Howie Choset

Howie Choset
Carnegie Mellon University | CMU · Robotics Institute

About

392
Publications
51,847
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,315
Citations
Citations since 2017
180 Research Items
4619 Citations
20172018201920202021202220230200400600800
20172018201920202021202220230200400600800
20172018201920202021202220230200400600800
20172018201920202021202220230200400600800

Publications

Publications (392)
Preprint
Full-text available
Limbless robots have the potential to maneuver through cluttered environments that conventional robots cannot traverse. As illustrated in their biological counterparts such as snakes and nematodes, limbless locomotors can benefit from interactions with obstacles, yet such obstacle-aided locomotion (OAL) requires properly coordinated high-level self...
Preprint
The 2021 Champlain Towers South Condominiums collapse in Surfside, Florida, resulted 98 deaths. Nine people are thought to have survived the initial collapse, and might have been rescued if rescue workers could have located them. Perhaps, if rescue workers had been able to use robots to search the interior of the rubble pile, outcomes might have be...
Article
Full-text available
The camera is an attractive device for use in beyond visual line of sight drone operation since cameras are low in size, weight, power, and cost. However, state-of-the-art visual localization algorithms have trouble matching visual data that have significantly different appearances due to changes in illumination or viewpoint. This paper presents iS...
Chapter
This work considers a Motion Planning Problem with Dynamic Obstacles (MPDO) in 2D that requires finding a minimum-arrival-time collision-free trajectory for a point robot between its start and goal locations amid dynamic obstacles moving along known trajectories. Existing methods, such as continuous Dijkstra paradigm, can find an optimal solution b...
Chapter
This paper develops a new approach to direct a set of heterogeneous agents, varying in mobility and sensing capabilities, to quickly cover a large region, say for example in the search for victims after a large-scale disaster. Given that time is of the essence, we seek to mitigate computational complexity, which normally grows exponentially as the...
Preprint
The Multi-Objective Shortest Path Problem, typically posed on a graph, determines a set of paths from a start vertex to a destination vertex while optimizing multiple objectives. In general, there does not exist a single solution path that can simultaneously optimize all the objectives and the problem thus seeks to find a set of so-called Pareto-op...
Preprint
Full-text available
Modular robots can be reconfigured to create a variety of designs from a small set of components. But constructing a robot's hardware on its own is not enough -- each robot needs a controller. One could create controllers for some designs individually, but developing policies for additional designs can be time consuming. This work presents a method...
Preprint
Full-text available
Control policy learning for modular robot locomotion has previously been limited to proprioceptive feedback and flat terrain. This paper develops policies for modular systems with vision traversing more challenging environments. These modular robots can be reconfigured to form many different designs, where each design needs a controller to function...
Preprint
Full-text available
Robots often have to perform manipulation tasks in close proximity to people. As such, it is desirable to use a robot arm that has limited joint torques so as to not injure the nearby person. Unfortunately, these limited torques then limit the payload capability of the arm. By using contact with the environment, robots can expand their reachable wo...
Article
Isolated mechanical systems—e.g., those floating in space, in free-fall, or on a frictionless surface—are able to achieve net rotation by cyclically changing their shape, even if they have no net angular momentum. Similarly, swimmers immersed in “perfect fluids” are able to use cyclic shape changes to both translate and rotate even if the swimmer-f...
Preprint
Full-text available
Robots have been used in all sorts of automation, and yet the design of robots remains mainly a manual task. We seek to provide design tools to automate the design of robots themselves. An important challenge in robot design automation is the large and complex design search space which grows exponentially with the number of components, making optim...
Preprint
Full-text available
The visual camera is an attractive device in beyond visual line of sight (B-VLOS) drone operation, since they are low in size, weight, power, and cost, and can provide redundant modality to GPS failures. However, state-of-the-art visual localization algorithms are unable to match visual data that have a significantly different appearance due to ill...
