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Summary: Complex computer models play a crucial role in air quality research. These models are used to evaluate

potential regulatory impacts of emission control strategies and to estimate air quality in areas without monitoring

data. For both of these purposes, it is important to calibrate model output with monitoring data to adjust for model

biases and improve spatial prediction. In this paper, we propose a new spectral method to study and exploit complex

relationships between model output and monitoring data. Spectral methods allow us to estimate the relationship

between model output and monitoring data separately at different spatial scales, and to use model output for

prediction only at the appropriate scales. The proposed method is computationally efficient and can be implemented

using standard software. We apply the method to compare Community Multiscale Air Quality (CMAQ) model output

with ozone measurements in the United States in July, 2005. We find that CMAQ captures large-scale spatial trends,

but has low correlation with the monitoring data at small spatial scales.

Key words: Computer model output; Data fusion; Kriging; Multiscale analysis.

This paper has been submitted for consideration for publication in Biometrics



A spectral method for spatial downscaling 1

1. Introduction

Research on the impacts of air quality and meteorological conditions on human health,

economics, and the environment have benefited considerably from the availability of routine

monitoring measurements. However monitoring networks are typically spatially sparse, pref-

erentially located (Stuart et al., 2009), and often without complete daily measurements (Kim

et al., 2013). Reliance on monitor measurements not only restricts a study’s geographical

region, but can also result in exposure uncertainty in the risk assessment process. Conse-

quently, there is a growing interest in supplementing monitor measurements with additional

information to increase the availability of air-quality data across space and time. Recent

data fusion applications have focused particularly on simulation outputs from deterministic

computer models that can provide broad spatial-temporal coverage without missing values

(Fuentes and Raftery, 2005; McMillan et al., 2009; Paciorek, 2012). Generally, we refer to

these supplemental data as proxy data, which may be computer model output, satellite

observations, land-use variables, etc.

Air-quality simulations from computer models are known to exhibit bias due to errors

in input variables, as well as inadequate mathematical representation of the underlying

environmental process (Mebust et al., 2003; Lim et al., 2010). Another challenge in combining

air-quality information arises from the different spatial resolutions between observations and

computer models (or more generally, proxy data). Specifically, numerical model outputs are

provided as average values over contiguous grid cells, while monitoring observations are only

available at point locations. To address the complex missing data and spatial misalignment

problems, current statistical approaches predominantly view proxy data as predictors of

observations in a regression setting. After linking each monitor location to a model grid

cell, associations between proxy values and observations are modeled as continuous spatial

processes to resolve the bias at the point-level. This framework, known as statistical down-



2 Biometrics, 2014

scaling, allows us to calibrate model outputs at any spatial point location within a grid cell.

Statistical downscaling has been successfully applied to air quality simulations (Berrocal

et al., 2010b,a; Zhou et al., 2011), climate model outputs (Berrocal et al., 2013; Zhou et al.,

2012), and remotely-sensed satellite images (Liu et al., 2009; Kloog et al., 2011).

The main contribution of this paper is the development of a multiscale statistical down-

scaler that allows distinct associations between observations and proxy data at different

spatial resolutions. Nguyen et al. (2012) and Crooks and Isakov (2013) propose multiscale

spatial models for the true value of the process of interest, and then relate the true process

to multiple data sources while accounting for biases in each data source. Our approach is

different in that we explicitly model the relationship between monitor and proxy data at

different resolutions, and thus obtain a more comprehensive study of the performance of

the proxy. Spatial multiscale modeling has also appeared in several applications other than

downscaling. For example, Nychka et al. (2012) use nested tapered bivariate splines to model

climate variables, while Morris et al. (2003) use wavelets to model functional image data. In

contrast, we utilize the spectral representation of spatial processes because the environmental

fields we are working with do not frequently exhibit sharp spatial gradients, where a wavelet

approach is more appropriate. Also, our spectral model reduces to the usual universal Kriging

model as a special case, which is commonly used in this field and provides optimal spatial

prediction in certain settings.

The proposed spectral downscaler offers several key advantages compared to previous data

fusion methodology. First, we utilize proxy data in the predictive model only at the appro-

priate spatial scales. Second, the spectral representation reduces computation considerably

compared to approaches where the latent field is modeled using all available data, and avoids

the problem where proxy may dominate predictions (Fuentes and Raftery, 2005; Paciorek,

2012). Finally, by considering associations at different spatial scales, we borrow information
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across groups of contiguous grid cells to predict observations. Recently, Berrocal et al. (2012)

proposed the use of a weighted average of grid cells around each monitor and showed that

smoothed model output has better predictive power, especially when predicting observations

at locations that are far from other monitoring sites. Our spectral approach can be viewed

as a more general and flexible framework because it can accommodate both smoothing as

in Berrocal et al. (2012), but also the opposite case where the proxy’s large scale-trends do

not match the observations, but its small-scale trends match the observations after removing

large-scale trends. It measures and tests for dependence at different scale which provides

valuable information about the utility of the proxy, and overcomes the need to select an a

priori smoothing parameter for the predictor because the usefulness of the predictor at each

spatial resolution can be informed by the observed data.

