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Abstract
Deserts cover a vast area of the world’s land surface, but the study of desert climate has been impeded by the lack of ground 
meteorological observations. In recent years, the climate reanalysis products provide an important data source to investi-
gate climate change in observation-limited areas. However, their accuracy in desert regions has been poorly investigated. 
Here, we evaluated the performance of the latest ERA5 reanalysis datasets for the climatic conditions over the deserts of 
northern China (DNC), including temperature and precipitation variations, climate extremes, and detection skills of daily 
precipitation. The results show that ERA5 well captures the observed pattern of annual and seasonal temperatures, as well 
as the warming trend during the past four decades in DNC, compared to the ground observations. However, both annual and 
seasonal precipitations are greatly overestimated over DNC, and large uncertainties exist in precipitation trends. In addi-
tion, the variability of interannual precipitation, precipitation intensity, maximum 1-day precipitation, and the number of 
continuous dry days are underestimated by ERA5. The bias of precipitation estimates may be traced to the overestimation 
of rainfall occurrence in ERA5. Comparing to other reanalysis (such as MERRA2, NCEP/NCAR, and NOAA-20C), the 
ERA5 outperforms them for precipitation and precipitation extremes over DNC, although its performance is not as good as 
gridded gauge-based precipitation datasets (such as CPC). Overall, this study provides references for the use of ERA5 over 
DNC and facilitates the applications of ERA5 over other observation-limited desert regions.
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1  Introduction

Deserts are characterized by dry climate and bare ground 
with sparse vegetation and distributed extensively in the 
world’s arid regions. Desert climate is a specific climate 
type in the Köppen climate classification system and is 
characterized by large variability in both temperature and 

precipitation (Peel et al. 2007). For instance, most deserts 
have large diurnal temperature fluctuations due to very dry 
air condition (Malek and Bingham 1997). Precipitation in 
the deserts is scarce but has strong interannual variability 
(Thomas and Shaw 1991). One heavy rainfall event may 
account for more than half of annual amount of precipitation 
in some desert regions (Kampf et al. 2018). More impor-
tantly, deserts are ecologically fragile and sensitive to cli-
mate change and human activities. The fluctuation of climate 
conditions can have great impacts on desert ecosystems, as 
well as the activity of sand dunes which are widely distrib-
uted in the deserts (Xu et al. 2018), and may lead to land 
desertification (Wang et al. 2017). Meanwhile, changes in 
the desert ecosystems and environments would have strong 
feedbacks to the atmosphere by modifying boundary layer 
conditions (Charney 1975; Kucharski et al. 2013) or even 
broader impact through dust emissions (Kim et al. 2017; 
Wang et al. 2021).

Despite of the important role of deserts in the Earth 
system, ground observations are relatively lack in these 
regions due to their remote geographical locations (He and 
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Jin 2021). In such a case, climate reanalysis products which 
provide spatially distributed meteorological information are 
especially valuable for those areas where ground meteoro-
logical stations are non-existent or scattered (Kalnay et al. 
1996; Bosilovich 2013). Climate reanalysis products assimi-
late a wide variety of historical observations into numeri-
cal weather prediction models to generate a synthesized 
estimate of the state of the atmosphere (Bengtsson et al. 
2007). In recent years, the applications of climate reanaly-
sis datasets, such as the fifth-generation reanalysis recently 
released by the European Centre for Medium Range Weather 
Forecasts (ECMWF), i.e., ERA5, the National Centers for 
Environmental Prediction/National Centers for Atmospheric 
Research reanalysis (NCEP/NCAR), the Modern-Era Retro-
spective analysis for Research and Applications, Version 2 
(MERRA2), and others, have greatly improved our under-
standings about recent climate changes (Hodges et al. 2011; 
Huang et al. 2016). However, given the uncertainty coming 
from the numerical prediction models, the initial conditions 
and data assimilation methods (Hodges et al. 2011), these 
reanalysis products might have certain biases, and it is nec-
essary to evaluate their accuracy before applying them in cli-
mate change studies in different regions. Many studies have 
assessed the quality of reanalysis products at both global and 
regional scales (Bosilovich et al. 2008; Donat et al. 2014; 
Torralba et al. 2017). Despite that, there are fewer studies 
focusing on their performance in observation-limited regions 
(Huang et al. 2021; Huai et al. 2021), though the overestima-
tion of rainfall occurrence in reanalysis products might be 
larger in the desert regions (Dinku et al. 2010).

Deserts of northern China (DNC) cover a vast area in the 
hinterland of Central and East Asia and have strong influ-
ences in local ecological and environmental conditions. 
The east part of DNC includes several semi-arid dune fields 
with annual precipitation greater than 200 mm, while the 
west part of DNC is mostly composed of large sand seas 
with annual precipitation less than 200 mm (Fig. 1). Among 
DNC, the Taklamakan desert is the second largest mobile 
desert in the world (He and Jin 2021). More importantly, 
changes in different climatic variables over DNC are dra-
matic in recent years, such as rapidly warming (Huang et al. 
2019), and increased occurrence of precipitation extremes 
(Li et al. 2019). As a result, some parts of DNC have expe-
rienced widespread greening trend under wetter, warmer, 
and less windy conditions during past few decades (Xu et al. 
2018; Wang et al. 2022). Despite of the increasing evidence 
showing the significant impacts of climate change in DNC, 
ground meteorological observations are scarce and distrib-
uted unevenly in this region, which brings much uncertainty 
to understand the trend and causes of climate change over 
DNC (Su et al. 2016; Ning et al. 2021). Reanalysis products 
with high spatial and temporal resolutions are potential alter-
natives and an important complement to ground observa-
tions in DNC. However, to our current knowledge, there are 
few studies evaluating the performance of reanalysis prod-
ucts over DNC (Huang et al. 2021), and thus, a systematic 
evaluation is in great need.