Preprint
Full-text available
Place recognition is the fundamental module that can assist Simultaneous Localization and Mapping (SLAM) in loop-closure detection and re-localization for long-term navigation. The place recognition community has made astonishing progress over the last $20$ years, and this has attracted widespread research interest and application in multiple field...
Preprint
Full-text available
Effectively disassembling and recovering materials from waste electrical and electronic equipment (WEEE) is a critical step in moving global supply chains from carbon-intensive, mined materials to recycled and renewable ones. Conventional recycling processes rely on shredding and sorting waste streams, but for WEEE, which is comprised of numerous d...
Preprint
Full-text available
We present the ALTO dataset, a vision-focused dataset for the development and benchmarking of Visual Place Recognition and Localization methods for Unmanned Aerial Vehicles. The dataset is composed of two long (approximately 150km and 260km) trajectories flown by a helicopter over Ohio and Pennsylvania, and it includes high precision GPS-INS ground...
Article
This work addresses a Multi-Objective Shortest Path Problem (MO-SPP) on a graph where the goal is to find a set of Pareto-optimal solutions from a start node to a destination in the graph. A family of approaches based on MOA* have been developed to solve MO-SPP in the literature. Typically, these approaches maintain a "frontier" set at each node du...
Preprint
Full-text available
We present AutoMerge, a LiDAR data processing framework for assembling a large number of map segments into a complete map. Traditional large-scale map merging methods are fragile to incorrect data associations, and are primarily limited to working only offline. AutoMerge utilizes multi-perspective fusion and adaptive loop closure detection for accu...
Preprint
Robots have the potential to perform search for a variety of applications under different scenarios. Our work is motivated by humanitarian assistant and disaster relief (HADR) where often it is critical to find signs of life in the presence of conflicting criteria, objectives, and information. We believe ergodic search can provide a framework for e...
Article
Continuum robots are not constructed with discrete joints but, instead, change shape and position their tip by flexing along their entire length. Their narrow curvilinear shape makes them well suited to passing through body lumens, natural orifices, or small surgical incisions to perform minimally invasive procedures. Modeling and controlling these...
Article
Path planning among dynamic obstacles is a fundamental problem in Robotics with numerous applications. In this work, we investigate a problem called Multi-Objective Path Planning with Dynamic Obstacles (MOPPwDO), which requires finding collision-free Pareto-optimal paths amid obstacles moving along known trajectories while simultaneously optimizing...
Article
This paper describes an online method to calibrate certain kinematic parameters of legged robots, including leg lengths, that can be difficult to measure offline due to dynamic deformation effects and rolling contacts. A kinematic model of the robot’s legs that depends on these parameters is used, along with measurements from joint encoders, foot c...
Preprint
Full-text available
For long-term autonomy, most place recognition methods are mainly evaluated on simplified scenarios or simulated datasets, which cannot provide solid evidence to evaluate the readiness for current Simultaneous Localization and Mapping (SLAM). In this paper, we present a long-term place recognition dataset for use in mobile localization under large-...
Article
Serially connected robots are promising candidates for performing tasks in confined spaces such as search and rescue in large-scale disasters. Such robots are typically limbless, and we hypothesize that the addition of limbs could improve mobility. However, a challenge in designing and controlling such devices lies in the coordination of high-dimen...
Article
Incrementalgraph search algorithms such as D* Lite reuse previous, and perhaps partial, searches to expedite subsequent path planning tasks. In this article, we are interested in developing incremental graph search algorithms for path finding problems to simultaneously optimize multiple objectives such as travel risk, arrival time, etc. This is cha...
Preprint
Full-text available
Tactile sensing typically involves active exploration of unknown surfaces and objects, making it especially effective at processing the characteristics of materials and textures. A key property extracted by human tactile perception is surface roughness, which relies on measuring vibratory signals using the multi-layered fingertip structure. Existin...
Preprint
Full-text available
This work addresses the Multi-Objective Shortest Path Problem (MO-SPP): Given a graph where each edge is associated with a non-negative cost vector, MO-SPP aims to find all the Pareto-optimal paths connecting the given start and goal nodes. To solve MO-SPP, the popular multi-objective A* (MOA*) like algorithms maintain a "frontier" set at any node...
