
Fast Spatial Prediction of Global Processes from Satellite DataHsin-Cheng HuangInstitute of Statistical ScienceAcademia SinicaTaipei 115Taiwan Noel CressieDepartment of StatisticsThe Ohio State UniversityColumbus, OH 43210-1247U.S.A.John GabrosekDepartment of Mathematics and StatisticsGrand Valley State UniversityAllendale, MI 49401U.S.A.April 10, 2000SummaryPolar orbiting satellites remotely sense the earth and its atmosphere, producing datasets that give daily global coverage. For any given day, the data are many and spa-tially irregular. Our goal in this article is to predict values that are spatially regular atdi�erent resolutions; such values are often used as input to general circulation models(GCMs) and the like. Not only do we wish to predict optimally, but because dataacquisition is relentless, our algorithm must also process the data very rapidly. Thisarticle presents a new statistical prediction methodology that preserves \mass balance"across resolutions and computes spatial predictions and prediction (co)variances ex-tremely fast. Data from the Total Ozone Mapping Spectrometer (TOMS) instrument,on the Nimbus-7 satellite, are used for illustration.Key words: Change-of-resolution Kalman �lter, change of support, EM algorithm, hetero-geneous variances, mass balance, multi-resolution, TOMS, tree-structured model.1 IntroductionThe general statistical problem posed in this article is that of fast, statistically optimal,spatial prediction of global processes based on spatially irregular data. Importantly, thespatial predictions are needed at di�erent spatial resolutions; thus, one of the challenges isto make the predictions and the prediction (co)variances consistent across resolutions. Bycombining several small regions into a larger region and several larger regions into an even1



larger region, and so forth, we build up a scheme for changing resolutions. Then, an acyclicdirected graph can be constructed by drawing arrows from larger \parent" regions to smaller\child" regions, which provides a framework for a statistical model that is autoregressive inlevels of resolution (Chou et al., 1994; Huang and Cressie, 2000).This article concentrates on the special case of autoregressive tree-structured models(e.g., Chou et al., 1994; Luettgen and Willsky, 1995a, 1995b; Fieguth and Willsky, 1996),where the optimal spatial prediction procedures are shown to be extremely fast. Imagine abathtub whose tap is always running. The tub has a capacity of one day of water and weneed to keep emptying it so that no overow occurs. The analogy between water and datais obvious. Using the usual stochastic methods of spatial prediction (e.g., Cressie, 1993,Sect. 5.9.1), is like trying to empty the bathtub with a small bucket.The approach we take here for optimal spatial prediction is easily able to handle large-to-massive amounts of daily data, without overow into the next day's processing time. Theproblem was motivated by the need to process massive amounts of global data obtained fromsatellites remotely sensing the earth and its atmosphere. Further, the results are needed atdi�erent resolutions to accommodate the requirements of scientists studying regional andglobal processes. In this article, we develop a mass-balanced, change-of-resolution Kalman�lter that is statistically optimal, very fast, and consistent across changes of resolution.A basic physical requirement of the model is that of \mass balance". For example, iftotal column ozone (TCO) is measured in Dobson units per unit volume, then the TCO ofa parent region should be equal to the volume-weighted average of its children's TCO. Weexplicitly incorporate this requirement into the state equation of our tree-structured model,from which we produce resolution-consistent optimal spatial predictions. Mass balance inone-dimensional nested models for count data is presented by Kolaczyk (1999).In this article, we demonstrate that autoregressive tree-structured models can also han-dle missing data or di�erent data sources that are themselves at di�erent levels of spatialresolution (e.g., the problem of combining satellite data, ground-station data, balloon data,and so forth). Moreover, heterogeneous variances due to change of spatial support are ac-2



counted for in the model. In the past, these models have been used in situations where onlyvariables at the �nest scale are of practical interest. However, being able to �nd statisticallyoptimal spatial predictors at di�erent levels of resolution is a particularly appealing featurefor environmental data, since the required level of resolution often depends on whether thedata are to be used in local, regional, or global calculations. For example, consider spatialprediction of TCO, where spatially regular \level-3" data are given at the �nest scale of 1 de-gree latitude by 1.25 degree longitude. Although the predicted value of a larger area (e.g., a4 degree latitude by 5 degree longitude cell) could be obtained by taking a volume-weightedaverage of the corresponding �nest-scale predicted values, the prediction (co)variances ofthese larger regions do not follow in a likewise simple manner. The algorithm we present inthis article gives both optimal predictions and prediction (co)variances, at di�ering spatialresolutions, rapidly.In Section 2, we review general tree-structured models and the associated change-of-resolution Kalman-�lter algorithm. The mass-balanced, tree-structured model is introducedin Section 3. Estimation of parameters based on maximum likelihood via the EM algorithmis also given. Section 4 presents an application to TCO satellite data collected from theTotal Ozone Mapping Spectrometer (TOMS) instrument. A discussion of the importantfeatures of our model, of the associated spatial-prediction algorithm, and of future researchproblems is provided in Section 5.2 Tree-Structured ModelsOne important use of the statistical methodology presented in this article is the rapidprocessing of satellite data on a global scale. The US National Aeronautic and SpaceAdministration (NASA) is sponsoring a program called the Earth Observing System (EOS),which consists of a series of satellites to measure the chemical and physical processes of theearth and its atmosphere (NASA, 1992). An important part of this project is to produceregularly spaced spatio-temporal (level-3) data on grid cells at various resolutions, basedon irregularly sampled (level-2) satellite data.3