In this study, a comprehensive evaluation of the latest 
ERA5 reanalysis over DNC would be carried out. We mainly 
focus on ERA5 reanalysis based on the following reasons: 

Fig. 1   Spatial distribution of DNC and meteorological stations. 
The shade in the map refers to the deserts and dune fields, while 
the dots indicate the meteorological stations. 1, Taklamakan desert; 
2, Gurban Tunggut desert; 3, Qaidam desert; 4, Kumtagh desert; 5, 
Badain Jaran desert; 6, Tengger desert; 7, Ulan Buh desert; 8, Hobq 
desert; 9, Mu Us dune field; 10, Otindag dune field; 11, Horqin dune 
field; 12, Hulun Buir dune field. These deserts and dune fields are 

divided into six sub-regions based on their geographical locations 
and climate conditions. The box labels each sub-region. TakD, Tak-
lamakan and Kumtagh deserts; GTD, Gurban Tunggut desert; QaiD, 
Qaidam desert; AlxaD, Badain Jaran, Tengger, and Ulan Buh deserts; 
OrdosD, Hobq desert and Mu Us dune field; ED, Otindag, Horqin, 
and Hulun Buir dune fields
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First, ERA5 has been recently developed as the fifth-gener-
ation reanalysis and released by ECMWF (Hersbach et al. 
2020). Compared with the earlier ECMWF reanalysis, i.e., 
ERA-Interim, two major changes were implemented in 
ERA5: The temporal resolution was increased from 3-hourly 
to hourly and the spatial resolution was also increased 
(Albergel et  al. 2018). Second, previous studies have 
revealed that ERA5 has generally good performance at both 
global and regional scales. For example, Huai et al. (2021) 
have found ERA5 outperform other reanalysis datasets for 
most climate variables, such as temperature, air pressure, 
and precipitation, over Qilian Mountains, Qinghai-Tibet Pla-
teau. Mahto and Mishra (2019) have found that ERA5 per-
forms better than other reanalysis products (ERA-Interim, 
JRA-55 and MERRA2) over India region, including seasonal 
precipitation, maximum and minimum temperatures, total 
runoff, evapotranspiration, and soil moisture. Graham et al. 
(2019) have confirmed improved performance of ERA5 in 
Arctic Gateway relative to other reanalysis datasets, such as 
ERA-Interim, JRA-55, and MERRA2. Third, few studies 
have been carried out to evaluate the performance of ERA5 
over DNC, though this reanalysis product may have particu-
lar advantage for further investigation of climate change and 
its impact in this region. In this study, the performance of 
ERA5 in reproducing both annual and seasonal temperatures 
and precipitations, as well as climate extremes, would be 
evaluated over DNC, in comparison to both ground observa-
tions (OBS) and other climate datasets (including MERRA2, 
NCEP/NCAR, NOAA-20C, PREC/L, GPCP and CPC). This 
study should not only become an important basis for the use 
of ERA5 reanalysis in DNC, but also provide insights into 
climate change studies in other observation-limited desert 
regions.

2 � Study area

DNC are located in the arid and semi-arid areas of Central 
and East Asia and influenced by both Asian monsoon circu-
lations and the westerlies. They consist eight large sand seas, 
namely Taklamakan, Gurban Tunggut, Kumtagh, Qaidam, 
Badain Jaran, Tengger, Ulan Buh, and Hobq deserts, and 
four semi-arid dune fields, namely Mu Us, Otindag, Horqin, 
and Hulun Buir dune fields (Fig. 1). In this study, DNC are 
divided into six sub-regions based on their climate condi-
tions and geographical locations, as shown by the boxes in 
Fig. 1. The sand seas distributed in the west part of DNC 
usually have annual precipitation less than 200 mm, because 
the humid air from the ocean is difficult to reach. The dune 
fields located in the east part are strongly affected by Asian 
summer monsoon and have annual precipitation ranging 
from 200 to 450 mm. The climate characteristics of each 
desert or dune field are additionally affected by their specific 

geographical locations. The driest Taklamakan and Kumtagh 
deserts located in the Tarim basin are surrounded by high 
mountain ranges, and they have a warm climate with annual 
temperature higher than 10 ℃. In comparison, the Qaidam 
desert is located in the Tibetan Plateau and has a higher 
altitude and relatively low temperature. The Gurban Tung-
gut desert is located north to the Taklamakan desert, both of 
which are strongly influenced by the westerlies. The Badain 
Jaran, Tengger, and Ulan Buh deserts are located in the Alxa 
Plateau in central part of DNC. They are influenced by mon-
soon circulations and thus have relatively higher precipita-
tion than other sand seas in the west. The Hobq desert and 
Mu Us dune field are located in the Ordos Plateau, north-
central China, and they have higher precipitation than the 
sand seas in the Alxa Plateau. Finally, the Otindag, Horqin, 
and Hulun Buir dune fields are located in the east part of 
DNC. These dune fields are influenced by summer monsoon, 
and have annual precipitation ranging from 200 to more than 
450 mm. Therefore, these sand seas and dune fields can be 
divided into six sub-regions: (1) Taklamakan Desert Region 
(TakD) that includes Taklamakan and Kumtagh deserts; 
(2) Gurban Tunggut Desert Region (GTD); (3) Qaidam 
Desert Region (QaiD); (4) Alxa Desert Region (AlxaD) that 
includes Badain Jaran, Tengger and Ulan Buh deserts; (5) 
Ordos Desert Region (OrdosD) that includes Hobq desert 
and Mu Us dune field; (6) Eastern Desert Region (ED) that 
includes Otindag, Horqin and Hulun Buir dune fields. Detail 
information of these six sub-regions is shown in Table 1.

