
Hongxing Dai- Doctor of Philosophy
- Professor at Beijing University of Technology
Hongxing Dai
- Doctor of Philosophy
- Professor at Beijing University of Technology
Doing research on preparation and catalytic applications of porous material-supported (single-atom) noble metals.
About
454
Publications
25,896
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
19,624
Citations
Introduction
Preparing porous transition metal oxides and their supported noble metal or transition metal oxides; Catalytic applications of these materials in CO oxidation, methane combustion, VOCs oxidation, CVOCs removal, and photocatalytic removal of organics.
Current institution
Publications
Publications (454)
Elemental P is considered a compelling option for constructing a simple, cost‐effective, and full‐spectrum responsive catalytic system for hydrogen production, while its full potential for overall water‐splitting reactions remains underexplored. This study introduces a novel cobalt single‐atom‐assisted photocatalytic system for efficient hydrogen p...
Although ammonia is widely recognized as one of the most promising candidates for hydrogen storage and transformation, the catalytic mechanisms involved in ammonia decomposition remain insufficiently understood, and the stability of catalysts continues to present significant challenges. In this study, Ru/CeO2‐CNTs catalysts with double defect sites...
Although ammonia is widely recognized as one of the most promising candidates for hydrogen storage and transformation, the catalytic mechanisms involved in ammonia decomposition remain insufficiently understood, and the stability of catalysts continues to present significant challenges. In this study, Ru/CeO2‐CNTs catalysts with double defect sites...
Hydrogen peroxide (H2O2) is an environmentally friendly reagent, and organic semiconductors (OSCs) are ideal photocatalysts for the synthesis of H2O2 due to their well‐defined molecular structure, strong donor‐acceptor interactions, and efficient charge separation. This review discusses the regulatory mechanisms of functional group modifications in...
The paint production sector emits both aromatic compounds and oxygenated volatile organic compounds (OVOCs). Supported palladium catalysts have demonstrated effective oxidation performance for each type of VOCs separately; however, the challenge persists in managing the competitive adsorption of different VOCs types on Pd‐based catalysts. In this s...
Ammonia serves as a viable medium for hydrogen storage owing to its significant hydrogen content and elevated energy density, and the absence of carbon dioxide emissions during ammonia-to-hydrogen production has inspired more research on ammonia decomposition. Despite growing interest, a significant gap persists between the depth of existing studie...
The Pt/CeO2 catalyst has attracted significant attention due to its exceptional performance in NO oxidation. This study comprehensively examines the effects of calcination temperature and H2 pretreatment on the structure and activity of the Pt/CeO2 catalyst. Experimental findings indicate that the calcination temperature significantly affects the c...
Hydrogen represents a clean and sustainable energy source with wide applications in fuel cells and hydrogen energy storage systems. Photocatalytic strategies emerge as a green and promising solution for hydrogen production, which still reveals several critical challenges in enhancing the efficiency and stability and improving the whole value. This...
Bimetallic nanoparticles provide promising active sites for many reactions, and such materials can be synthesized with different spatial distributions, such as disordered alloys, core–shell structures, and Janus-type heterogeneous structures. Catalytic activity, selectivity, and stability of bimetallic nanoparticles can be modified by the geometric...
Hydrogen represents a clean and sustainable energy source with wide applications in fuel cells and hydrogen energy storage systems. Photocatalytic strategies emerge as a green and promising solution for hydrogen production, which still reveals several critical challenges in enhancing the efficiency and stability and improving the whole value. This...
The catalytic removal of carbon monoxide and methane produced from human activities is an important method for eliminating these pollutants, and can solve their associated environmental problems [...]
Crystalline red phosphorus (CRP), known for its promising photocatalytic properties, faces challenges in photocatalytic hydrogen evolution (PHE) due to undesired inherent charge deep trapping and recombination effects induced by defects. This study overcomes these limitations through an innovative strategy in integrating ruthenium single atoms (Ru1...
Intermetallic compounds (IMCs) have attracted significant attention in recent years due to their unique properties and potential applications in various fields, particularly in catalysis. This review aims to provide an in-depth understanding of IMCs, including their synthesis methods, structural characteristics, and diverse catalytic applications....
Chlorinated volatile organic compounds (CVOCs) are persistent pollutants and harmful to the atmosphere, environment, and human health. The catalytic elimination of CVOCs has become a hotspot of interest due to their self-toxicity, the secondary generation of chlorinated by-products, and the Cl poisoning of catalysts. The development of high-perform...