One simple way to produce daily level-3 data is to use the sample mean (or median)of those level-2 data that fall in a grid cell for that day. However, this approach fails tocapture spatial dependencies inherent in the level-2 data; the closer together they are, themore alike they tend to be. In order to incorporate the spatial information, we may regardthe level-2 data as being generated from a stochastic process. A general spatial model canbe written as: Y (s) = �(s) + �(s); s 2 D; (1)where D is a spatial region of interest, �(�) is a deterministic mean process, and �(�) is azero-mean spatially colored stochastic process. The goal is to obtain the optimal predictorand the prediction (co)variance of di�erent aggregations of Y (�). At a given resolution andlocation Du, where jDuj � RDu 1ds > 0, we wish to predict:yu � 1jDuj ZDu Y (s)ds = �u + �u; (2)based on the noisy data Z � (zu1 ; : : : ; zuN )0, where �u and �u are de�ned analogously to yu,zui � 1jDui j ZDui Y (s)ds+ "ui ;"ui represents measurement error, and jDui j > 0; i = 1; : : : ; N . If all the �rst moments andthe second moments of the spatial variables are known, the optimal (linear) predictor of yuis given by ŷu = �u + cov (�u;Z) (var(Z))�1(Z � �);where � � (�u1 ; : : : ; �uN )0. When we have massive amounts of data, it may not be com-putationally feasible to compute ŷu directly, since we �rst have to estimate variance andcovariance entries, and then we have to take the inverse of an extremely high-dimensionalmatrix. The di�culties are only exacerbated when many di�erent prediction regions areconsidered.There are several problems that are of considerable challenge here. First, the method-ology to produce statistically optimal level-3 data should take spatial dependencies into4



account. Second, since level-3 data will be used in regional, national, or even global moni-toring programs, we have to produce optimal predictions and prediction variances so thatno statistical contradictions appear after aggregating or disaggregating. That is, we requirea type of \mass balance" based on the simple equation,yv = JXj=1 jDvj jjDvj yvj ;where Dv = Dv1 [� � �[DvJ and fDvjg are disjoint. Third, and of equal importance, optimalpredictions for massive mounts of data should be produced rapidly. All of these challengeswill be dealt with using tree-structured models.2�1 Hidden Tree-Structured ModelConsider a (multivariate) Gaussian random process fyu : u 2 Ug indexed by the nodes ofa directed tree (U;E), where U is the set of nodes, and E is the set of directed edges. Letu0 denote the root of the tree, and let pa(u) denote the parent of a node u 2 U n fu0g. Wesay that u is a leaf of the tree if it has no children. ThenE = f(pa(u); u) : u 2 U n fu0gg :A hidden multivariate Gaussian tree-structured process fyu : u 2 Ug on the tree (U;E)is de�ned as follows. Assume that the Gaussian process evolves from parents to children inan autoregressive manner according to the following:yu = Auypa(u) +wu; u 2 U n fu0g; (3)zu = Cuyu + �u; u 2 U;where fzug are (potential) observations, fyug are the hidden, zero-mean, Gaussian statevectors that are to be predicted, fAug and fCug are deterministic matrices, fwug and f�ugare independent, zero-mean, Gaussian vectors with covariance matrices,Wu � var (wu) ; u 2 U n fu0g;�u � var (�u) ; u 2 U;5



fyug and f�ug are independent, and ypa(u) and wu are independent for u 2 U n fu0g. Thegoal is to obtain statistically optimal predictors of the state vectors fyug based on availabledata fzu1 ; : : : ;zuN g.Note that the covariance between any two variables yu and yu0 on the tree can becomputed recursively along the paths from their �rst common ancestor an(u; u0) to u andu0. That is, cov (yu;yu0) = Au1 � � �Au var(yan(u;u0))(Au01 � � �Au0)0; (4)where (an(u; u0); u1; : : : ; u) and (an(u; u0); u01; : : : ; u0) are the paths from an(u; u0) to u andu0, respectively. 2�2 Change-of-Resolution Kalman FilterChou et al. (1994) developed a fast, change-of-resolution Kalman-�lter algorithm for tree-structured models; a Bayesian version of this is given below. The algorithm consists of twosteps, the leaves-to-root �ltering step, followed by the root-to-leaves smoothing step. Inthe leaves-to-root �ltering step, the algorithm goes from the leaves of the tree, recursivelycomputing the optimal predictor of the state vector yu based on the data observed at nodeu and its descendent nodes. Once the root u0 is reached, the optimal predictor of yu0 isobtained, based on all the data. In the root-to-leaves smoothing step, the algorithm goesfrom the root of the tree, recursively computing the optimal predictor of the state vector yuat a node u based on all the data. These two steps, though more complicated, are analogousto the �ltering step and the smoothing step of the standard Kalman �lter in time series.The algorithm has also been extended to more general graphical Markov models by Huangand Cressie (2000).First, we introduce some notation. Boldface will be used to denote either a vector, a setof vectors, or a matrix. Denote u � u0 if u0 = u or u0 is a descendent of u. For u 2 U , letUu � fu0 : u � u0g;u � � 1; zu is observed at u;0; otherwise;Z � fzu : u = 1g ; 6



Zu � �zu0 : u0 = 1; u0 2 Uu	 ;Z�u � �zu0 : u0 = 1; u0 2 Uu n fug	 ;ŷu1ju2 � E �yu1��Zu2� ;ŷ�u1ju2 � E �yu1��Z�u2� ;ŷu � E (yujZ) ;V u � var (yu) ;�u1ju2 � var �yu1 ��Zu2� ;��u1ju2 � var �yu1 ��Z�u2� ;�u � var (yujZ) ;�u1;u2 � cov �yu1 ;yu2 ��Z� = cov �ŷu1 � yu1 ; ŷu2 � yu2� :Also, for u 2 U n fu0g, letBu � V pa(u)A0uV �1u ;Ru � V pa(u) � V pa(u)A0uV �1u AuV pa(u):Note that fV ug can be computed recursively; from (3), we have thatV u = AuV pa(u)A0u +Wu; u 2 U n fu0g:In the leaves-to-root �ltering step, we start with the leaves and proceed towards the rootof the tree, against the directions of the edges. At each node u, ŷuju and �uju are obtainedrecursively. Using conditional distribution results for multivariate Gaussian processes, fora leaf u 2 U , we haveŷuju = uV uC 0u �CuV uC 0u +�u��1 zu; (5)�uju = V u � uV uC 0u �CuV uC 0u +�u��1CuV u: (6)For u 2 U that is not a leaf, let ch(u) � (ch(u; 1); : : : ; ch(u; nu))0 denote the vector of thechildren of u, where nu is the number of children of the node u. We have, for i = 1; : : : ; nu,7