3 � Data and methodology

3.1 � Data source

3.1.1 � ERA5 reanalysis

As one of the latest high-resolution climate reanalysis 
datasets, ERA5 provides hourly estimates of a large num-
ber of atmospheric, land, and oceanic climate variables 
(Hersbach et al. 2020). It has a high spatial resolution up to 
0.25° × 0.25° and resolves the atmosphere using 137 levels 
from the surface up to a height of 80 km. For this study, 
hourly climate variables including 2 m temperature and total 
precipitation from the ERA5 reanalysis, spanning January 
1979 to December 2019, were obtained from the Coperni-
cus Climate Data Store. Then, daily, monthly, and annual 
climate variables were calculated based on hourly data.

3.1.2 � Ground observations

The observation data were derived from China Mete-
orological Administration. The climate variables include 
daily mean, maximum, minimum temperature, and daily 
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precipitation. Careful quality control was carried out first 
to select the observation data. Stations with missing val-
ues amounting to more than 5% of the total daily data were 
excluded. Finally, 60 meteorological stations that meet the 
quality control were selected, and their geographic locations 
are shown in Fig. 1.

3.1.3 � Other climate datasets

Four other climate reanalysis products and three gridded 
gauge-based precipitation datasets were analyzed to compare 
with the ERA5. The reanalysis datasets include:

1. 	 The Modern-Era Retrospective analysis for Research and 
Applications (MERRA2), spanning from 1980 to pre-
sent with horizontal resolution of 0.5° × 0.625° (Bosi-
lovich et al. 2008).

2. 	 NCEP/NCAR Reanalysis 1 project (NCEP1), span-
ning from 1948 to present with horizontal resolution of 
2.5° × 2.5° (Kalnay et al. 1996).

3. 	 NCEP-US Department of Energy (DOE) Atmospheric 
Model Intercomparison Project II reanalysis (NCEP2), 
spanning from 1948 to present with horizontal resolu-
tion of 2.5° × 2.5° (Kanamitsu et al. 2002).

4. 	 NOAA-CIRES-DOE 20th Century Reanalysis V3 
(NOAA-20C), spanning from 1836 to 2015 with hori-
zontal resolution of 1.0° × 1.0° (Giese et al. 2016).

The gridded precipitation datasets include:

1. 	 NOAA’s Gridded Precipitation Reconstruction over 
Land (PREC/L), spanning from 1948 to present with 
horizontal resolution of 2.5° × 2.5° (Chen et al. 2002).

2. 	 Precipitation datasets from Global Precipitation Clima-
tology Project (GPCP), spanning from 1979 to present 
with horizontal resolution of 2.5° × 2.5° (Huffman et al. 
1997).

3. 	 Global Daily Unified Gauge-Based Analysis of Precipi-
tation from NOAA Climate Prediction Center (CPC), 

spanning from 1979 to present with horizontal resolu-
tion of 0.5° × 0.5° (Xie et al. 2007).

3.2 � Methodology

In this study, a point-to-pixel evaluation was carried out at 
each meteorological station over DNC. This method can 
avoid errors from interpolation and thus is widely applied in 
the evaluation of reanalysis products (Zhang et al. 2018). The 
reanalysis data from the specific grids which contain the mete-
orological stations would be compared with the corresponding 
observation data. Different statistical indices including cor-
relation coefficient (CC), mean bias (MB), relative bias (RB), 
root-mean-square error (RMSE), and relative root-mean-square 
error (RRMSE) were calculated between the observation data 
(OBS) and the reanalysis data (ERA5, MERRA2, NCEP1, 
NCEP2, NOAA-20C) and between the OBS and gridded 
gauge-based precipitation datasets (PREC/L, GPCP, CPC). 
POD, FAR, and CSI were calculated to evaluate the capacity 
of ERA5 and CPC in detecting daily precipitation events (Liu 
et al. 2019). Formula and detailed information of these indices 
are displayed in Tables 2 and 3.

Considering the large variability of both precipitation and 
temperature in the deserts, the climatic extremes were investi-
gated and evaluated to make a full consideration of the perfor-
mance of ERA5 over DNC. Some specific indices for climate 
extremes that are defined by Expert Team on Climate Change 
Detection and Indices (ETCCDI, http://​etccdi.​pacif​iccli​mate.​
org/​indic​es.​shtml) and are relevant to the desert environments 
were calculated, including the coefficient of variation of annual 
precipitation (CV), the number of days with precipitation 
higher than 1 mm (RD), and so on. The definitions of these 
indices are explained in Table 4. Based on these indices, the 
performance of ERA5 in reproducing the climate extremes 
over DNC was evaluated.