Crystalline red phosphorus(CRP), known for its promising photocatalytic properties, faces challenges in photocatalytic hydrogen evolution(PHE) due to undesired inherent charge deep trapping and recombination effects induced by defects. This study overcomes these limitations through an innovative strategy in integrating ruthenium single atoms(Ru1) w...
Metal–organic frameworks (MOFs) have ordered pore and cage structure, and its central metal ions can provide a uniform active site. Modifying MOFs or preparing MOFs composites and derivatives could enhance the properties of MOFs-based materials, such as improving stability of the framework, regulating the electronic properties near the active site,...
Photocatalytic hydrogen evolution (PHE) from water splitting is a promising technology for clean and renewable energy production. Elemental crystalline red phosphorus (CRP) is purposefully designed and developed for PHE reaction. However, the photocatalytic activity of CRP is limited by its intrinsic P vacancy (VP) defects, which lead to detrimenta...
With the development of modern industries, environmental pollution has become a serious and urgent issue [...]
The emission of methane leads to the increase in the methane concentration in the atmosphere, which not only wastes resources but also intensifies the greenhouse effect and brings about serious environmental problems. Catalytic combustion can completely convert methane into carbon dioxide and water at low temperatures. However, the catalytic activi...
It is possible to remove volatile organic compounds containing chlorine (CVOCs, such as chlorobenzene) in a single device designed for selective catalytic reduction of NOx with NH3 for the industries containing CVOCs and NOx. Breaking the efficiency‐selectivity trade‐off in chlorobenzene oxidation remains a major challenge due to the conjugation of...
Designing new synthesis routes to fabricate highly thermally durable precious metal single-atom catalysts (SACs) is challenging in industrial applications. Herein, a general strategy is presented that starts from dual-metal nanocrystals (NCs), using bimetallic NCs as a facilitator to spontaneously convert a series of noble metals to single atoms on...
Improving the product selectivity meanwhile restraining deep oxidation still remains a great challenge over the supported Pd-based catalysts. Herein, we demonstrate a universal strategy where the surface strong oxidative Pd sites are partially covered by the transition metal (e. g., Cu, Co, Ni, and Mn) oxide through thermal treatment of alloys. It...
Herein, a series of three-dimensionally ordered macroporous (3DOM) Bi4O5Br2 photocatalysts with different macropore sizes were successfully fabricated via a polymethyl methacrylate (PMMA) template method. The photocatalytic activity for phenol degradation over 3DOM Bi4O5Br2 first increased and then decreased with the rise in macropore size. Specifi...
The yCe-xMn/Fe-PILC (x and y are the nominal weight percentages of Mn and Ce, respectively; x = 4.0 wt%, y = 2.0, 4.0, and 6.0 wt%) catalysts were prepared using the impregnation method. Physicochemical properties of the as-prepared materials were measured by means of the XRD, SEM, BET, TPR, XPS, TGA–DSC, and in situ DRIFTS techniques, and their ca...
The cryptomelane-type manganese oxide (OMS-2)-supported Co (xCo/OMS-2; x = 5, 10, and 15 wt.%) catalysts were prepared via a pre-incorporation route. The as-prepared materials were used as catalysts for catalytic oxidation of toluene (2000 ppmV). Physical and chemical properties of the catalysts were measured using the X-ray diffraction (XRD), Four...
Pt nanoparticles and a CeMnOx composite were loaded on the surface of the natural diatomite material to generate the Pt/CeMnOx/diatomite using the redox precipitation and impregnation methods. The physicochemical properties of the catalysts were characterized by means of various techniques. The catalytic properties and resistance to H2O and SO2 of...
The development of efficient and stable catalysts is of great importance for the elimination of volatile organic pollutants (VOCs). In this work, AuPdx nanoparticles (NPs) were loaded on TiO2 through the electrostatic adsorption approach to generate the yAuPdx/TiO2 (i.e., 0.35AuPd0.46/TiO2, 0.34AuPd2.09/TiO2, and 0.37AuPd2.72/TiO2; x and y are Pd/A...
Zeolites have ordered pore structures, good spatial constraints, and superior hydrothermal stability. In addition, the active metal elements inside and outside the zeolite framework provide the porous material with adjustable acid–base property and good redox performance. Thus, zeolites-based catalysts are more and more widely used in chemical indu...