Our approach is also motivated by a dynamic downscaling technique known as spectral

nudging (Von Storch et al., 2000). In dynamic downscaling, outputs from one numerical

model are used to drive a second numerical model with higher spatial resolution. For example,

in climate research, simulations from general circulation model are often used as boundary

conditions for regional climate models. Spectral nudging helps maintain large-scale spatial

variation provided by the driving model and has been shown to improve fine-scale prediction

performance (Liu et al., 2012; Radu et al., 2008). However, the strength of nudging at different

spectral frequency needs to be determined a priori and evaluated via sensitivity analysis

(Alexandru et al., 2009). Here we propose a spectral statistical downscaling approach that

is completely data-driven and allows the strength of association to vary flexibility across

spectral frequencies. In contrast to dynamic downscaling, a statistical downscaler also allows

straight-forward inference for uncertainty quantification in the downscaled products.

We apply the spectral downscaler to perform data fusion for daily ground-level ozone

concentrations. Ground-level ozone is an air pollutant regulated under the National Ambient
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Air Quality Standards by the US Environmental Protection Agency (USEPA). Epidemiolog-

ical studies have consistently linked ozone exposure to adverse health outcomes, including

premature mortality and emergency department visits for cardiovascular and respiratory

diseases (Bell et al., 2004; Strickland et al., 2010). In urban settings, sources of ozone

precursors include emission from industrial facilities, power generation, and vehicle exhaust.

As a photochemical oxidant, ozone levels are particularly sensitive to weather conditions

(Thompson et al., 2001). We combine observations from the USEPA national Air Quality

System monitoring network and simulations from the Community Multiscale Air Quality

(CMAQ) modeling system in July 2005. CMAQ provides daily 3-D predictions of numerous

ambient air pollution concentrations based on atmospheric chemistry and physics, mete-

orology, and emission sources (Byun and Schere, 2006). While CMAQ’s main use is to

examine emission control strategies for meeting air quality standards (e.g., Foley et al.,

2012), calibrated CMAQ model outputs are also being used to derive exposure estimates for

health effects and health impact studies (Berrocal et al., 2011; Chang et al., 2012). Currently,

the USEPA maintains a publicly available database of ozone fusion products derived from a

single-resolution downscaler (http://www.epa.gov/esd/land-sci/lcb/lcb faqsd.html).

The remainder of this paper is organized as follows. Section 2 describes the multiscale

spectral downscaler. In Section 3, we present a simulation study to compare the spectral

downscaler with ordinary Kriging and the standard linear downscaler. Results of the ozone

data fusion application are given in Section 4. Finally, discussion and future work appear in

Section 5.

2. Spectral methods for spatial downscaling

We first provide a brief review of spectral methods for univariate spatial data; for a complete

review we refer to Fuentes and Reich (2010). Let Y (s) be a continuous univariate spatial

Gaussian process with mean E[Y (s)] = 0, variance Var[Y (s)] = σ2 > 0, and stationary
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correlation function Cor[Y (s1), Y (s2)] = ρ(s1 − s2). The spectral representation theorem

states that Y can be written as the Fourier transform of Z,

Y (s) =
∫
R2

exp(−iωT s)Z(ω)dω, (1)

where Z is Gaussian with E[Z(ω)] = 0, Var[Z(ω)] = σ2f(ω), and Z is independent over

frequency ω ∈ R2. The spatial correlation is determined by the spectral density f(ω) (which

we assume exists), which satisfies f(ω) = f(−ω) > 0 and
∫
R2 f(ω)dω = 1. The covariance

is

C(h) = Cov[Y (s), Y (s+ h)] = σ2
∫
cos(hTω)f(ω)dω. (2)

For example, if f is the bivariate normal density, then the covariance is squared exponential;

if f is the bivariate t density, then the covariance is Matérn. Bochner’s theorem states that

there is a one-to-one relationship between the spectral density and the spatial covariance.

2.1 Spectral methods for spatial downscaling

Define X(s) as a proxy measure at location s and Y (s) as the observed measurement. We

assume X is observed throughout the spatial domain and Y is observed sparsely. Our goal is

to understand the relationship between X and Y at different scales, and to use X to predict

Y . We begin by specifying a flexible statistical model for the joint distribution of X and

Y , and then inspecting the induced conditional distribution of Y given X which is used for

prediction. For notational simplicity we assume both processes have mean zero. Denote the

spectral representations of these two processes as

X(s) =
∫

exp(−iωT s)Z1(ω)dω (3)

Y (s) =
∫

exp(−iωT s)Z2(ω)dω,

where Zk is Gaussian (implying X and Y are Gaussian processes) with E[Zk(ω)] = 0

and V[Zk(ω)] = σ2
kfk(ω) for k = 1, 2. To capture the potentially complex relationship
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between these two processes, we model their correlation in the spectral domain. Define

Cor[Z1(ω), Z2(ω)] = ϕ(ω) = ϕ(−ω) ∈ (−1, 1), giving cross-covariance

Cov [X(s), Y (s+ h)] = σ1σ2

∫
cos(hTω)

√
f1(ω)f2(ω)ϕ(ω)dω. (4)

By allowing the correlation to vary by frequency, we permit complex relationships. For

example, if ϕ(ω) ≈ 1 for small ||ω|| and ϕ(ω) ≈ 0 for large ||ω||, then the proxy and

observation processes have similar large-scale trends, but disparate small-scale variations.