Table 1   Information of sub-regions of DNC

Short name Full name Deserts/dune fields Geographical location

TakD Taklamakan Desert Region Taklamakan and Kumtagh deserts Tarim Basin south of the Tianshan Mountains
GTD Gurban Tunggut Desert Region Gurban Tunggut desert Junggar Basin north of the Tianshan Mountains
QaiD Qaidam Desert Region Qaidam desert Qaidam Basin in the Tibetan Plateau
AlxaD Alxa Desert Region Badain Jaran, Tengger and Ulan Buh deserts Alxa Plateau west of the Helan Mountains and 

north of the Qilian Mountains
OrdosD Ordos Desert Region Hobq desert and Mu Us dune field Ordos Plateau east of the Helan Mountains and 

west of the Taihang Mountains
ED Eastern Desert Region Otindag, Horqin and Hulun Buir dune fields Mongolia Plateau in northeastern China

http://etccdi.pacificclimate.org/indices.shtml
http://etccdi.pacificclimate.org/indices.shtml
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4 � Results

4.1 � Evaluation of annual and seasonal variations

4.1.1 � Spatial pattern

The consistency of annual and seasonal temperatures in 
DNC between the OBS and ERA5 was evaluated using 
CC, MB, and RMSE, and the results are shown in Fig. 2. 
For annual temperature, CC values across DNC are almost 
higher than 0.9, except for some stations in TakD with 

CC lower than 0.5 (Fig. 2a). For seasonal temperature, 
the averaged CC values for DNC as a whole exceed 0.9 in 
all seasons and the highest CC is 0.95 in spring (Fig. 3a). 
ERA5 shows a warm bias in 40 stations, and the high-
est MB is 1.4 ℃, while cold bias is found in 20 stations 
with the highest MB of − 3.6 ℃, mainly occurring in high-
altitude regions, such as QaiD in the northeastern Tibetan 
Plateau and southern TakD near the Kunlun Mountains 
(Fig. 2f). In general, the spatial pattern of MB in seasonal 
temperature is similar with that of annual temperature 
(Fig. 2g-j). Most of the cold bias occur in high-altitude 
regions, while warm biases are found in ED, where the 
altitude is low and the terrain is flat. RMSE values of 
annual and seasonal temperatures mostly range from 0 to 
2, except for some stations in QaiD and TakD (Fig. 2k-o). 
The averaged MB and RMSE in all seasons are similar to 
that of annual average (Fig. 3b  and c).

As shown in Fig. 4, CC values of annual precipitation are 
not as high as those of annual temperature. The averaged CC 
value for the whole DNC is 0.65 (Fig. 5a). For some sta-
tions in ED and TakD, CC are higher than 0.7, while CC in 
most other stations range from 0.4 to 0.7 (Fig. 4a). For most 
stations, CC in spring and autumn precipitation are higher 
than that of summer and winter precipitation. The averaged 
CC for the whole DNC in spring is the highest among all 
seasons (Fig. 5a). Both annual and seasonal precipitations 
are overestimated across DNC, as indicated by positive RB 

Table 2   Information of the 
statistical indices used in this 
study. In the formula, n is the 
length of time series, E

i
 is the 

climate variables in ERA5 
during i period, O

i
 is the climate 

variables based on ground 
meteorological observations, 
and E and O are the average 
value in corresponding periods

Short name Full name Formula

CC Correlation coefficient
CC =

∑n
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−E
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MB Mean bias
MB =

1
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RB Relative bias RB =

MB

O

RMSE Root-mean-square error
RMSE =

�

1

n

n
∑

i=1

�

E
i
− O

i

�2

  
RRMSE Relative root-mean-square error RRMSE =

RMSE

O

Table 3   Computing formula of POD, FAR, and CSI, which are 
used to evaluate the capacity of ERA5 in detecting daily precipita-
tion events. H is the number of hits, which means the frequency of 
precipitation events recorded in both ERA5 and meteorological sta-
tions. M is the number of misses, which means that the frequency of 
precipitation events recorded in meteorological stations but missed in 
ERA5. F is the number of false alarms which means the frequency of 
precipitation event occurring in ERA5 but not appearing in the mete-
orological stations

Short name Full name Formula

POD Probability of detection POD =
H

H+M

FAR False alarm ratio FAR =
F

H+F

CSI Critical success index CSI =
H

H+F+M

Table 4   Definitions of climate 
extreme indices

Indices Unit Definition

TX ℃ Averaged daily maximum temperature
TN ℃ Averaged daily minimum temperature
DTR ℃ Averaged daily temperature range
CV \ Coefficient of variation of annual precipitation
SDII mm/day Averaged precipitation intensity of all wet days (> 1 mm)
Rx1d mm Maximum 1-day precipitation
CDD days Maximum number of consecutive days with precipitation < 1 mm
RD days Number of days with precipitation ≥ 1 mm
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Fig. 2   Spatial distribution of statistical indices of annual and sea-
sonal temperatures at each station. (a–e) Correlation coefficient (CC) 
between OBS and ERA5, calculated for annual, spring (MAM), sum-
mer (JJA), autumn (SON), and winter (DJF) temperature, respec-

tively. (f–j) Mean bias (MB) between OBS and ERA5. (k–o) Root 
mean square error (RMSE) between OBS and ERA5. The dots repre-
sent the geographical location of each station

Fig. 3   Boxplot of statistical indices of annual and seasonal tempera-
tures. a Correlation coefficient (CC) between OBS and ERA5, calcu-
lated for annual, spring (MAM), summer (JJA), autumn (SON), and 

winter (DJF) temperature, respectively. b Mean bias (MB) between 
OBS and ERA5. c Root mean square error (RMSE) between OBS and 
ERA5
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Fig. 4   Spatial distribution of statistical indices of annual and sea-
sonal precipitations at each station. (a–e) Correlation coefficient (CC) 
between OBS and ERA5, calculated for annual, spring (MAM), sum-
mer (JJA), autumn (SON) and winter (DJF) temperature, respectively. 