the following recursions:ŷujch(u;i) = Bch(u;i)ŷch(u;i)jch(u;i); (7)�ujch(u;i) = Bch(u;i)�ch(u;i)jch(u;i)B0ch(u;i) +Rch(u;i); (8)ŷ�uju = ��uju nuXi=1 ��1ujch(u;i)ŷujch(u;i)! ; (9)��uju = (V �1u + nuXi=1 ���1ujch(u;i) � V �1u �)�1 ; (10)ŷuju = �uju �uC 0uV �1u zu + (��uju)�1ŷ�uju� ; (11)�uju = ��uju � u��ujuC 0u �Cu��ujuC 0u +�u��1Cu��uju: (12)At the root u0, we have ŷu0 = ŷu0ju0 ;�u0 = �u0ju0 :The root-to-leaves smoothing step moves from the root to the leaves in the direction ofthe edges, such that ŷu and �u can be computed recursively, for u 2 U :ŷu = ŷuju + �ujuB0u��1pa(u)ju �ŷpa(u) � ŷpa(u)ju� ; (13)�u = �uju + �ujuB0u��1pa(u)ju ��pa(u) � �pa(u)ju���1pa(u)juBu�uju: (14)Complete derivation of the algorithm can be found in Chou et al. (1994) and via a Bayesianapproach by Huang and Cressie (2000).Luettgen and Willsky (1995a) show that the prediction errors ŷu � yu; u 2 U , alsofollow a multi-resolution tree-structured model. That is,ŷu � yu = Gu �ŷpa(u) � ypa(u)�+ �u; u 2 U n fu0g; (15)where Gu � �ujuB0u��1pa(u)ju; u 2 U n fu0g;ŷpa(u) � ypa(u) and f�u : u 2 U n Uug are independent, zero-mean, and Gaussian for u 2U n fu0g, andvar (�u) = Ru � V pa(u) � V pa(u)A0uV �1u AuV pa(u); u 2 U n fu0g:8



Note that Gu; u 2 U , can be computed in the leaves-to-root �ltering step. From (4) and(15), for any u; u0 2 U , we can obtain the prediction covariance between any two variablesas: �u;u0 = cov (ŷu � yu; ŷu0 � yu0)= Gu1 � � �Gu var �ŷan(u;u0) � yan(u;u0)� (Gu01 � � �Gu0)0;where the notation is the same as in eq. (4). In particular, we have�u;pa(u) = Gu�pa(u); u 2 U n fu0g: (16)These formulas are needed later in the EM algorithm that is used to obtain maximumlikelihood estimators of the model parameters; see Section 3.3.The change-of-resolution Kalman-�lter algorithm presented above does not have massbalance. Therefore, although it represents a start, the algorithm does not guarantee ag-gregation consistency for predictions and prediction variances. Moreover, we have yet todevelop a method for model-parameter estimation and a way to incorporate heterogeneousvariances. Solutions to these problems are given in the next section.3 Multi-Resolution Tree-structured ModelsIn the last decade, there has been a lot of research interest in multi-resolution meth-ods, including multi-resolution representations of signals based on wavelet transforms (e.g.,Daubechies, 1988; Mallat, 1989; Meyer, 1992), and multi-resolution stochastic models link-ing coarser-scale variables to �ner-scale variables in an autoregressive manner via trees (e.g.,Chou et al., 1994; Luettgen and Willsky, 1995a, 1995b; Fieguth and Willsky, 1996). Anadvantage of using these methods is that many signals naturally have multi-scale features.Moreover, fast implementation algorithms can usually be developed. In this article, wedevelop a basic multi-resolution tree-structured model and then enhance it to include massbalance and heterogeneous variances. We also describe an EM-algorithm for estimatingmodel parameters. 9



3�1 Basic ModelConsider a tree with J scales. Assume that there are N1 nodes at the �rst scale (thecoarsest scale), and each node at the j-th scale has nj children; j = 1; : : : ; J � 1. So, thereare Nj = N1n1 � � �nj�1 nodes at the j-th scale; j = 2; : : : ; J . For example, if N1 = 1 andn1 = � � � = nJ�1 = 4, we obtain a quadtree; see Figure 1.Figure 1 hereIn all that is to follow, we consider the univariate case, where only one variable y is tobe predicted at di�erent locations and di�erent resolutions. In (1) and (2), let the nodes ofthe tree be locations at the centroid of the corresponding disjoint subregions fDj;kg, where[N1�1k=0 D1;k = � � � = [NJ�1k=0 DJ;k = D with jDj;1j = � � � = jDj;Nj�1j > 0; j = 1; : : : ; J . Thisassumption of equal number of children and equal areas within a resolution is made forsimplicity and will be relaxed later, in Section 3.4. Consider a spatial process fY (s) : s 2Dg. For j = 1; : : : ; J; k = 0; : : : ; Nj � 1, letyj;k � 1jDj;kj ZDj;k Y (s)dsbe the hidden state variable we would like to predict at resolution j and location k and,without loss of generality, we denote the nj children of yj;k by yj+1; knj ; : : : ; yj+1; (k+1)nj�1.Thus, the parent of yj;k becomes yj�1; [k=nj�1] for j = 2; : : : ; J; k = 0; : : : ; Nj � 1, where[x] denotes the largest integer less than or equal to x. A multi-resolution, tree-structuredmodel is given as:yj;k = yj�1; [k=nj�1] +wj;k; j = 2; : : : ; J; k = 0; : : : ; Nj � 1; (17)zj;k = yj;k + "j;k; j = 1; : : : ; J; k = 0; : : : ; Nj � 1; (18)where fzj;kg are (potential) observations, "j;k s N(0;�j;k); j = 1; : : : ; J; k = 0; : : : ; Nj � 1,are independent, zero-mean, Gaussian random variables representing measurement errors,y1;k s N(0; �21); k = 0; : : : ; N1 � 1; independently;wj;k s N(0; �2j ); j = 2; : : : ; J; k = 0; : : : ; Nj � 1; independently;10



