 5(NJ-/N1)1/2 — 1). In particular, (j, [5(Nj/N1)1/2/2]) is
a cell closest to the equator at the j-th scale; 5 = 1,...,5. First, the level-2 residual ozone
values are computed based on (30). For each 1° x 1.25° grid cell (5, k), let Z5 ;, denote the
vector of all the level-2 residual ozone data falling in that grid cell, and let ms , = |Z5 ;| be
the dimension of Z5 ;; k = 0,...,51839. To start the change-of-resolution Kalman filter, we
need preliminary data at the finest resolution. These are obtained from generalized-least-
squares estimators. The correlation matrix of Z5j, denoted by cor(Zsy), is determined
by the proportions of areal overlaps among the level-2 observations within each grid cell
(5,k); k=0,...,51839. Hence, the preliminary data are,

1 (cor(Zsy)) " Zs
ImS,k ; - —: k=0,...,51839.
1. (cor(Zsk)) 1,

ms k

25’]C =

21



An estimated variance of the measurement error for a level-2 residual ozone datum falling
in the grid cell (5, k) is given by,

Zs5y — 2511 "(cor(Z N Zsp — 2541
(Zos = 25almsy) (cor(Zon)) (Zon = 25 ’"5”“); k=0,...,51839, ms; > 1.

b5,k =

msp — 1

Figure 3 shows the preliminary data {z5 ;. }, based on a Mercator projection of the globe.
Notice that there are missing values for those data, corresponding to grid cells within which
no level-2 observation fell on that day. Also, {¢5} are not defined for grid cells within
which no or one level-2 observation falls (e.g., for latitudes within 10 degrees of a pole,
there are frequently very few observations, because the TOMS instrument requires sunlight
to take readings). Given the zonal dependence of TCO, we pool {¢5;} for each grid cell
within a 1 degree latitude band (from latitude [ to latitude I + 1) according to the weights
{ms, — 1}, yielding a latitude-band pooled variance estimate v; [ = —90,....89. As a
result, the variance of the measurement error for z5 ; can be estimated by

—1
by g =u,, (1;715’kcor(z5,k)*11m5,k) . k=0,...,51839.

Figure 3 here

For optimal spatial predictions, we shall apply the heterogeneous, mass-balanced, tree-
structured model of Section 3.4. For parameter estimation, we shall fit first a homogeneous,
mass-balanced, tree-structured model using only the data from latitude -18 to latitude 18,
since we have almost equal-area partitions in this region; notice that the ratio of the smallest
grid-cell area (corresponding to latitudes +18°) to the largest cell area (corresponding to
latitudes +1°) at the finest resolution is 0.954. The vector of parameters 6 = (0%, ce ,Ug)l
is estimated by maximum likelihood using the EM-algorithm as described in Section 3.3.
The resulting estimate is @ = (67,...,62) = (37.47,9.48,8.21,3.78,1.48)". Now, from (23),
for each scale 7 = 1,....,5, we can obtain the variance of the spatial variables closest to the

equator as:

1 1
var(s) = Vi = ot + (1= )bt (1= )l k=[5 /M) 22
.
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where (j, [5(Nj/N1)1/2/2]) is a grid cell closest to the equator at the j-th scale for j =
1,...,5. Thus V. = (V12. Vo7, V329, Vias, Vs.090)' can be estimated with V., obtained by
substituting 62, . .. ,&g into the expression above. Then the areas of these grid cells (5, 90),
(4,45), (3,22), (2,7), and (1,2), are used as knots in a spline estimate of all such variances,
{Vig : 5 =1,...,5, k =0,...,N; — 1}. Specifically, we model {V};} as a first-order
polynomial spline f on [0, 00) taking values ‘75790 > ‘74745 > Vg,gg > V2,7 > Vl,g at knots
as 90 < G445 < azoo < azy < ai g, respectively (see Figure 4). Thus f is nonincreasing and

we obtain the estimate,

V},k:f(afj,k); ]':1,...,5,]€:0,...,Nj*1.

Figure 4 here

4.2 Optimal Spatial Prediction of TCO

We can now apply the heterogeneous, mass-balanced, tree-structured model given by (26)
and (27) to {z5 4} with measurement errors {®5 }, hidden state variances {Wch(j,k)}a and
estimates substituted for unknown parameters. The predicted residual TCO values based
on the mass-balanced change-of-resolution Kalman filter are shown in Figure 5 with the
corresponding prediction standard errors shown in Figure 6, based on a Mercator projection

of the globe.

Figures 5-6 here

The final predicted value (i.e., level-3 datum) is calculated as:
level-3 (Kalman filter) TCO value = zonal mean + predicted residual TCO value.

Figures 7 through 11 show the level-3 (Kalman filter) TCO values from resolution 1 (the

coarsest resolution) through resolution 5 (the finest resolution), respectively, again based
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on a Mercator projection of the globe. Note that the optimal predictions for all five resolu-
tions are obtained simultaneously in one pass using the change-of-resolution Kalman-filter

algorithm.