(f–j) Relative bias (RB) between OBS and ERA5. (k–o) Relative 
root-mean-square error (RRMSE) between OBS and ERA5. The dots 
represent the geographical location of each station

Fig. 5   Boxplot of statistical indices of annual and seasonal precipita-
tions. a Correlation coefficient (CC) between OBS and ERA5, calcu-
lated for annual, spring (MAM), summer (JJA), autumn (SON), and 

winter (DJF) temperature, respectively. b Relative bias (RB) between 
OBS and ERA5. c Relative root-mean-square error (RRMSE) between 
OBS and ERA
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values (Fig. 4f-j). For annual precipitation, the averaged RB 
value is 62% in DNC (Fig. 5b). The wet bias reaches even to 
more than 200% in the mountainous regions, such as Kun-
lun Mountains, Tianshan Mountains, Qilian Mountains, and 
Helan Mountains (Fig. 4f). For seasonal precipitation, wet 
bias in summer is about 40%, which is the smallest among 
all seasons (Fig. 5b), and summer precipitation at some sta-
tions is even underestimated in ERA5 (Fig. 4h). By contrast, 
winter precipitation is heavily overestimated by the ERA5, 
with averaged RB of 228% (Fig. 5b). The RRMSE values 
for annual and seasonal precipitations are relatively high in 
western desert regions, such as QaiD and TakD (Fig. 4k-o). 
As for seasonal features, RRMSE is the lowest in summer 
and the highest in winter, which is similar to RB (Fig. 5c).

4.1.2 � Interannual variation and linear trends

The temporal variations in annual mean temperature during 
1979–2019 calculated from ERA5 show good correlations 
with the OBS in all sub-regions of DNC (Fig. 6). However, 
QaiD has significant cold bias, while ED has small warm 
bias (Fig. 6c,f), which are consistent with their spatial pat-
terns shown in Fig. 2f-j. Significant warming trend over 
DNC is well captured by ERA5, but the warming trend 
in GTD is overestimated by 0.2℃/10a (Fig. 6b). For most 

sub-regions, ERA5 and OBS show better consistence after 
2000, compared to the period 1979–2000.

Changes in annual precipitation in ERA5 and OBS have 
large differences in most sub-regions of DNC (Fig. 7). More 
importantly, the trends between these two datasets are diver-
gent in some sub-regions. Based on the OBS, most of the 
sub-regions exhibit a wetting trend, expect for ED. In con-
trast, ERA5 show a drying trend in these sub-regions, except 
for QaiD. For ED, the decreasing trend in annual precipita-
tion is − 6.9 mm/10a based on the OBS; however, this trend 
is severely overestimated in ERA5 (− 30.2 mm/10a). Finally, 
it is notable that the precipitation bias between these two 
datasets in most sub-regions is reduced after 2000, compared 
to the period 1979–2000.

4.2 � Evaluation of climate extremes

The temperature extreme indices such as TX, TN, and DTR 
were calculated from OBS and ERA5, respectively (Fig. 8). 
TX values based on OBS vary greatly from the east to the 
west over DNC (Fig. 8a). For example, TX in TakD reaches 
to more than 20 ℃, while TX in Hulun Buir dune field is 
just around 6 ℃. QaiD has low TX due to its high altitude. 
ED and OrdosD have similar latitudes with TakD, but TX 
in ED and OrdosD is much lower. ERA5 well captures the 
spatial pattern of TX, but underestimates in about 90% of the 

Fig. 6   Time series and linear trend of annual mean temperature based 
on the OBS and ERA5 during 1979–2019 over six sub-regions of 
DNC. The labels “trend_E” and “trend_O” indicate the trend calcu-

lated for ERA5 and OBS, respectively. The significant level of the 
trend was determined by Mann–Kendall test. Double and single aster-
isks indicate 99% and 95% significant levels, respectively
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total stations (Fig. 8b). The comparison of the probability 
density distribution between OBS and ERA5 also reveals 
the underestimation of ERA5 in TX (Fig. 8c). Similar to 

TX, TN also shows large longitudinal variations across the 
DNC (Fig. 8d). TN in ED could reach to lower than − 6 ℃. 
In comparison, TN in TakD is around 5 ℃, much higher than 

Fig. 7   Time series and linear trend of annual precipitation based on 
the OBS and ERA5 during 1979–2019 over six sub-regions of DNC. 
The labels “trend_E” and “trend_O” indicate the trend calculated for 

ERA5 and OBS, respectively. The significant level of the trend was 
determined by Mann–Kendall test. Double and single asterisks indi-
cate 99% and 95% significant levels, respectively

Fig. 8   Spatial distributions of three temperature extreme indices 
based on OBS and ERA5, respectively, and their probability density 
distribution (the rightmost panel). (a) TX calculated from OBS. (b) 
TX calculated from ERA5. (c) Probability density distribution of TX 
based on OBS and ERA5. (d) TN calculated from OBS. (e) TN cal-

culated from ERA5. (f) Probability density distribution of TX based 
on OBS and ERA5. (g) DTR calculated from OBS. (h) DTR calcu-
lated from ERA5. (i) Probability density distribution of DTR based 
on OBS and ERA5
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other sub-regions. ERA5 well captures the spatial pattern of 
TN (Fig. 8e), and no systematic bias is found between OBS 
and ERA5 (Fig. 8f). DTR in eastern TakD, QaiD, and AlxaD 
is higher than 15℃, while DTR in OrdosD and ED is mostly 
lower than 15 ℃ (Fig. 8g). The spatial pattern of DTR in 
ERA5 is similar to that of OBS (Fig. 8h). However, DTR is 
obviously underestimated by ERA5 (Fig. 8i), indicating the 
uncertainties in reproducing daily temperature variability 
by ERA5.