yj;k and "j;k are independent for j = 1; : : : ; J; k = 0; : : : ; Nj � 1, and yj�1;k and wj;k areindependent for j = 2; : : : ; J; k = 0; : : : ; Nj � 1. Note that, for j = 1; : : : ; J ,var(Y j) = �2j INj + �2j�1INj�1 
 (1nj�110nj�1) + � � �+ �21IN1 
 (1n1���nj�110n1���nj�1); (19)where Y j � �yj;0; : : : ; yj;Nj�1�0, Im is the m�m identity matrix, and 1m is the m�1 vectorwhose entries are all 1.Many environmental variables of interest are in per-unit-area or per-unit-volume units.Hence, for physical reasons, we should see the average of all the o�spring variables of aparent node at the (J � 1)-th scale to be equal to their parent variable. That is, we shouldsee yJ�1;k = 1nJ�1 nJ�1�1Xl=0 yJ; knJ�1+l ; k = 0; : : : ; NJ�1 � 1:However, this mass-balance equation does not hold for the model (17), because the corre-sponding fwJ;kg typically do not add to zero. Thus, in this basic model, only the �nest-scalevariables are meaningful. In what follows, we propose a simple way to ensure mass balanceby imposing a linear constraint on the fwj;kg.3�2 Homogeneous, Mass-Balanced, Tree-Structured ModelsDe�neych(j;k) � �yj+1; knj ; : : : ; yj+1; (k+1)nj�1�0; j = 1; : : : ; J � 1; k = 0; : : : ; Nj � 1;wch(j;k) � �wj+1; knj ; : : : ; wj+1; (k+1)nj�1�0; j = 1; : : : ; J � 1; k = 0; : : : ; Nj � 1;Hnj � Inj � 1nj 1nj10nj ; j = 2; : : : ; J:That is, ych(j;k) and wch(j;k) consist of all the children of yj;k and wj;k, respectively. Then,a multi-resolution, mass-balanced, tree-structured model is given as follows:ych(j;k) = yj;k1nj +wch(j;k); j = 1; : : : ; J � 1; k = 0; : : : ; Nj � 1; (20)zj;k = yj;k + "j;k; j = 1; : : : ; J; k = 0; : : : ; Nj � 1; (21)where fzj;kg are (potential) observations, "j;k s N(0;�j;k); j = 1; : : : ; J; k = 0; : : : ; Nj � 1;are independent, zero-mean, Gaussian random variables representing measurement errors,11



and wch(j;k) s N �0; �2j+1Hnj� ; j = 1; : : : ; J � 1; k = 0; : : : ; Nj � 1;so that 10njwch(j;k) = 0:Comparing (20) and (21) with (17) and (18), the new feature of the model is that we nowhave constraints on �wch(j;k)	, which imply that, for j = 1; : : : ; J � 1; k = 0; : : : ; Nj � 1,1nj nj�1Xl=0 yj; knj+l = 1nj 10njych(j;k) = yj;k : (22)This is precisely mass balance. Now, not only are the �nest-scale variables meaningful,as in the basic model in Section 3.1, but so too are the variables at all the other scales.By treating each ych(j;k) as a single node for j = 1; : : : ; J � 1; k = 0; : : : ; Nj � 1, themass-balanced, tree-structured model given by (20) and (21) can be regarded as a vectortree-structured model on tree (U;E) without constraints, whereU = f(1; k) : k = 0; : : : ; N1 � 1g [ fch(j; k) : j = 1; : : : ; J � 1; k = 0; : : : ; Nj � 1g;E = f((1; k); ch(1; k)) : k = 0; : : : ; N1 � 1g[n�ch(j � 1; [k=nj�1]); ch(j; k)� : j = 2; : : : ; J � 1; k = 0; : : : ; Nj � 1o :Therefore, the change-of-resolution Kalman �lter given in Section 2.2 can be applied, andwe can obtain meaningful optimal predictors and prediction variances at multi-resolutionssimultaneously. It should be noted that the prediction algorithm based on the mass-balancedmodel sacri�ces some computational e�ciency, because some scalar divisions are replacedby small matrix inversions at each grid node.Note that for j = 1; : : : ; J � 1; k = 0; : : : ; Nj � 1,var�ych(j;k)� = var (yj;k) Inj + �2j+1Hnj :
12



Therefore, for j = 1; : : : ; J � 1; k = 0; : : : ; Nj � 1,nvar�ych(j;k)�o�1 = nj � 1(nj � 1) var (yj;k) + nj�2j+1Inj+ �2j+1var (yj;k)�(nj � 1) var (yj;k) + nj�2j+1�1nj10nj ;has a closed-form expression and can be easily computed as part of the multi-resolutionKalman-�lter. Also note that, for j = 1; : : : ; J , the variance of Y j = �yj;0; : : : ; yj;Nj�1�0 isgiven by var(Y j) = �2jINj + ��2j�1 � �2j =nj�1� INj�1 
 �1nj�110nj�1�+ � � �+ ��21 � �22=n1� IN1 
 �1n1���nj�110n1���nj�1� : (23)Comparing (19) and (23) for a �xed scale j 2 f1; : : : ; Jg, it follows that the joint dis-tribution of Y j has the same form as that for an unconstrained tree-structured model if�2i�1 > �2i =ni�1; i = 2; : : : ; j � 1. Therefore, if one starts with an unconstrained tree-structured model, there exists a mass-balanced, tree-structured model such that the covari-ance structures match at the �nest resolution, j = J .3�3 Parameter EstimationThe vector of model parameters � � ��21 ; : : : ; �2J�0 can be estimated by maximizing thelikelihood function assuming that the measurement-error variances f�j;kg are known. Inpractice, this knowledge comes from information supplied with the measuring device orfrom independent experiments. LetY � �Y 01; : : : ;Y 0J�0 ;Z � fzj;k : j;k = 1g ;where for j = 1; : : : ; J; k = 0; : : : ; Nj � 1,j;k � � 1; if zj;k is observed;0; otherwise:13