Figures 7-11 here

We shall now compare the level-3 predictions to 80 ground-station observations recorded
on the same day. Let L3 denote a generic level-3 data product given at all 1° x 1.25° grid
cells for October 1, 1988. Then the mean squared error (MSE) for L3 is calculated as:

1 80
MSE = o E(GS(Z) — L3(1))?,

where GS(I) represents the TCO reading for the [-th ground station for October 1, 1988.
The NASA level-3 data product achieves a MSE of 146.08, compared to 135.95 for the
level-3 data product from the heterogeneous, mass-balanced, tree-structured model. A
small reduction (6.9%) in the MSE should be noted, although one should not read too
much into this as the ground stations have very spotty global coverage. The important
advantages of the methodology based on mass-balanced, tree-structured models is that it
provides optimal predictions at multiple resolutions, and associated prediction standard

€ITors.

5 DISCUSSION

We have presented a new methodology for fast spatial prediction that allows us to han-
dle massive amounts of satellite data efficiently, even when they are sampled irregularly.
It is based on a spatial model that is autoregressive in scale and for which “mass bal-
ance” is preserved. The important advantages of our methodology are first that it provides
optimal spatial predictions at multiple resolutions, and associated prediction standard er-
rors. Second, the mass balance guarantees consistent predictors and prediction variances

as resolution requirements change, according to whether predictions are to be used in local,
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regional, or global calculations. This property also allows us to incorporate data at differ-
ent levels of resolution. Third, and by no means least, our spatial-prediction algorithms are
extremely fast.

One drawback of Kalman filtering on trees is that the implied spatial covariance function
is piecewise constant and nonstationary (see eq. (23) and eq. (29)), which can lead to
predictions that are not shift invariant. A possible solution to this problem is to compute
the spatial predictor as an average over a number of mass-balanced, tree-structured models
with different tree branches that represent children shifted to have different parents. Of
course, the prediction variances and covariances will be considerably more complicated and
the computational complexity will increase with the number of trees used.

In practice, the number of resolutions and the number of children for a given parent
have to be specified in advance. Such choices will depend on applications and will in general
lead to different small-scale structure of the parametric covariance functions. However, for
multi-resolution models like those used for mapping total column ozone over the globe, the
overall covariance shape is approximately stationary and exponential, regardless of what the
small-scale structure might be. This stability of larger-scale dependence, combined with the
quantity of data typically available, lead to spatial predictions that should be quite robust
to these choices; capturing the key parameters in the spatial covariance function is most
important.

The methodology we have developed should be extendible to incorporate temporal de-
pendence. We propose to model the temporal dependence at resolution 1 as a multivariate
autoregressive process in time and to retain the tree structure at each time point, which
as a whole again yields a tree structure. We could then run time backwards, from the
resolution-1 nodes at time ¢ to the corresponding nodes at time ¢t — 1, in the leaves-to-root
filtering step. This model, and the possibility of optimal spatio-temporal prediction using

a similar Kalman-filter methodology, will be investigated in the future.
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APPENDIX: CONSTRUCTION OF A COVARIANCE MATRIX FOR MASS BALANCE

We prove a technical result that can be used to ensure (28) for heterogeneous, mass-
balanced, tree-structured models. For a € IR", denote diag(a) to be the diagonal matrix

with diagonal entries given by a. Let

Fy,

Gn

n+tn-

Il
7N
|
£}
|
—

e
N——
~
S

+
|
e
[y
=

It is noted that F',,1,, = 0 and

71—771_1 n(n — — !
G, = (n__2){ (n—1)I, —1,1,}.

n n2 n

Proposition 1 Suppose that a; > 0, 0? > 0; i = 1,...,n, where n > 2. Let a =

i

(a1,...,a,) and c = G, (a20?%,... a02)". If
U = (uij),,, = (diag(a))” ' F,diag(c)F,(diag(a))”", (31)

then the following statements hold:
(i) a'Ua =0,
(i) wi; =02 i=1,...,n,
(11i) U is non-negative definite if and only if

min{a%a%,...,a%ai} > — (1302-.
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Proof. (i) a'Ua = 1] F,diag(c)F,1, = 0.

(ii) We have

2 2 2 _2\/
(aiot,....ap05) = Gyue

- (1(n—}n2>c*_“1j1V1nUﬂ

= the vector of the diagonal elements of F,diag(c)F,

= the vector of the diagonal elements of diag(a)Udiag(a)
/
= (a%ul,l, . ,a%unyn) s

where the third equality follows by direct calculation, and the fourth equality follows from
(31). Hence u;; = 02; i=1,...,n.

(iii) From (31), we know that U is non-negative definite if and only if ¢; > 0; i =

1,...,n. Now for each i = 1,...,n, by direct calculation, we have ¢; > 0 if and only if
n(n —1)alo? > > a?af-. This gives the desired result. O
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CAPTIONS FOR FIGURES

A quadtree.
TCO zonal mean versus latitude, for the TOMS data on October 1, 1988
Preliminary level-3 TCO data.

Spline fitting for the variances of TCO variables with respect to their grid-cell areas.

Units on the horizontal axis are in kilometers squared.
Predicted residual TCO.

Prediction standard errors for residual TCO.
Predicted TCO for resolution 1.

Predicted TCO for resolution 2.

Predicted TCO for resolution 3.

Predicted TCO for resolution 4.

Predicted TCO for the finest resolution (resolution 5).
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