Preprint
This work considers a Motion Planning Problem with Dynamic Obstacles (MPDO) in 2D that requires finding a minimum-arrival-time collision-free trajectory for a point robot between its start and goal locations amid dynamic obstacles moving along known trajectories. Existing methods, such as continuous Dijkstra paradigm, can find an optimal solution b...
Preprint
Reorientation (turning in plane) plays a critical role for all robots in any field application, especially those that in confined spaces. While important, reorientation remains a relatively unstudied problem for robots, including limbless mechanisms, often called snake robots. Instead of looking at snakes, we take inspiration from observations of t...
Chapter
This paper develops a multi-agent heterogeneous search approach that leverages the sensing and motion capabilities of different agents to improve search performance (i.e., decrease search time and increase coverage efficiency). To do so, we build upon recent results in ergodic coverage methods for homogeneous teams, where the search paths of the ag...
Article
Conventional multi-agent path planners typically compute an ensemble of paths while optimizing a single objective, such as path length. However, many applications may require multiple objectives, say fuel consumption and completion time, to be simultaneously optimized during planning and these criteria may not be readily compared and sometimes lie...
Preprint
Full-text available
One of the preeminent obstacles to scaling multi-agent reinforcement learning to large numbers of agents is assigning credit to individual agents' actions. In this paper, we address this credit assignment problem with an approach that we call \textit{partial reward decoupling} (PRD), which attempts to decompose large cooperative multi-agent RL prob...
Article
One of the preeminent obstacles to scaling multi-agent reinforcement learning to large numbers of agents is assigning credit to individual agents’ actions. In this letter, we address this credit assignment problem with an approach that we call partial reward decoupling (PRD), which attempts to decompose large cooperative multi-agent RL problems i...
Preprint
Full-text available
Serially connected robots are promising candidates for performing tasks in confined spaces such as search-and-rescue in large-scale disasters. Such robots are typically limbless, and we hypothesize that the addition of limbs could improve mobility. However, a challenge in designing and controlling such devices lies in the coordination of high-dimen...
Preprint
Full-text available
Appearance-based visual localization (AVL) is an approach that aligns the visual image against previously saved target images for robotics navigation. Current visual localization methods are easily affected by viewpoint (forward, backward) and environmental condition (illuminations, weathers) changes, and remains fragile for long-term localization,...
Preprint
Full-text available
Autonomous Exploration Development Environment is an open-source repository released to facilitate the development of high-level planning algorithms and integration of complete autonomous navigation systems. The repository contains representative simulation environment models, fundamental navigation modules, e.g., local planner, terrain traversabil...
Article
Full-text available
Conventional multi-agent path planners typically determine a path that optimizes a single objective, such as path length. Many applications, however, may require multiple objectives, say time-to-completion and fuel use, to be simultaneously optimized in the planning process. Often, these criteria may not be directly compared and sometimes lie in co...
Preprint
Full-text available
Multi-Agent Path Finding (MAPF) finds conflict-free paths for multiple agents from their respective start to goal locations. MAPF is challenging as the joint configuration space grows exponentially with respect to the number of agents. Among MAPF planners, search-based methods, such as CBS and M*, effectively bypass the curse of dimensionality by e...
Article
Designing good heuristic functions for graph search requires adequate domain knowledge. It is often easy to design heuristics that perform well and correlate with the underlying true cost-to-go values in certain parts of the search space but these may not be admissible throughout the domain thereby affecting the optimality guarantees of the search....
Preprint
Robots often interact with the world via attached parts such as wheels, joints, or appendages. In many systems, these interactions, and the manner in which they lead to locomotion, can be understood using the machinery of geometric mechanics, explaining how inputs in the shape space of a robot affect motion in its configuration space and the config...