To understand the resulting predictive model, we now assume that the proxy X(s) is

known at all spatial locations and inspect the conditional mean of the Y given X. Since X

is observed completely, we obtain Z1(ω) for all frequencies via the inverse Fourier transform

Z1(ω) =
∫
R2

exp(iωT s)X(s)ds. (5)

In the spectral domain, we have E[Z2(ω)|Z1(ω)] = α(ω)Z1(ω), where α(ω) = ϕ(ω)
σ2

√
f2(ω)

σ1

√
f1(ω)

.

Because the normal distribution is a location-scale family, conditional on Z1 the Z2 process

has the equivalent representation Z2(ω) = α(ω)Z1(ω)+Z∗(ω), where Z∗(ω) is Gaussian with

E[Z∗(ω)] = 0, Var[Z∗(ω)] 6 σ2
2f2(ω), and Z∗ is independent over ω. Then, conditionally,

Y (s) =
∫

exp(−iωT s)Z2(ω)dω =
∫

exp(−iωT s)α(ω)Z1(ω)dω+
∫
exp(−iωT s)Z∗(ω)dω.(6)

The first term in (6) is fixed as we are conditioning on Z1, and the final term in (6) has mean

zero. Therefore the conditional mean of Y (s) is

E[Y (s)|X(t) for all t] = µ(s) =
∫

exp(−iω′s)α(ω)Z1(ω)dω. (7)

In the simple case where X and Y have the same spatial correlation, f1(ω) = f2(ω),

and dependence is constant across frequency, ϕ(ω) = ϕ, then α(ω) = α = ϕσ2/σ1 for

all frequencies and (7) reduces to the linear downscaler µ(s) = αX(s). Therefore, (7) can be

viewed as a multi-resolution extension of this linear model.

Since our objective is to predict the true air quality across the entire spatial domain and

not to study spatial dependence in the proxy data, rather than placing priors on the ϕ(ω)
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and f1(ω), we can model α(ω) directly. We express α(ω) as a linear combination of K known

basis functions Ak(ω),

α(ω) =
K∑
k=1

Ak(ω)αk. (8)

This gives conditional mean

µ(s) =
K∑
k=1

X̃k(s)αk where (9)

X̃k(s) =
∫
Ak(ω) exp(−iω′sj)Z1(ω)dω.

For interpretation purposes, we select basis functions so that
∑K

k=1Ak(ω) = 1 for all ω. In

this case, if αk = α for all k, then α(ω) = α for all ω, and the spectral downscaler reduces

to the linear downscaler. This provides a way to center our Bayesian model on this simple

special case.

Computing the spectral covariates X̃k clearly requires approximation since they are stochas-

tic integrals. Fortunately they can be approximated efficiently using the discrete Fourier

transformation when the proxy data are observed at M = m1m2 locations situated on the

m1 × m2 rectangular grid of points Sm1m2 = {0, 1, ...,m1 − 1} ⊗ {0, 1, ...,m2 − 1}. We can

then represent the proxy data using the two-dimensional discrete Fourier transform

X(sj) =
M∑
l=1

exp(−iωT
l sj)Zl, (10)

where {ω1, ...,ωM} is the set of M frequencies of the form (2πu/m1, 2πv/m2) for (u, v) ∈

Sm1m2 , and Zl are the complex values that result from the inverse discrete Fourier transform

of X,

Zl =
1

M

M∑
j=1

exp(iωT
l sj)X(sj). (11)

Transformations between X and Z are very efficient using the fast Fourier transform.

The constructed covariates are then approximated as

X̃k(sj) ≈
M∑
l=1

Ak(ωl) exp(−iωT
l sj)Zl. (12)
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The Web Appendix provides computer code to efficiently compute these constructed co-

variates. Even for the large datasets considered here these constructed covariates can be

computed in a few seconds on an ordinary PC. By the properties of the discrete Fourier

transformation, this approximation retains the essential feature that if α1 = ... = αK and

thus α(ω) = α for all ω, then µ(s) = αX(s), as with the linear downscaler.