Interannual precipitation variability can be reflected by 
CV. In the relatively wet regions with annual precipitation 
around 200–450 mm, such as ED, OrdosD, and AlxaD, 
CV is below 0.3 (Fig. 9a), while CV in the driest TakD 
can reach to 0.7. Compared with the OBS, CV values in 
ERA5 are lower (Fig. 9c), especially in the driest TakD 
(Fig. 9b), indicating that ERA5 has low capacity to repro-
duce the precipitation variability in the study area. SDII 
indicates averaged precipitation intensity of all wet days 

(> 1 mm). As shown in Fig. 9d, SDII in ED can reach to 
10 mm/day in the OBS. SDII in TakD is around 5 mm/
day despite that the annual precipitation in this desert is 
less than 50 mm. SDII in ERA5 is generally lower than 
that of OBS across DNC (Fig. 9f). Rx1d (maximum 1-day 
precipitation) generally increase from west to east, and 
the maximum Rx1d reach to 70 mm in ED based on OBS 
(Fig. 9g). In ERA5, the Rx1d values are slightly lower than 
that of OBS (Fig. 9i). CDD is calculated by maximum 
number of consecutive days with precipitation < 1 mm. 
According to OBS, CDD in TakD can reach to more than 
150 days (Fig. 9j), while CDD in ED and OrdosD is around 
40–100 days. CDD calculated based on ERA5 is much 
lower than the OBS (Fig. 9l). RD (number of days with 
precipitation no lower than 1 mm) also shows a decreasing 
trend from east to west and range from 0 to 60 days based 
on the OBS (Fig. 9m). However, RD in ERA5 is much 
higher than that of OBS (Fig. 9o).

Fig. 9   Spatial distributions of five precipitation extreme indices 
based on OBS and ERA5, respectively, and their probability density 
distribution (the rightmost panel). (a) CV calculated from OBS. (b) 
CV calculated from ERA5. (c) Probability density distribution of CV 
based on OBS and ERA5. (d) SDII calculated from OBS. (e) SDII 
calculated from ERA5. (f) Probability density distribution of SDII 
based on OBS and ERA5. (g) Rx1d calculated from OBS. (h) Rx1d 

calculated from ERA5. (i) Probability density distribution of Rx1d 
based on OBS and ERA5. (j) CDD calculated from OBS. (k) CDD 
calculated from ERA5. (l) Probability density distribution of CDD 
based on OBS and ERA5. (m) RD calculated from OBS. (n) RD cal-
culated from ERA5. (o) Probability density distribution of RD based 
on OBS and ERA5
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4.3 � Evaluation of detection skills of daily 
precipitation

The performance of daily precipitation in ERA5 was exam-
ined by POD, FAR, and CSI (Fig. 10). The averaged POD 
of daily precipitation over DNC as a whole is 0.74, which 
means that 74% of observed daily precipitation are detected 
by ERA5. POD in some parts of TakD and AlxaD is as low 
as 0.5 (Fig. 10a). The averaged FAR over DNC as a whole 
is 0.66. High FAR is mostly distributed in TakD and QaiD 
(Fig. 10b), where the annual precipitation is severely over-
estimated (Fig. 2f). Finally, the averaged CSI over DNC as 

a whole is 0.30. The regions with high CSI are generally 
consistent with the regions with relatively high POD and 
low FAR in the eastern part of DNC, such as ED and OrdosD 
(Fig. 10c).

5 � Discussion

5.1 � The performance of ERA5 in comparison 
with other precipitation datasets

Overall, based on the comparison between ERA5 and ground 
observations, this study finds that ERA5 performs well in 
reproducing the spatial–temporal variations of annual and 
seasonal temperatures over DNC. However, relatively large 
bias exits in reproducing the annual precipitation and pre-
cipitation extremes. To further evaluate the quality of ERA5 
and to make up for the uncertainties of precipitation and 
precipitation extremes over DNC, some other reanalysis and 
gridded gauge-based precipitation datasets were analyzed in 
comparison with ERA5. The other four reanalysis datasets 
include MERRA2, NCEP1, NCEP2, and NOAA-20C, and 
the gridded gauge-based precipitation datasets are PREC/L, 
GPCP, and CPC. Most of these datasets have the same time 
span as ERA5, except for MERRA2 with time span of 
1980–2019 and NOAA-20C with time span of 1979–2015. 
The results (Table 5) show that ERA5 yielded the highest 
CC, lowest RB, and lowest RRMSE in annual precipitation 
among all five reanalysis products. Ren et al. (2022) have 
compared the performance of reanalysis datasets in Central 
Asia, and their results show that in comparison to ERA5, 
MERRA2 has higher correlation and lower deviation with 
gauge-based precipitation datasets. Jiang et al. (2021) have 
compared ERA5 with gauge-based precipitation datasets 
from 2003 to 2015 and also found that ERA5 has relatively 
high biases in precipitation estimates. However, they also 
note that the performance of ERA5 in precipitation estimates 
varies significantly across different sub-regions of mainland 
China. It further indicates that the performance of reanalysis 