Note that Y is actually determined by a proper subset,Y y � Y n fyj; knj�1 : j = 2; : : : ; J; k = 0; : : : ; Nj�1 � 1g;since we have the constraints given by (22).From (20) and (21), the complete log-likelihood function based on Y y and Z can bewritten aslogL��;Y y;Z� = c� 12�j;k Xk=1 (zj;k � yj;k)2 � N12 log �21 � 12�21 N1�1Xk=0 (y1;k)2� J�1Xj=1 Nj�1Xk=0 (nj � 12 log �2j+1 + 12�2j+1 �yych(j;k) � yj;k1nj�1�0��Hynj��1 �yych(j;k) � yj;k1nj�1�); (24)where c is a constant,yych(j;k) � �yj+1; knj+1; : : : ; yj+1; (k+1)nj�1�0; j = 1; : : : ; J � 1; k = 0; : : : ; Nj � 1;and Hynj � Inj�1 � 1nj 1nj�110nj�1; j = 2; : : : ; J:Although the \incomplete" log-likelihood based only on Z is Gaussian, it has a com-plicated covariance matrix and is di�cult to maximize directly. Instead, we apply the EM(Expectation-Maximization) algorithm (e.g., Dempster et al., 1977) and treat Y y as miss-ing data. The EM algorithm is an iterative procedure starting with some initial estimator�̂(0). Each iteration consists of two steps, the expectation step (E-step) followed by themaximization step (M-step). At the i-th iteration, we evaluateEi�1 �logL(�;Y y;Z) jZ � ; (25)in the E-step, where Ei�1 denotes the conditional expectation based on the parameter �̂(i�1)obtained from the (i � 1)-th iteration. We then �nd the �̂(i) that maximizes (25) in theM-step. The procedure is repeated until convergence. It has been shown that the likelihood14



always increases at each iteration and the algorithm is guaranteed to converge under mildconditions (see Dempster et al., 1977; Wu, 1983; Boyles, 1983).For j = 1; : : : ; J; k = 0; : : : ; Nj � 1, letŷj;k � E (yj;kjZ) ;�j;k � var (yj;kjZ) ;and for j = 1; : : : ; J � 1; k = 0; : : : ; Nj � 1, letŷych(j;k) � E �yych(j;k)���Z� ;�ych(j;k) � var�yych(j;k)���Z�;�yj+1;j;k � cov�yych(j;k); yj;k���Z�:Upon taking conditional expectations in (25), conditional on the observed data Z, we havein the E-step,E�logL(�;Y y;Z) jZ�= c� 12�j;k Xk=1n(zJ;k � ŷJ;k)2 + �J;ko� N12 log �21 � 12�21 N1�1Xk=0 n�1;k + (ŷ1;k)2o� J�1Xj=1 Nj�1Xk=0 ((nj � 1)2 log �2j+1 + 12�2j+1 �ŷych(j;k) � ŷj;k1nj�1�0 �Hynj��1��ŷych(j;k) � ŷj;k1nj�1�+ 12�2j+1 tr��Hynj��1�ych(j;k)�� 1�2j+110nj�1�Hynj��1�yj+1;j;k + �j;k2�2j+110nj�1�Hynj��11nj�1):Note that at the i-th iteration, the expectations that are in the de�nitions of the termsfŷj;kg, f�1;kg, n�ych(j;k)o, and n�yj+1;j;ko assume the parameter value �̂(i�1), and they arecomputed using the change-of-resolution Kalman-�lter algorithm given by (5)-(14) and (16).Now consider the M-step. It is not di�cult to see that E �logL(�;Y y;Z) jZ � achievesits maximum at�̂21 = 1N1 N1�1Xk=0 n�1;k + (ŷ1;k)2o ; 15



�̂2j+1 = 1Nj(nj � 1) Nj�1Xk=0 (�ŷych(j;k) � ŷj;k1nj�1�0 �Hynj��1 �ŷych(j;k) � ŷj;k1nj�1�+tr��Hynj��1�ych(j;k)�� 210nj�1�Hynj��1�yj+1;j;k+�j;k 10nj�1�Hynj��11nj�1); j = 1; : : : ; J � 1:At the i-th iteration, this yields parameter estimate �̂(i). Now return to the E-step andrepeat until convergence.3�4 Heterogeneous, Mass-Balanced, Tree-Structured ModelsIn this section, we shall construct tree-structured models whose variances within a givenresolution may be heterogeneous. This may happen because the number of children maydi�er from node to node or the children's spatial supports may di�er. First, we introducesome de�nitions and notation. Let fY (s) : s 2 Dg be a spatial process de�ned on a spatialregion of interest D, with jDj > 0.De�nition 1 A collection of subsets fDj;k � D : j = 1; : : : ; J; k = 0; : : : ; Nj � 1g is calleda nested partitioning on D, where jDj > 0, if the following conditions hold:(i) jDj;kj > 0; j = 1; : : : ; J; k = 0; : : : ; Nj � 1;(ii) fDj;k : k = 0; : : : ; Nj � 1g are disjoint, and Snj�1k=0 Dj;k = D, for each j = 1; : : : ; J ;(iii) Given any Dj;k; j = 2; : : : ; J; k = 0; : : : ; Nj � 1, there exists a k0 2 f0; : : : ; Nj�1 � 1gsuch that Dj;k � Dj�1;k0. We denote (j � 1; k0) = pa((j; k)).Note that given a nested partition fDj;k � D : j = 1; : : : ; J; k = 0; : : : ; Nj � 1g, one cande�ne an associated tree with nodes f(j; k) : j = 1; : : : ; J; k = 0; : : : ; Nj � 1g, and directededges E � f(pa((j; k)); (j; k)) : j = 2; : : : ; J; k = 0; : : : ; Nj � 1g :For j = 1; : : : ; J; k = 0; : : : ; Nj � 1, letyj;k � 1aj;k ZDj;k Y (s)ds;16