2.2 Aliasing

A final technical detail common in spectral analysis is aliasing.When data are observed

only on Sm1m2 , Zj and Zk are complex conjugates if ωj = (ωj1, ωj2) and ωk = (ωk1, ωk2)

satisfy ωj1 + ωk1 ∈ {0, 2π} and ωj2 + ωk2 ∈ {0, 2π}. To see this, recall that exp(iωT s) =

cos(ωT s) + i sin(ωT s) and if ωjl = 2π − ωkl, then for any integer s, cos(ωjls) = cos(ωkls)

and sin(ωjls) = − sin(ωkls). Therefore, when all si are integers, Zj and Zk form a complex

conjugate pair since

Zj =
1

M

M∑
i=1

exp(iωT
j si)X(si) = C + iS (13)

Zk =
1

M

M∑
i=1

exp(iωT
k si)X(si) = C − iS

where C = 1
M

∑M
i=1 cos(iω

T
j si)X(si) and S = 1

M

∑M
i=1 sin(iω

T
j si)X(si). As a result, we cannot

distinguish between signals at frequencies ωj and ωk, and these frequencies are aliased.

To avoid identification problems, we assume that α(ω) is the same for pairs of aliased

frequencies. This is done by specifying the prior for α in terms of

δ =


ω if ||ω|| 6 ||ω̄||

ω̄ if ||ω|| > ||ω̄||
∈ [0, 2π), (14)

where ω̄ = [I(ω1 > 0)(2π − ω1), I(ω2 > 0)(2π − ω2)]. Therefore, the signals at both aliased

frequencies ωj and ωk are attributed to the smaller frequency, denoted δ. This assumptions

resolves strict identifiability problems of aliased frequencies. However, frequencies with ||δ|| ≈

0 and ||δ|| ≈ 2π remain difficult to separate, as discussed further in Section 4.
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2.3 Summary of the final model

After computing the spectral covariates, we proceed by fitting the usual spatial model for

the observational data. Y is a Gaussian process with mean µ(s) = x(s)Tβ +
∑K

k=1 X̃k(s)αk

and spatial covariance σ2[(1 − r)I(h = 0) + rρ(h)], where x(s) are spatial covariates with

corresponding regression coefficients β = (β1, ..., βp), r ∈ (0, 1) is the proportion of the

variance attributed to spatial variance as opposed to nugget variance, and ρ is the Matérn

correlation function with range λ and smoothness ν. Therefore, despite being motivated by

rather complex spectral arguments, in practice the method can be implemented by simply

adding K predictors X̃1(s), ..., X̃K(s) to the mean of the usual spatial linear model for the

observational data. As a result, this model can be fit using standard software.

In our analysis in Section 4, the proxy data X(s) represent areal averages of ozone con-

centrations over a region containing location s, whereas the monitor data Y (s) represent the

value at a specific spatial location s. This gives a change of support problem (Gelfand et al.,

2001). As in, e.g., Berrocal et al. (2010b), we assume that the resolution of the proxy data

is fine enough so we may simply match Y (s) with the nearest proxy value.

To complete the Bayesian model, we specify priors for the model’s parameters and the

form of the basis functions, Ak. The mean parameters have priors αk
iid∼ N(ᾱ, σ2

α) and βj, ᾱ
iid∼

N(0, 1002). The variances have priors σ−2, σ−2
α ∼ Gamma(0.1, 0.1), the variance ratio has

prior r ∼ Uniform(0,1), and the Matérn parameters have priors log(λ) ∼ N(0, 102) and

log(ν − 0.5) ∼ N(0, 1) so that ν > 0.5.

We assume isotropy in our model for α(ω), so that α(ω) = α(ω), where ω = ||ω||. Since

δ = ||δ|| is restricted to the finite interval [0, 2π), a natural choice for the basis functions are

the Bernstein basis polynomials,

Ak(ω) = Ak(δ) =

(
K − 1

k − 1

)
tk−1(1− t)K−k, (15)

where t = δ
2π

∈ [0, 1]. These basis functions satisfy
∑K

k=1Ak(ω) = 1 for all ω, so that if
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σα = 0 then α(ω) = ᾱ. Therefore, the key assumptions of this choice of basis expansion and

prior for the basis coefficients αk are that α(ω) varies smoothly across frequency and that the

prior is centered on the usual linear downscaler with α(ω) = ᾱ. Recalling that the correlation

ϕ(ω) is a product of α(ω) and the smooth spectral densities f1 and f2, smoothness in α also

implies smoothness in ϕ.

2.4 Spatially-varying coefficient model

Although not our primary focus, we also consider a non-stationary model which allows

the relationship between proxy data and monitor data to be different in different regions.

This model is more difficult to interpret, but may lead to improved predictions in some

settings. To allow for spatially-varying bias terms, we consider extending the local spectral

density approach of Fuentes (2001, 2002) to the bivariate setting. We specify J spatial knots

t1, ..., tJ ∈ R2, and assume that near knot tj the spectral density is fkj(ω) for process Zk and

the correlation at frequency ω is ϕj(ω). These local spectral densities are weighted by smooth

kernel functions wj(s). For example, we select the standardized Gaussian kernel wj(s) =

w̃j(s)/
∑J

i=1 w̃i(s), where w̃j(s) = exp[−0.5(||s − tj||/ψ)2] and ψ is the kernel bandwidth.