Article
Sidewinding is a form of locomotion executed by certain snakes and has been reconstructed in limbless robots; the gait is beneficial because it is effective in diverse terrestrial environments. Sidewinding gaits are generated by coordination of horizontal and vertical traveling waves of body undulation: the horizontal wave largely sets the directio...
Preprint
Full-text available
Incremental graph search algorithms, such as D* Lite, reuse previous search efforts to speed up subsequent similar path planning tasks. These algorithms have demonstrated their efficiency in comparison with search from scratch, and have been leveraged in many applications such as navigation in unknown terrain. On the other hand, path planning typic...
Preprint
Full-text available
This paper addresses a generalization of the well known multi-agent path finding (MAPF) problem that optimizes multiple conflicting objectives simultaneously such as travel time and path risk. This generalization, referred to as multi-objective MAPF (MOMAPF), arises in several applications ranging from hazardous material transportation to construct...
Conference Paper
Full-text available
We present a method for autonomous exploration in complex three-dimensional (3D) environments. Our method demonstrates exploration faster than the current state-of-the-art using a hierarchical framework-one level maintains data densely and computes a detailed path within a local planning horizon, while another level maintains data sparsely and comp...
Preprint
Full-text available
Advanced resuscitative technologies, such as Extra Corporeal Membrane Oxygenation (ECMO) cannulation or Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA), are technically difficult even for skilled medical personnel. This paper describes the core technologies that comprise a teleoperated system capable of granting femoral vascular a...
Conference Paper
Full-text available
This paper describes a novel framework for autonomous exploration in large and complex environments. We show that the framework is efficient as a result of its hierarchical structure, where at one level it maintains a sparse representation of the environment and at another level, a dense representation is used within a local planning horizon around...
Preprint
Full-text available
We present a method for localizing a single camera with respect to a point cloud map in indoor and outdoor scenes. The problem is challenging because correspondences of local invariant features are inconsistent across the domains between image and 3D. The problem is even more challenging as the method must handle various environmental conditions su...
Preprint
Full-text available
To make a modular robotic system both capable and scalable, the controller must be equally as modular as the mechanism. Given the large number of designs that can be generated from even a small set of modules, it becomes impractical to create a new system-wide controller for each design. Instead, we construct a modular control policy that handles a...
Preprint
Dynamical systems with a distributed yet interconnected structure, like multi-rigid-body robots or large-scale multi-agent systems, introduce valuable sparsity into the system dynamics that can be exploited in an optimal control setting for speeding up computation and improving numerical conditioning. Conventional approaches for solving the Optimal...
Preprint
Full-text available
Many multi-agent systems in nature are comprised of agents that interact with, and respond to, the dynamics of their environment. In this paper, we approach the study of such agent-environment interactions through the study of passively compliant vehicles coupled to their environment via simple nonholonomic constraints. We first consider a single p...
Preprint
Full-text available
In multi-agent applications such as surveillance and logistics, fleets of mobile agents are often expected to coordinate and safely visit a large number of goal locations as efficiently as possible. The multi-agent planning problem in these applications involves allocating and sequencing goals for each agent while simultaneously producing conflict-...
Preprint
Full-text available
Multi-agent path finding (MAPF) determines an ensemble of collision-free paths for multiple agents between their respective start and goal locations. Among the available MAPF planners for workspaces modeled as a graph, A*-based approaches have been widely investigated and have demonstrated their efficiency in numerous scenarios. However, almost all...
Article
Snake robots composed of alternating single-axis pitch and yaw joints have many internal degrees of freedom, which make them capable of versatile three-dimensional locomotion. In motion planning process, snake robot motions are often designed kinematically by a chronological sequence of continuous backbone curves that capture desired macroscopic sh...
Article
Full-text available
Real-time 3D place recognition is a crucial technology to recover from localization failure in applications like autonomous driving, last-mile delivery, and service robots. However, it is challenging for 3D place retrieval methods to be accurate, efficient, and robust to the variant viewpoints differences. In this paper, we propose FusionVLAD, a fu...