Fig. 10   Spatial distribution of daily precipitation indices that used to 
evaluate the capacity of ERA5 in detecting daily precipitation events. 
a Probability of detection (POD). b False alarm ratio (FAR). c Criti-
cal success index (CSI)

Table 5   Evaluation results of 
reanalysis and gridded gauge-
based precipitation datasets for 
annual precipitation and daily 
precipitation detection skills

Datasets Statistic indices Daily precipitation 
detection capacity

CC RB (%) RRMSE POD FAR CSI

Reanalysis datasets ERA5 0.65 61.4 0.76 0.74 0.66 0.30
MERRA2 0.53 66.3 0.95 \
NCEP1 0.43 186.2 2.27 0.32 0.84 0.11
NCEP2 0.43 85.6 1.37 0.24 0.81 0.11
NOAA-20C 0.46 159.7 1.73 0.54 0.84 0.14

Gridded precipitation datasets PREC/L 0.70 17.6 0.42 \
GPCP 0.55 60.4 0.80 \
CPC 0.71 13.7 0.38 0.36 0.80 0.15
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datasets could be different in different regions. Neverthe-
less, in our study area, gauge-based precipitation datasets 
(PREC/L, GPCP, and CPC) have lower RB and RRMSE 
than ERA5. Previous studies have pointed out that because 
gauge-based precipitation datasets integrate more ground 
observations, they usually have higher accuracy than rea-
nalysis and satellite-based precipitation datasets (Schiemann 
et al. 2008; Wei et al. 2021). Despite that, ERA5 has the 
advantage in detecting daily precipitation events with the 
highest POD (0.85) among all reanalysis and gauge-based 
precipitation datasets in the study area. ERA5 also has the 
lowest FAR (0.66) and highest CSI (0.30) compared with 
other precipitation datasets.

As for precipitation extremes, these reanalysis datasets 
have different performance in reproducing different extreme 
indices. The gauge-based precipitation dataset CPC shows 
the best performance (Table 6). Among the reanalysis data-
sets, ERA5 has the highest CC and lowest RRMSE in repro-
ducing these extreme indices, but the relative bias of CV, 
SDII, and CDD is higher than that of other reanalysis data-
sets. The advantage of ERA5 compared with other reanalysis 
datasets in precipitation extremes is consistent with previous 
studies (i.e., Zhu et al. 2017). Nevertheless, these results 
provide a reference for dataset selection when investigating 
certain precipitation extreme indices in the study area.

5.2 � Possible causes for the temperature 
and precipitation bias in ERA5

As mentioned above, the ERA5 has different performances 
in reproducing the annual and seasonal variations, climate 
extremes, and detection skills of daily precipitation in the 
deserts and dune fields of northern China. Previous studies 
have indicated that the bias in reanalysis datasets may be 
caused by several factors (Huang et al. 2016), and the differ-
ences between datasets may additionally be related to differ-
ent data sources, prediction models, initial conditions, bias 
correction methods, and data assimilation systems (Smith 
et al. 2001). Here, the possible causes for temperature and 
precipitation bias in ERA5 are briefly discussed based on 
current analysis in DNC.

Temperature in the reanalysis products is often one of the 
most reliable variables (Kalnay et al. 1996), but it tends to 
be underestimated in high-altitude regions (Zhao et al. 2008; 
Liu et al. 2018). Our results confirm that the annual tempera-
ture estimates in ERA5 have cold bias as high as 3 °C in the 
high-altitude Qaidam desert (Fig. 2f). The underestimation 
of temperature could be related to low simulation skills of 
climate models in complex terrains or caused by the differ-
ence between the terrain height used in the reanalysis data 
and the actual height of weather stations (Wang et al. 2015).

The spatial distribution of temperature extremes is well 
reproduced by ERA5 (Fig. 8); however, biases still exist in Ta
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their relative magnitude. The underestimation of TX and 
overestimation of TN seems a common problem in reanaly-
sis products and climate models (Mao et al. 2010; Li et al. 
2022). For example, Mahto and Mishra (2019) have found 
that ERA5 underestimates seasonal maximum temperature 
with a bias of − 0.3 ℃ and overestimates minimum tempera-
ture with a bias of 0.6 ℃ in Indian during monsoon seasons. 
You et al. (2013) have suggested that both NCEP/NCAR 
and ERA-Interim reanalysis have underestimated the annual 
extreme high temperature in China by − 0.23% and − 0.17%, 
respectively, while the annual extreme low temperature is 
overestimated by 0.26% and 0.16%, respectively. Even 
using regional climate model and dynamical downscaling 
of reanalysis, there might be still considerable cold bias of 
TX and warm bias of TN (Zhang et al. 2009; Heikkilä et al. 
2011). Based on this study, we suspect that the bias in ERA5 
could be even larger in the desert regions. The diurnal tem-
perature change in the deserts could be rapid due to low 
heat capacity of land surface (Malek and Bingham 1997), 
and as a result, the temperature extremes would have low 
occurrence probability and not easily be captured by model 
simulations. Because the temperature extremes often have an 
important impact on ecological and hydrological processes 
in the deserts, such biases should be carefully considered 
when integrating the ERA5 reanalysis into ecological or 
hydrological models.