This gives the mean

µ(s) =
J∑

j=1

wj(s)

[
β0j +

K∑
k=1

X̃k(s)αkj

]
=

J∑
j=1

wj(s)β0j +
J∑

j=1

K∑
k=1

X̃jk(s)αkj (16)

where β0j is the intercept for knot tj. As before, this can be fit with standard software with

the constructed covariates wj(s) and X̃jk(s) = wj(s)X̃k(s).

3. Simulation study

We conduct a simulation study to compare the spectral downscaler with ordinary Kriging

and the linear downscaler. Proxy data, X(s), are generated as a Gaussian process with mean

zero, variance one, and exponential correlation Cor[X(s), X(t)] = exp(−||s − t||/λX). The
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responses, Y (s), are generated with mean

E [Y (s)|X] =
M∑
l=1

α(δl) exp(−iωT
l sj)Zl,

and covariance Cov[Y (s), Y (t)|X] = 0.52 exp(−||s− t||/λY ), where Z1, ..., ZM is the inverse

discrete Fourier transform of X and λX and λY are the spatial range parameters. We consider

three α functions:

(1) α(δ) = 1

(2) α(δ) = I(δ < π/4) + 0.5I(π/4 < δ < π)− 0.2I(π < δ < 3π/2) + 0.5I(δ > 3π/2)

(3) α(δ) = 1− 1.25I(π/2 < δ < 3π/2)

The first design is the linear downscaler with mean equal to the proxy data µ(s) = X(s). The

second design emulates the ozone data analyzed in Section 4, with strong correlation at low

frequencies and low correlation for high frequencies. The final design may be unrealistic, but

is intended to illustrate the potential effects of model misspecification on the performance of

the linear downscaler. In this design, α(δ) = 1 for low-resolution features with δ < π/2 and

δ > 3π/2, and is α(δ) = −0.25 for remaining δ, giving a slightly negative association for high-

frequency features. Despite having negative α for many frequencies, the sample correlation

between X(s) and Y (s) (averaged over space, time, and dataset) remains positive, ranging

from 0.44 and 0.77 depending on the spatial correlation parameters. We also generated data

from the kernel smoother model of Berrocal et al. (2012):

(4) E[Y (si)|X(s)] =
∑225

j=1wij(ϕ)X(sj)

where the weight is wij(ϕ) = Wij(ϕ)/[
∑

l=1Wil(ϕ)],Wij(ϕ) is the Gaussian kernel log[Wij(ϕ)] =

− ||si−sj ||2
2ϕ2 , and ϕ is the kernel bandwidth which is set to ϕ = 1 grid cell.

Data are generated on a 15×15 regular grid of points with grid spacing one, with 10

independent replications (representing 10 days) of the spatial process for each dataset. The

225 observations are split into 50 training observations and 175 testing observations. For
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each simulation design and for λX , λY ∈ {1, 5}, we generate 100 data sets. For each dataset,

we fit several models to the training data:

(1) Ordinary Kriging (OK): µ(s) = β0

(2) Linear downscaler (LD): µ(s) = β0 + αX(s)

(3) Spectral downscaler (SD): µ(s) = β0 +
∑K

k=1 αkX̃k(s)

(4) Kernel smoother (S(ϕ)): µ(si) =
∑

j wij(ϕ)X(sj)

(5) Oracle (OR): µ(s) is set at the true value used to generate the data

For the spectral downscaler, we use K = 10 Bernstein basis functions. For the kernel

smoother we compare bandwidths ϕ = 0.5, 1.0, and 2.0. For each model, the priors and

residual spatial model are described in Section 2.3. Figure 1 gives the mean square test set

prediction error for each simulated dataset. We also computed the coverage of 90% prediction

intervals, which were between 0.89 and 0.91 for all methods in all cases. The models are fit

using MCMC sampling in R. We generate 10,000 samples, discard the first 1,000 as burn-in,

and thin the remaining samples by 2, leaving 4,500 samples for prediction.

[Figure 1 about here.]

The spectral downscaler performs almost as well as the linear downscaler for the first design

with data generated from the linear downscaler. Therefore, little is lost by including the extra

constructed covariates in the spectral downscaler in this simple case. In the second simulation

design, the spectral downscaler provides a significant improvement over the linear downscaler.

The largest improvements occur in the presence of strong residual spatial correlation (λY = 5)

for the measurement data. In these cases, it seems spatial interpolation is fairly successful

at capturing large scale trends even in the absence of proxy data, and thus the ability to

appropriately handle fine-scale relationships separates the models. In the pathological third

example, there is substantial correlation between measurement and proxy data, but this

relationship is primarily driven by shared low-resolution features. Recent literature (Reich



A spectral method for spatial downscaling 13

et al., 2006; Hodges and Reich, 2010; Hughes and Haran, 2013) shows that it is difficult to

estimate regression relationships in this case. These results suggest that in this case including

proxy data as a linear predictor may not improve prediction over ordinary Kriging that does

not make use of the proxy data. As expected, in the fourth design with data generated from

the kernel smoothed model, the true model has smaller MSE than the spectral downscaler.