Lead (Pb) is a heavy metal commonly found in industrial exhaust gases, which can reduce catalytic activity of a catalyst for the NH3‐SCR reaction. In this study, 4.0 wt% Mn‐loaded Fe‐pillared interlayer clay (4Mn/Fe‐PILC) and its Co‐modified catalyst (2Co‐4Mn/Fe‐PILC) were prepared, in the meanwhile the 4Mn/Fe‐PILC‐Pb and 2Co‐4Mn/Fe‐PILC‐Pb samples...
Methane is the most stable hydrocarbon with a regular tetrahedral structure, which can be activated and oxidized above 1000 °C in conventional combustion. Catalytic oxidation is an effective way to eliminate lean methane under mild conditions, and the key issue is to develop the catalysts with high efficiencies, good stability, and high selectiviti...
Semiconductor photocatalytic technology has shown great prospects in converting solar energy into chemical energy to mitigate energy crisis and solve environmental pollution problems. The key issue is the development of high-efficiency photocatalysts. Various strategies in the state-of-the-art advancements, such as heterostructure construction, het...
Developing the alternative supported noble metal catalysts with low cost, high catalytic efficiency, and good resistance toward poisoning gases is critically demanded for the oxidative removal of volatile organic compounds (VOCs). In this work, we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom (Co1Ni1/meso-Cr2O3) and bim...
The volatile organic compounds (VOCs) from cooking oil fumes are very complex and do harm to humans and the environment. Herein, we develop the high-efficiency and energy-saving synergistic photothermocatalytic oxidation approach to eliminate the mixture of heptane and hexanal, the representative VOCs with high concentrations in cooking oil fumes....
The reduced graphene oxide (rGO)-promoted α-MnO2 nanorods-supported Pt (xPt-yrGO/α-MnO2, x = 0.93 wt%, y = 0.5, 1.0, and 2.0 wt%) nanocatalysts were prepared using a polyvinyl alcohol (PVA)-protected reduction method. After an appropriate loading of Pt on α-MnO2, the strong metal–support interaction between Pt and α-MnO2 was beneficial for an incre...
The y Ce- x Mn/Fe-PILC ( x and y are the nominal weight percentages of Mn and Ce, respectively; x = 4.0 wt%, y = 2.0, 4.0, and 6.0 wt%) catalysts were prepared using the impregnation method. Physicochemical properties of the as-prepared materials were measured by means of the XRD, SEM, BET, TPR, XPS, TGA-DSC, and in situ DRIFTS techniques, and thei...
The SBA-15-supported polyethyleneimine (PEI)-modified layered double hydroxides (xLDH-yPEI/SBA-15) were prepared by the in situ coprecipitation method, and their CO2 adsorption performance and involved mechanisms were studied. After loading of PEI and LDH on the surface of SBA-15, the composite materials still maintained an ordered two-dimensional...
Among the developed electrocatalysts, NiCr-layered double hydroxides (NiCr-LDH) are one of the most effective electrocatalytic materials for water oxidation. However, applications of such a kind of materials are practically limited due to their poor electric conductivity. In this work, the single-walled carbon nanotube (SWCNT) was doped to NiCr-LDH...
Catalytic performance and moisture and sulfur dioxide resistance are important for a catalyst used for the oxidation of volatile organic compounds (VOCs). Supported noble metals are active for VOC oxidation, but they are easily deactivated by water and sulfur dioxide. Hence, it is highly desired to develop a catalyst with high performance and good...
Due to the expensive price and the low reserve of noble metals in nature, much attention has been paid to single-atom catalysts (SACs)—especially single-atom noble metal catalysts—owing to their maximum atomic utilization and dispersion. The emergence of SACs greatly decreases the amount of precious metals, improves the catalytic activity, and make...
To overcome the main challenge of low photocatalytic efficiency and high energy consumption of thermocatalysis in the oxidation of volatile organic compounds (VOCs), MOF-derived mesoporous disk-like yPd/xN-TiO2 (x = 3.2, 5.5, 7.7 wt%, and y = 0.26 wt%) were prepared by ball milling-calcination method for photothermal catalytic oxidation of ethyl ac...
This study constructed two thiosulfate-driven autotrophic denitrification biofilters filled with volcanic rock (VR-BF), sponge iron and volcanic rock (SIVR-BF), respectively. The nitrate removal load (3200 g/m3/d) and efficiency (98%) of SIVR-BF were higher than those of VR-BF. The removal of phosphate in SIVR-BF was mainly through forming FePO4 an...