The precipitation may have even larger uncertainty than 
temperature in ERA5, probably due to the complex pre-
cipitation process and limited model ability to describe 
this process (Smith et al. 2001). In this study, both annual 
and seasonal precipitations are overestimated by ERA5 
across DNC. The underestimation of coefficient of vari-
ation (CV) indicates that EAR5 may fail to reproduce 
the large variability of precipitation in the desert areas. 
The performance of ERA5 in reproducing precipitation 
extremes is not as good as gauge-based precipitation 
datasets (Table 6). The drawbacks could be caused by the 
overestimation of rainfall occurrence in ERA5 (Nogueira 
2020; Jiang et al. 2021). Indeed, this study shows that 
ERA5 has relatively higher RD (Fig. 9), indicating that 
there are more rainy days in ERA5 compared to the OBS, 
and high FAR is found especially in the drier western part 
of DNC (Fig. 10b). The bias of daily precipitation of dif-
ferent grades is further analyzed, and it is clear that ERA5 
has significantly overestimated the daily precipitation of 
0.1–1 mm and of 1–2 mm in the study area (Fig. 11). By 
contrast, daily precipitation of 5–10 mm and 10–20 mm is 
largely underestimated. The overestimation of 0.1–1 mm 
daily precipitation could result in higher RD and FAR in 
ERA5, while the underestimation of relatively strong daily 
precipitation (5–10, 10–20 mm) may lead to lower pre-
cipitation intensity (SDII). The precipitation uncertainty 
seems a common problem in reanalysis products. For 

instance, ERA-Interim largely overestimates the number 
of wet days but fails to report strong rainfall events (Soares 
et al. 2012). Heikkilä et al. (2011) suggest that the over-
estimation of light precipitation in climate models may 
lead to the uncertainty of wet days and daily precipitation 
intensity. Several studies have indicated that assimilation 
of more observations in the model may help to reduce 
the uncertainty of precipitation estimates in the reanaly-
sis products (Kalnay et al. 1996; Zhang et al. 2012). Fur-
thermore, the wet biases are especially obvious near the 
mountains in the study area, such as southern Taklama-
kan desert, Gurban Tunggut desert, Qaidam desert, and 
southern Tengger desert (Fig. 4f). The complex terrains 
with large topographic gradient have significantly dynami-
cal and thermal impacts on local climate (Ma et al. 2009; 
Palazzi et al. 2013). The poor representation of complex 
topography in the models may lead to the uncertainty in 
precipitation simulation (Zhang et al. 2013; Wang et al. 
2020).

Last but not least, the rapid warming trend in DNC during 
the last few decades has been well reproduced by the ERA5, 
but there are apparently divergent trends in precipitation 
between the OBS and ERA5 (Fig. 7). We suspect that such 
biases may be due to the data assimilation methods used in 
reanalysis, which generally reduce random errors in time 
series but may also introduce a fictitious trend (Trenberth 
et al. 2003; Bengtsson 2004). Indeed, ERA5 has smaller 
precipitation variability in the study area, compared to the 
OBS. Nevertheless, caution is needed when evaluating the 
long-term climate trend using the reanalysis data. Moreover, 
the deviation of both temperature and precipitation in ERA5 
has been reduced after 2000 (Figs. 6 and 7), partially due to 
more available ground observations assimilated in the cli-
mate reanalysis in the twenty-first century (Bengtsson et al. 

Fig. 11   Boxplot of mean bias calculated for daily precipitation of dif-
ferent grades in ERA5
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2007). Therefore, it can image that the accuracy of reanalysis 
data would be further improved by assimilating more ground 
observations and more available satellite data in the future.

6 � Conclusions

In the study, we examined the performance of ERA5 rea-
nalysis over DNC by comparing with the ground observa-
tions as well as other datasets, focusing on annual and sea-
sonal temperatures and precipitations, climate extremes, and 
detection skills of daily precipitation. The conclusions can 
be summarized as follows.

ERA5 well captures the observed spatial pattern of 
annual and seasonal temperatures with correlation coeffi-
cient greater than 0.9. However, cold bias greater than − 3 
℃ exists in high-altitude regions, such as the Qaidam desert. 
Both annual and seasonal precipitations are overestimated 
across DNC, and the relative bias of annual, summer, and 
winter precipitations are 65%, 40%, and 194% respectively. 
Overall, ERA5 reproduces well the warming trend over 
DNC during the past four decades, but divergent trends in 
precipitation are found between ERA5 and the observations.

As for climate extremes, both daily maximum tempera-
ture and daily temperature range are underestimated by 
ERA5. The interannual precipitation variability, precipita-
tion intensity, maximum 1-day precipitation, and the num-
ber of continuous dry days are underestimated, while the 
number of the rainy days is largely overestimated by ERA5. 
ERA5 can detect more than 70% observed rainy days over 
DNC, but the false alarm ratio is 66% over the whole DNC 
and is as high as 90% in drier regions such as Taklamakan 
desert and Qaidam desert. It is found that ERA5 has different 
biases in reproducing daily precipitation of different grades 
and may lead to the uncertainty of precipitation estimates. 
More specifically, the overestimation of light precipitation 
may result in more rainy days and higher precipitation in 
ERA5, while the underestimation of strong daily precipi-
tation (5–10, 10–20 mm) may lead to lower precipitation 
intensity, in comparison to the observations.

Although ERA5 still has some uncertainties in reproduc-
ing both temperature and precipitation over DNC, it outper-
forms other reanalysis datasets in the study area. Gridded 
gauge-based precipitation datasets show better performance 
in reproducing precipitation and precipitation extremes over 
DNC. This study provides an important reference for the use 
of ERA5 reanalysis over DNC and also insights for other 
observation-limited desert regions in the world.
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