where aj;k � jDj;kj denotes the cell areas, and nj;k is the number of children of yj;k. Further,let ych(j;k) � �ych(j;k;1); : : : ; ych(j;k;nj;k)�0 ; j = 1; : : : ; J � 1; k = 0; : : : ; Nj � 1;denote the vector of values associated with the children of yj;k, letach(j;k) � �ach(j;k;1); : : : ; ach(j;k;nj;k)�0 ; j = 1; : : : ; J � 1; k = 0; : : : ; Nj � 1;denote the vector of the children's cell areas, de�ne Vj;k � var(yj;k); j = 1; : : : ; J; k =0; : : : ; N1 � 1, and de�ne Vch(j;k;l) � var(ych(j;k;l)); j = 1; : : : ; J � 1; k = 0; : : : ; N1 � 1; l =1; : : : ; nj;k.A heterogeneous, mass-balanced, tree-structured model is de�ned as:ych(j;k) = yj;k1nj;k +wch(j;k); j = 1; : : : ; J � 1; k = 0; : : : ; Nj � 1; (26)zj;k = yj;k + "j;k; j = 1; : : : ; J; k = 0; : : : ; Nj � 1; (27)where fzj;kg are (potential) observations, "j;k s N(0;�j;k); j = 1; : : : ; J; k = 0; : : : ; Nj � 1,are independent, zero-mean, Gaussian random variables representing measurement errors,and wch(j;k) � (wch(j;k;1); : : : ; wch(j;k;nj;k))0 s N �0;Wch(j;k)� ;with Wch(j;k) obtained from eq. (31) in the Appendix, by substituting nj;k, ach(j;k), and�Vch(j;k;1) � Vj;k; : : : ; Vch(j;k;nj;k) � Vj;k�0 for n, a, and (�21 ; : : : ; �2n)0, respectively. Hence,a0ch(j;k)wch(j;k) = 0; j = 1; : : : ; J � 1; k = 0; : : : ; Nj � 1: (28)From (26) and (28), we obtain the mass balance:a0ch(j;k)ych(j;k) = aj;kyj;k; j = 1; : : : ; J � 1; k = 0; : : : ; Nj � 1:That is, the whole is equal to the sum of its parts.17



Note that for j = 1; : : : ; J , if nj = nj;0 = � � � = nj;Nj�1, then the variance of Y j =�yj;0; : : : ; yj;Nj�1�0 is given byvar(Y j) = Wj +Wj�1 
 �1nj10nj�+ � � �+W1 
 �1n2���nj�110n2���nj�1�+�21 IN1 
 �1n1���nj�110n1���nj�1� ; (29)where W1 �W 1, andWj � 0B@ Wch(j�1;0) 0. . .0 Wch(j�1;Nj�1�1) 1CA ; j = 2; : : : ; J � 1:Also note that it is not always possible to achieve mass balance with the statisticalmodel (26) and (27) based on given variance parameters fVj;kg. This is as it should be,since it is a warning that the parent-child relationship in (26) is not reasonable, given alarge heterogeneity of variances. However, for multi-resolution models whose areas andnumbers of children are homogeneous within each resolution, the heterogeneous, mass-balanced, tree-structured model given by (26) and (27) becomes a homogeneous, mass-balanced, tree-structured model given by (20) and (21), which is well de�ned, and (29) hasthe same form as (23).4 Total Column Ozone over the GlobeThe problem of measuring total column ozone (TCO) has been of interest to scientists fordecades. Ozone depletion results in an increased transmission of ultraviolet radiation (290-400 nm wavelength) through the atmosphere. This is mostly deleterious due to damage toDNA and cellular proteins that are involved in biochemical processes, a�ecting growth andreproduction.Relatively few measurements of TCO were taken in the �rst quarter of the twentiethcentury; however, with the invention of the Dobson spectrophotometer, researchers gainedthe ability to measure e�ciently and accurately TCO abundance (London, 1985). A systemof ground-based stations has provided important TCO measurements for the past 40 years;however, the ground-based stations are relatively few in number and provide poor geographic18



coverage of the earth. The advent of polar-orbiting satellites has dramatically enhanced thespatial coverage of measurements of TCO.The Nimbus-7 polar-orbiting satellite was launched on October 24, 1978 with the TotalOzone Mapping Spectrometer (TOMS) instrument aboard. The TOMS instrument scansin three-degree steps to an extreme of 51 degrees on each side of nadir, in a directionperpendicular to the orbital plane (McPeters et al., 1996). Each scan takes roughly eightseconds to complete, including one second for retrace (Madrid, 1978). The altitude ofthe satellite and scanning pattern of the TOMS instrument are such that consecutive orbitsoverlap, with the area of overlap depending on the latitude of the measurement. The TOMSinstrument covers the entire globe in a 24-hour period. NASA receives the data, calibrates it(level 1), and pre-processes it to yield spatially and temporally irregular TCO measurements(level 2). The level-2 data are subsequently processed to yield a spatially and temporallyuniform level-3 data product that is released widely to the scienti�c community. The level-3data product uses 1 degree latitude by 1.25 degree longitude (1� � 1:25�) equiangular gridcells.There are several approaches that have been or can be used to handle large volumesof polar-orbiting satellite data. Fang and Stein (1998) use a moving average with seasonaldependence to investigate variations in zonal ozone levels for a �xed latitude. Niu and Tiao(1995) introduce a class of space-time regression models for analysis at a �xed latitude.Both papers use NASA's level-3 data product based on the TOMS instrument. Zeng andLevy (1995) propose a three-dimensional interpolation technique to �ll in missing values forgrid-cell locations at certain time points. Other possible approaches are geostatistical (e.g.,Cressie, 1993, Ch. 3), although the disadvantage of kriging is that it does not handle largevolumes of data well.Level-2 TCO values and NASA's level-3 data product based on the TOMS instrumentwere obtained from the Ozone Processing Team of NASA/Goddard, Distributed ActiveArchive Center, and were stored in Hierarchical Data Format as developed by the NationalCenter for Supercomputing Applications at the University of Illinois. Also, ground-station19