However, in this case the spectral downscaler remains competitive, and actually has smaller

MSE than the kernel smoother with misspecified bandwidth.

4. Analysis of ozone in North America

4.1 Data description and exploratory analysis

To illustrate the spectral downscaler, we analyze daily model output for ozone from CMAQ

version 5.0.1 (http://www.cmaq-model.org/) (Appel et al., 2013) and monitored ozone data

for July, 2005. Model output are paired in time and space with observations obtained from

EPA’s Air Quality System (AQS; http://www.epa.gov/ttn/airs/airsaqs/) and the Clean

Air Status and Trends Network (CASTNet; http://www.epa.gov/castnet/). AQS sites are

primarily located in urban and suburban locations, while CASTNet sites are located in rural

areas away from major emission sources. The ozone metric of interest in this application is

the daily maximum eight-hour average ozone concentration (MDA8 O3) since it is used for

determining compliance with the EPAs ozone standards. CMAQ data is available on 12km

x 12km grid covering the US and AQS data are available at 1,106 monitoring stations.

Figure 2 plots the CMAQ output for one day, as well as filtered CMAQ output to illustrate

the signal for different frequencies. For frequency interval [a, b), the filtered values are

X∗
[a,b)(s) ≈

M∑
l=1

I(a 6 δl < b) exp(−iωT
l sj)Zl. (17)

Filtered images are created using the entire dataset, and plotted only for the southwest US

in Figure 2. The low frequencies with δ < π/4 capture large-scale spatial variation, whereas
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frequencies in the intervals [π/4, π/2), [π/2, π), and [π, 3π/2) capture progressively finer

resolution features. Finally, the trends corresponding to frequencies greater than 3π/2 begin

to resemble low-frequency trends due to aliasing.

[Figure 2 about here.]

We begin investigating the relationship between CMAQ and monitor data using a simple

least squares analysis. Let 0 = a0, ..., a25 = 2π be equally-spaced points that partition [0, 2π].

We create filtered images X∗
[a0,a1)

(s), ..., X∗
[a24,a25)

(s) and match these constructed covariates

with the monitor value Y (s). This is repeated each day, and the data are pooled across days.

We then fit a linear regression using these constructed covariates,

E[Y (s)] = α0 +
25∑
j=1

α(δj)X
∗
[aj−1,aj)

(s),

where δj = (aj + aj−1)/2. This regression ignores all residual spatiotemporal dependence.

Figure 3 plots the estimates of the α(δj) by frequency δj and period 12(2π)/δj (period is

multiplied by 12 because the grid cells have width 12km). The estimated slopes are near 1 for

frequencies near 0 and 2π. For medium frequency trends the relationship is weaker with α(δ)

around 0.25 for δ between π/4 and π. The estimated slopes are near zero, in some cases less

than zero, for high-frequency trends with δ between π and 3π/2. These estimates suggest

good agreement between CMAQ and the monitor data for large-scale features (especially

those exceeding 120 km), but very little agreement for small-scale features.

[Figure 3 about here.]

Figure 3 also plots (horizontal lines) the slope α1 for the simple regression E[Y (s)] =

α0+α1X(s). The estimated slope is around 0.8, which is higher than most of the slopes from

the multi-resolution regression. It appears the slope is driven largely by the low-frequency

trends shared by both CMAQ and the monitor data.

We also use this plot to suggest an appropriate number of basis functions, K, to include
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in our model. Figure 3 plots the fits with K = 5, 10, and 15 Bernstein basis functions, fit

to the α̂(δj) using weighted least squares with weights inversely proportional to the squared

standard error of α̂(δj). It appearsK = 15 basis functions is sufficient to capture the variation

in α across frequencies.

4.2 Model comparisons

To compare models, we conduct test set validation. We compare four models,

(1) No CMAQ: µ(s) = β0 + β1x(s)

(2) Linear downscaler: µ(s) = β0 + β1x(s) + αX(s)

(3) Spectral downscaler: µ(s) = β0 + β1x(s) +
∑K

k=1 αkX̃k(s)

(4) Kernel smoothed downscaler: µ(s) = β0 + β1x(s) +
∑

j wij(ϕ)X(sj)

where x(s) = 1 if site s is a CASTNet station, and x(s) = 0 if site s is an AQS station.

For each model, the residuals are a mean-zero Gaussian process with Matérn covariance as

described in Section 2.3. The priors are the same for all models, and also given in Section

2.3. The data are modeled as independent across the 31 days. For each model, we generate

20,000 samples, discard the first 5,000 as burn-in, and thin the remaining samples by 2.