We demonstrate a carefully tailored elemental red phosphorus (red P) for a record-high photocatalytic hydrogen evolution rate of 1280 μmol g⁻¹ h⁻¹. This performance has even surpassed some of the established compound photocatalysts. Systematic studies reveal that the bismuth-catalyzed selective growth of the preferential crystal phases of red P lea...
The compositions of volatile organic compounds (VOCs) under actual industrial conditions are often complex; especially, the interaction of intermediate products easily leads to more toxic emissions that are harmful to the atmospheric environment and human health. Herein, we report a comparative investigation on 1,2-dichloroethane (1,2-DCE) and (1,2...
The elimination of volatile organic compounds (VOCs) emitted from the process of industry production is of great significance to improve the atmospheric environment. Herein the catalytic oxidation of the toluene and iso-hexane mixture, as the typical components from furniture paint industry, and the enhancement in the catalytic stability for toluen...
Pt-based catalysts can be poisoned by the chlorine formed during the oxidation of multicomponent volatile organic compounds (VOCs) containing chlorinated VOCs. Improving the low-temperature chlorine resistance of catalysts is important for industrial applications, although it is yet challenging. We hereby demonstrate the essential catalytic roles o...
The supported palladium catalysts perform well in the oxidative removal of hazardous aromatic hydrocarbons. However, water vapor can seriously deactivate the catalysts especially in the low-temperature regime. Hence, improving moisture resistance of the Pd-based catalysts is full of challenge in the removal of aromatics. Herein, we report a new typ...
As(V) in aquatic environment has posed a great threat to human beings due to its high mobility and toxicity. Developing economical and efficient adsorbents is vital for the removal of arsenic contamination in wastewater. We herein report the synthesis of FeOOH-MnO2/Sepiolite and Fe2O3-MnO2/Diatomite using the hydrothermal treatment method at 180 °C...
A novel kind of CO2 solid adsorbents (xLDH/MA, x is the loading of LDH) was prepared by loading of layered double hydroxides (LDH) on the mesoporous alumina (MA) support. The LDHs in xLDH/MA were evenly distributed on the surface of MA. xLDH/MA possessed a large BET surface area (278–378 m²/g), narrow pore-size distribution (4.37–6.23 nm), and a hi...
Photothermal synergistic catalytic oxidation of toluene over single-atom Pt catalysts was investigated. Compared with the conventional thermocatalytic oxidation in the dark, toluene conversion and CO2 yield over 0.39Pt1/CuO-CeO2 under simulated solar irradiation (λ = 320-2500 nm, optical power density = 200 mW cm-2) at 180 °C could be increased abo...
Chlorinated volatile organic compounds (CVOCs), even in small quantities, can cause Pt-based catalyst poisoning. Improving the low-temperature chlorine resistance of catalysts is of vital importance for industrial application, although it remains challenging. Considering actual industrial production, a TiO2-supported ternary metal catalyst was prep...
The controlled oxidation of alcohols to the corresponding ketones or aldehydes via selective cleavage of the β‐C−H bond of alcohols under mild conditions still remains a significant challenge. Although the metal/oxide interface is highly active and selective, the interfacial sites fall far behind the demand, due to the large and thick support. Here...
Improving the low‐temperature water‐resistance of methane combustion catalysts is of importance for industrial applications and it is challenging. A stepwise strategy is presented for the preparation of atomically dispersed tungsten species at the catalytically active site (Pd nanoparticles). After an activation process, a Pd−O−W1‐like nanocompound...
Two-dimensional (2D) Bi2WO6, Bi2MoO6, and Bi2WxMo1−xO6 (x = 0.1, 0.3, 0.5, 0.7, and 0.9) solid solution photocatalysts were synthesized using the hexadecyl trimethyl ammonium bromide-assisted hydrothermal method. All of the samples displayed a morphology of irregularly rectangular nanosheets with a thickness of 7.0–17.4 nm. The photocatalytic perfo...
The controlled oxidation of alcohols to the corresponding ketones or aldehydes via selective cleavage of β‐C–H bond of alcohols under mild conditions still remains a significant challenge. Although metal/oxide interface is highly active and selective, the interfacial sites fall far behind the demand, due to large and thick support. Herein, we succe...
Improving the low‐temperature water‐resistance of methane combustion catalysts is of vital importance for industrial applications and it is challenging. A stepwise strategy is presented for the preparation of atomically dispersed tungsten species at the catalytically active site (Pd nanoparticles). After an activation process, a Pd–O–W1‐like nanoco...