data (Section 4.2) were obtained from the World Ozone Data Center, Downsview, Ontario,to provide a standard against which to compare di�erent level-3 data products.Dobson and co-workers showed the dependence of TCO on latitude almost 70 yearsago (Dobson et al., 1929). Figure 2 shows the latitude dependence of ozone zonal meansusing the TOMS data for October 1, 1988 (Gabrosek et al., 1999). To obtain the �gure, wecomputed the median of all level-2 data from that day, that fell within a 1��1:25� grid cell,and we repeated the calculation for all 180�288 such grid cells. Then all grid-cell valuesat a given degree of latitude were averaged to produce a quantity we call the TCO zonalmean. Throughout the article, we use the convention that negative latitudes correspond tothe Southern Hemisphere and positive latitudes to the Northern Hemisphere.Figure 2 hereRecall that our goal is to produce a level-3 data product for all 1� � 1:25� grid cells,on a daily basis, from the spatially irregular level-2 data referred to above. Based on thedevelopment in Section 2 and 3, we derive optimal spatial predictions of TCO using aheterogeneous, mass-balanced, tree-structured model; see Section 4.1. In Section 4.2, weapply our methodology to the TOMS data for October 1, 1988. Eventually, we shall applythis methodology to level-2 data from NASA's Earth Observing System (EOS). Just oneEOS instrument, the Multi-angle Imaging SpectroRadiometer (MISR) will generate roughly80 gigabytes of data per day (Kahn, 1996), and its vehicle, the Terra satellite, has multipleinstruments that will generate data equivalent to all the information stored in the libraryof Congress every seven weeks for at least six years (Kahn, 1998).4�1 Mass-Balanced, Tree-Structured Models for TCOOur spatial analysis of the TOMS data proceeds on the spatially irregular, zonal-mean-corrected TCO values:level-2 residual TCO = level-2 TCO� zonal mean; (30)20



on a given day (here, October 1, 1988). This correction allows us to assume that (30)has zero mean, which is an important component of the tree-structured models given inSection 3.Using the notation of Section 3, consider a multi-resolution tree structure with J = 5resolutions. There are N1 = 40 nodes at the �rst resolution, n1 = 9 children of each of thesenodes at the second resolution, n2 = 9 children of each of these nodes at the third resolution,n3 = 4 children of each of these nodes at the fourth resolution, and n4 = 4 children of each ofthese nodes at the �fth and �nest resolution. Thus, N2 = 360, N3 = 3240, N4 = 12960, andN5 = 51840. We use equiangular grid cells for all �ve scales. For each scale j = 1; : : : ; 5, thegrid cells (j; 0); : : : ; (j;Nj �1) are de�ned according to the lexicographic order of longitude-latitude pairs. Speci�cally, grid cell (j; k) is de�ned to be between longitudes ij;k andij;k + 45(Nj=N1)�1=2 and between latitudes lj;k and lj;k + 36(Nj=N1)�1=2, whereij;k � 45(Nj=N1)1=2 hk=(5(Nj=N1)1=2)i� 180; j = 1; : : : ; 5; k = 0; : : : ; Nj � 1;lj;k � 36(Nj=N1)1=2 �k � hk=(5(Nj=N1)1=2)i�� 90; j = 1; : : : ; 5; k = 0; : : : ; Nj � 1;[x] denotes the largest integer less than or equal to x, and note that 5(Nj=N1)1=2 is thenumber of grid cells for a given longitude at scale j = 1; : : : ; 5. Therefore, for scale j =1; : : : ; 5, a consecutive sequence of grid cells starting from the south pole and �nishing at thenorth pole is given by (j; 0); : : : ; �j; 5(Nj=N1)1=2 � 1�. In particular, �j; �5(Nj=N1)1=2=2�� isa cell closest to the equator at the j-th scale; j = 1; : : : ; 5. First, the level-2 residual ozonevalues are computed based on (30). For each 1� � 1:25� grid cell (5; k), let Z5;k denote thevector of all the level-2 residual ozone data falling in that grid cell, and let m5;k � jZ5;kj bethe dimension of Z5;k; k = 0; : : : ; 51839. To start the change-of-resolution Kalman �lter, weneed preliminary data at the �nest resolution. These are obtained from generalized-least-squares estimators. The correlation matrix of Z5;k, denoted by cor(Z5;k), is determinedby the proportions of areal overlaps among the level-2 observations within each grid cell(5; k) ; k = 0; : : : ; 51839. Hence, the preliminary data are,z5;k � 10m5;k(cor(Z5;k))�1Z5;k10m5;k(cor(Z5;k))�11m5;k ; k = 0; : : : ; 51839:21



An estimated variance of the measurement error for a level-2 residual ozone datum fallingin the grid cell (5; k) is given by,�5;k = �Z5;k � z5;k1m5;k�0 (cor(Z5;k))�1 �Z5;k � z5;k1m5;k�m5;k � 1 ; k = 0; : : : ; 51839; m5;k > 1:Figure 3 shows the preliminary data fz5;kg, based on a Mercator projection of the globe.Notice that there are missing values for those data, corresponding to grid cells within whichno level-2 observation fell on that day. Also, f�5;kg are not de�ned for grid cells withinwhich no or one level-2 observation falls (e.g., for latitudes within 10 degrees of a pole,there are frequently very few observations, because the TOMS instrument requires sunlightto take readings). Given the zonal dependence of TCO, we pool f�5;kg for each grid cellwithin a 1 degree latitude band (from latitude l to latitude l + 1) according to the weightsfm5;k � 1g, yielding a latitude-band pooled variance estimate �l; l = �90; : : : ; 89. As aresult, the variance of the measurement error for z5;k can be estimated by�̂5;k = �l5;k �10m5;kcor(Z5;k)�11m5;k��1 ; k = 0; : : : ; 51839:Figure 3 hereFor optimal spatial predictions, we shall apply the heterogeneous, mass-balanced, tree-structured model of Section 3.4. For parameter estimation, we shall �t �rst a homogeneous,mass-balanced, tree-structured model using only the data from latitude -18 to latitude 18,since we have almost equal-area partitions in this region; notice that the ratio of the smallestgrid-cell area (corresponding to latitudes �18�) to the largest cell area (corresponding tolatitudes �1�) at the �nest resolution is 0:954. The vector of parameters � � ��21; : : : ; �25�0is estimated by maximum likelihood using the EM-algorithm as described in Section 3.3.The resulting estimate is �̂ � ��̂21; : : : ; �̂25�0 = (37:47; 9:48; 8:21; 3:78; 1:48) 0. Now, from (23),for each scale j = 1; : : : ; 5, we can obtain the variance of the spatial variables closest to theequator as:var(yj;k) � Vj;k = �21 +�1� 1n1��22 + � � �+�1� 1nj�1� �2j ; k = [5(Nj=N1)1=2=2];22