We randomly split the data into training and testing sets. We first split the data by

randomly allocating sites to the training (581) and testing (252) sets. For each model, we

compute predictive mean squared error, bias, variance and coverage of 90% intervals for the

observations in the test set. We refer to this as “spatial prediction”. In a second analysis,

we randomly allocate days to the training (19) and testing (12) sets. In this second analysis,

spatial dependence is not useful for prediction because there is no training data on the same

day as test set observations. Therefore, we refer to this as “non-spatial prediction”.

The results are in Table 1. The spectral downscaler provides a reduction in MSE for spatial

prediction compared to the linear downscaler, and modest reduction in MSE compared to the

kernel smoothed downscaler. However, the spatial-only model without CMAQ is competitive
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with the downscaler models due to the strong spatial dependence in ozone data. In contrast,

there are very substantial differences in MSE for non-spatial prediction; the relative MSE

of the spectral downscaler compared to the model without CMAQ is 145.7/339.7=0.43,

and the MSE relative to the linear downscaler is 145.7/202.1=0.72. In this case, spatial

dependence does not help with prediction, and thus only treatment of the CMAQ output

affects prediction. By including CMAQ output only at the appropriate spatial scales, the

spectral downscaler makes better use of the output. As discussed in Section 1, this is an

important result because CMAQ is often used for out-of-sample prediction to determine the

effects of emission control strategies.

[Table 1 about here.]

4.3 Results

Table 2 summarizes the three model fits to the full dataset. In all three cases we see strong

spatial dependence. The posterior mean spatial range (λ) varies from 145 km for the no-

CMAQ model to 243 km for the spectral downscaler, and the proportion of residual variance

attributed to spatial variation (r) ranges from 0.93 for the no-CMAQ model to 0.80 for

the spectral downscaler. The residual variance (σ2) and proportion of variance attributed

to spatial variation are smaller for the downscaler models because including CMAQ output

explains much of the spatial pattern.

[Table 2 about here.]

The posterior of α(δ) in Figure 4 resembles the least squares estimate in Figure 3, but

reflects our prior belief that it varies smoothly across frequency. The function α(δ) is clearly

not constant for all δ, as would be the case in the linear downscaler, demonstrating the need

for the multi-resolution approach. The correlation between CMAQ and monitoring data is

near zero for features with 24 km periods. This is twice the size of the 12km grid cells, and
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it is known that deterministic models that are based on a numerical discretization scheme,

such as CMAQ or the weather model that provides the necessary meteorological inputs to

CMAQ, are unable to resolve features that are less than twice the grid resolution (Pielke,

1984). CMAQ is able to explain low-resolution features well, as α(δ) steadily increases from

zero to one as δ increases from 24 km. Features with periods less than 24 km appear to have

large α(δ), however this is likely due to the aliasing effect. As discussed in Section 2.2, these

terms are difficult to distinguish from low-frequency terms.

[Figure 4 about here.]

Figure 5 plots the CMAQ output, monitoring data, posterior mean of µ(s), and spatial

predictions for the full model fit (using the entire data set) for one day in the southwest. The

CMAQ output shows two prominent local features: predictions near 120 ppb for a few grid

cells near Reno, Nevada and in southern California. The posterior mean for µ(s) (defined in

Section 4.2 with x(s) = 0, i.e., calibrated for AQS data) is quite different between the two

downscalers. The linear downscaler preserves the shape of the CMAQ output, including the

local features near Reno and in southern California. The spectral downscaler filters many

local features, and is thus a smoothed version of the CMAQ output.

[Figure 5 about here.]

Despite having different means, the linear and spectral downscalers give similar spatial

predictions throughout most of the region due to the large number of observations in the

area. For example, there are many observations near Reno, and the predicted value in the

grids cells west of Reno with CMAQ predictions near 120 ppb are shrunk to around 60 ppb

by both models. There are however some important differences between the two predicted

surfaces. The grid cells in southern California with CMAQ near 120 ppb are not near an ozone

monitor. Therefore, the predicted values for these cells are largely driven by the CMAQ value

and are thus much higher for the linear downscaler than the smoother spectral downscaler.
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4.4 Sensitivity analysis

To test for sensitivity to our model assumptions, we changed the number of Bernstein basis

functions from K = 15 to K = 10 and K = 20. Spatial prediction mean squared error

changed only slightly, from 68.8 for K = 15 to 55.3 for K = 10 and 55.3 for K = 20. We

also fit the non-stationary model described in Section 2.4 with J = 9 equally-spaced knots

spanning the range of CMAQ spatial locations, ψ set to the distance between adjacent knots,

and the same priors as the previous fits. The test set mean squared spatial prediction error

was 56.7 for the linear downscaler with K = 1 and 55.2 for the spectral downscaler with

k = 15. Since these results are similar to the model without spatially-varying terms, it does

not appear that this additional complication is needed for this dataset.