where �j; [5(Nj=N1)1=2=2]� is a grid cell closest to the equator at the j-th scale for j =1; : : : ; 5. Thus V � (V1;2; V2;7; V3;22; V4;45; V5;90)0 can be estimated with V̂ , obtained bysubstituting �̂21 ; : : : ; �̂25 into the expression above. Then the areas of these grid cells (5; 90),(4; 45), (3; 22), (2; 7), and (1; 2), are used as knots in a spline estimate of all such variances,fVj;k : j = 1; : : : ; 5; k = 0; : : : ; Nj � 1g. Speci�cally, we model fVj;kg as a �rst-orderpolynomial spline f on [0;1) taking values V̂5;90 > V̂4;45 > V̂3;22 > V̂2;7 > V̂1;2 at knotsa5;90 < a4;45 < a3;22 < a2;7 < a1;2, respectively (see Figure 4). Thus f is nonincreasing andwe obtain the estimate,̂Vj;k = f(aj;k); j = 1; : : : ; 5; k = 0; : : : ; Nj � 1:Figure 4 here4�2 Optimal Spatial Prediction of TCOWe can now apply the heterogeneous, mass-balanced, tree-structured model given by (26)and (27) to fz5;kg with measurement errors f�5;kg, hidden state variances �Wch(j;k)	, andestimates substituted for unknown parameters. The predicted residual TCO values basedon the mass-balanced change-of-resolution Kalman �lter are shown in Figure 5 with thecorresponding prediction standard errors shown in Figure 6, based on a Mercator projectionof the globe. Figures 5-6 hereThe �nal predicted value (i.e., level-3 datum) is calculated as:level-3 (Kalman �lter) TCO value = zonal mean + predicted residual TCO value:Figures 7 through 11 show the level-3 (Kalman �lter) TCO values from resolution 1 (thecoarsest resolution) through resolution 5 (the �nest resolution), respectively, again based23



on a Mercator projection of the globe. Note that the optimal predictions for all �ve resolu-tions are obtained simultaneously in one pass using the change-of-resolution Kalman-�lteralgorithm. Figures 7-11 hereWe shall now compare the level-3 predictions to 80 ground-station observations recordedon the same day. Let L3 denote a generic level-3 data product given at all 1� � 1:25� gridcells for October 1, 1988. Then the mean squared error (MSE) for L3 is calculated as:MSE = 180 80Xl=1(GS(l)� L3(l))2;where GS(l) represents the TCO reading for the l-th ground station for October 1, 1988.The NASA level-3 data product achieves a MSE of 146.08, compared to 135.95 for thelevel-3 data product from the heterogeneous, mass-balanced, tree-structured model. Asmall reduction (6.9%) in the MSE should be noted, although one should not read toomuch into this as the ground stations have very spotty global coverage. The importantadvantages of the methodology based on mass-balanced, tree-structured models is that itprovides optimal predictions at multiple resolutions, and associated prediction standarderrors. 5 DiscussionWe have presented a new methodology for fast spatial prediction that allows us to han-dle massive amounts of satellite data e�ciently, even when they are sampled irregularly.It is based on a spatial model that is autoregressive in scale and for which \mass bal-ance" is preserved. The important advantages of our methodology are �rst that it providesoptimal spatial predictions at multiple resolutions, and associated prediction standard er-rors. Second, the mass balance guarantees consistent predictors and prediction variancesas resolution requirements change, according to whether predictions are to be used in local,24



regional, or global calculations. This property also allows us to incorporate data at di�er-ent levels of resolution. Third, and by no means least, our spatial-prediction algorithms areextremely fast.One drawback of Kalman �ltering on trees is that the implied spatial covariance functionis piecewise constant and nonstationary (see eq. (23) and eq. (29)), which can lead topredictions that are not shift invariant. A possible solution to this problem is to computethe spatial predictor as an average over a number of mass-balanced, tree-structured modelswith di�erent tree branches that represent children shifted to have di�erent parents. Ofcourse, the prediction variances and covariances will be considerably more complicated andthe computational complexity will increase with the number of trees used.In practice, the number of resolutions and the number of children for a given parenthave to be speci�ed in advance. Such choices will depend on applications and will in generallead to di�erent small-scale structure of the parametric covariance functions. However, formulti-resolution models like those used for mapping total column ozone over the globe, theoverall covariance shape is approximately stationary and exponential, regardless of what thesmall-scale structure might be. This stability of larger-scale dependence, combined with thequantity of data typically available, lead to spatial predictions that should be quite robustto these choices; capturing the key parameters in the spatial covariance function is mostimportant.The methodology we have developed should be extendible to incorporate temporal de-pendence. We propose to model the temporal dependence at resolution 1 as a multivariateautoregressive process in time and to retain the tree structure at each time point, whichas a whole again yields a tree structure. We could then run time backwards, from theresolution-1 nodes at time t to the corresponding nodes at time t� 1, in the leaves-to-root�ltering step. This model, and the possibility of optimal spatio-temporal prediction usinga similar Kalman-�lter methodology, will be investigated in the future.
25
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Captions for FiguresFigure 1. A quadtree.Figure 2. TCO zonal mean versus latitude, for the TOMS data on October 1, 1988Figure 3. Preliminary level-3 TCO data.Figure 4. Spline �tting for the variances of TCO variables with respect to their grid-cell areas.Units on the horizontal axis are in kilometers squared.Figure 5. Predicted residual TCO.Figure 6. Prediction standard errors for residual TCO.Figure 7. Predicted TCO for resolution 1.Figure 8. Predicted TCO for resolution 2.Figure 9. Predicted TCO for resolution 3.Figure 10. Predicted TCO for resolution 4.Figure 11. Predicted TCO for the �nest resolution (resolution 5).
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