5. Discussion

In this paper, we propose using spectral methods for spatial downscaling. The proposed

method is computationally convenient, and can be fit using standard software. For the July,

2005 ozone data we find vastly different relationships between CMAQ output and monitoring

data at different frequencies, with stronger correlation at larger spatial scales. Including

CMAQ output only at the appropriate scales improves spatial and non-spatial prediction.

The analysis of the ozone data in Section 4 has several limitations. First we do not account

for the fact that monitor stations are preferentially located in areas with high ozone. Adding

CMAQ is a step towards handling bias caused by preferential sampling. Given that there is a

strong relationship between CMAQ and monitoring data and smoothing-varying CMAQ bias,

CMAQ output can reveal that sampled areas generally have higher ozone than non-sampled

areas, and the mean can be adjusted to account for this difference. It should be straight-

forward to include the proposed spectral downscaling methods in model-based approaches to

preferential sampling adjustments (Diggle et al., 2010; Pati et al., 2011; Gelfand et al., 2012).
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In addition, it should be possible to include the proposed spectral methods in many non-

Gaussian spatial models for binary or count data (Diggle et al., 1998). Another limitation

is our treatment of the change of support between point-referenced monitor data and areal-

averaged CMAQ output. Given that there are very few monitor observations in the same grid

cell for the ozone data we have little information on variation at this resolution. Also ozone

is considered a regional pollutant mainly formed by secondary atmospheric processes, so we

might expect the level to be quite homogenous within a 12km x 12km grid cell. Therefore we

feel it is unlikely that this would provide an advantage in our setting. However, to account

for this issue more rigorously, it may be possible to embed the proposed multi-resolution

model in the melding approach of Fuentes and Raftery (2005).

An important area of future work is to extend this approach to the spatiotemporal setting.

Here we focus on the spatial case because for daily ozone data the spatial dependence is far

stronger than the temporal dependence. A spatio-temporal model would allow for differing

relationships between monitor and proxy data at different spatial and temporal scales, which

could provide further information about CMAQ performance and may improve prediction.

Another area of future work is to tailor the downscaler method to capture extreme ozone

events (Reich et al., 2013). In our purely Gaussian model we find that smoothing CMAQ

output improves prediction, but this may not be optimal for capturing extreme events.

Supplementary Material

The Web Appendix referenced in Section 2.1 is available with this article at the Biometrics

website on Wiley Online Library.
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Figure 1. Square root prediction mean squared error for ordinary Kriging (“OK”), the
linear downscalar (“LD”), the spectral downscaler (“SD”), kernel smoothed downscaler
(“S”), and the oracle model (“OR”) for simulated data. For each design, results are presented
with λX = 1 (solid lines) and λX = 5 (dashed lines) and for λY = 1 (triangles) and λY = 5
(circles). The standard error for each value in the figure is less than 0.0246.
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Figure 2. CMAQ output filtered at different frequencies for July 4, 2005.
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0.8 are the estimated slope (solid) and 95% confidence interval (dashed) for the simple linear
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Figure 5. CMAQ output X(s), monitor observations Y (s), estimated mean µ(s), and
spatial predictions under the linear (LD) and spectral (SD) downscaler models for July 4,
2005. All units are ppb.
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Table 1
Test-set prediction performance, including coverage of 90% prediction intervals.

Spatial prediction
MSE Bias Variance Coverage

No CMAQ 62.8 -0.14 66.3 0.91
Linear downscaler 57.5 -0.26 56.2 0.91
Spectral downscaler 53.7 -0.23 53.3 0.91
Kernel smoothed downscaler with bandwidth 12 km 54.9 -0.23 54.8 0.91
Kernel smoothed downscaler with bandwidth 60 km 58.7 -0.17 59.2 0.91
Kernel smoothed downscaler with bandwidth 120 km 60.9 -0.14 62.9 0.91

Non-spatial prediction
MSE Bias Variance Coverage

No CMAQ 339.7 -6.17 302.0 0.89
Linear downscaler 202.1 -2.80 177.7 0.89
Spectral downscaler 145.7 0.57 129.1 0.89
kernel smoothed downscaler with bandwidth 12 km 151.2 -0.06 134.8 0.89
kernel smoothed downscaler with bandwidth 60 km 157.6 1.06 142.9 0.89
kernel smoothed downscaler with bandwidth 120 km 169.1 0.93 151.7 0.89
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Table 2
Posterior mean (standard deviation) of various parameters under different models.

Linear Spectral
No CMAQ downscaler downscaler

Network effect (ppb), β1 2.75 (0.16) 2.72 (0.15) 2.88 (0.15)
Standard deviation (ppb), σ 17.9 (0.35) 13.6 (0.21) 11.6 (0.13)
Variance ratio, r 0.93 (0.01) 0.85 (0.01) 0.80 (0.01)
Spatial range (km), λ 415.5 (19.9 ) 336.1 (14.6) 243.5 (8.85)
Smoothness parameter, κ 0.51 (0.01) 0.51 (0.01) 0.51 (0.01)


