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Abstract—In this paper, we propose a dynamic audit service for verifying the integrity of an untrusted and outsourced storage.
Our audit service is constructed based on the techniques, fragment structure, random sampling and index-hash table, supporting
provable updates to outsourced data and timely anomaly detection. In addition, we propose a method based on probabilistic
query and periodic verification for improving the performance of audit services. Our experimental results not only validate the
effectiveness of our approaches, but also show our audit system verifies the integrity with lower computation overhead and
requiring less extra storage for audit metadata.
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1 INTRODUCTION

CLOUD computing provides a scalable environ-
ment for growing amounts of data and processes

that work on various applications and services by
means of on-demand self-services. Especially, the out-
sourced storage in clouds has become a new profit
growth point by providing a comparably low-cost,
scalable, location-independent platform for managing
clients’ data. The cloud storage service (CSS) relieves
the burden for storage management and maintenance.
However, if such an important service is vulnerable to
attacks or failures, it would bring irretrievable losses
to the clients since their data or archives are stored
in an uncertain storage pool outside the enterprises.
These security risks come from the following reasons:
first, the cloud infrastructures are much more power-
ful and reliable than personal computing devices, but
they are still susceptible to internal threats (e.g., via
virtual machine) and external threats (e.g., via system
holes) that can damage data integrity [1]; second, for
the benefits of possession, there exist various moti-
vations for cloud service providers (CSP) to behave
unfaithfully towards the cloud users [2]; furthermore,
disputes occasionally suffer from the lack of trust
on CSP since the data changes may not be timely
known by the cloud users, even if these disputes may
result from the users’ own improper operations [3].
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Therefore, it is necessary for cloud service providers
to offer an efficient audit service to check the integrity
and availability of stored data [4].

Security audit is an important solution enabling
traceback and analysis of any activities including data
accesses, security breaches, application activities, and
so on. Data security tracking is crucial for all organiza-
tions that should comply with a wide range of federal
regulations including the Sarbanes-Oxley Act, Basel
II, HIPAA, and so on.1 Furthermore, compared to the
common audit, the audit services for cloud storages
should provide clients with a more efficient proof for
verifying the integrity of stored data. Unfortunately,
the traditional cryptographic technologies, based on
hash functions and signature schemes, cannot support
for data integrity verification without a local copy of
data. In addition, it is evidently impractical for audit
services to download the whole data for checking
data validation due to the communication cost, espe-
cially for large-size files. Therefore, following security
and performance objectives should be addressed to
achieve an efficient audit for outsourced storage in
clouds:
Public auditability: to allow a third party auditor

(TPA) or clients with the help of TPA to verify
the correctness of cloud data on demand without
retrieving a copy of the whole data or introducing
additional on-line burden to cloud services;

Dynamic operations: to ensure there is no attack to
compromise the security of verification protocol or
cryptosystem by using dynamic data operations;

Timely detection: to detect data errors or losses in
outsourced storage, as well as anomalous behaviors
of data operations in a timely manner;

Effective forensic: to allow TPA to exercise strict au-

1. Source: http://www.hhs.gov/ocr/privacy/.
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TABLE 1
Comparison of POR/PDP schemes for a file consisting of 𝑛 blocks.

Scheme CSP Client Comm. Frag. Privacy Dynamic Operations Prob. of
comp. Comp. modify insert delete Detection

PDP[5] 𝑂(𝑡) 𝑂(𝑡) 𝑂(1) ✓ 1− (1− 𝜌)𝑡

SPDP[6] 𝑂(𝑡) 𝑂(𝑡) 𝑂(𝑡) ✓ ✓ ✓
♯

✓
♯ 1− (1− 𝜌)𝑡⋅𝑠

DPDP-I[7] 𝑂(𝑡 log 𝑛) 𝑂(𝑡 log 𝑛) 𝑂(𝑡 log 𝑛) ✓ ✓ ✓ ✓ 1− (1− 𝜌)𝑡

DPDP-II[7] 𝑂(𝑡 log 𝑛) 𝑂(𝑡 log 𝑛) 𝑂(𝑡 log 𝑛) ✓ ✓ ✓ 1− (1− 𝜌)Ω(𝑛)

CPOR-I[8] 𝑂(𝑡) 𝑂(𝑡) 𝑂(1) 1− (1− 𝜌)𝑡

CPOR-II[8] 𝑂(𝑡+ 𝑠) 𝑂(𝑡+ 𝑠) 𝑂(𝑠) ✓ 1− (1− 𝜌)𝑡⋅𝑠

Our Scheme 𝑂(𝑡+ 𝑠) 𝑂(𝑡+ 𝑠) 𝑂(𝑠) ✓ ✓ ✓ ✓ ✓ 1− (1− 𝜌)𝑡⋅𝑠

𝑠 is the number of sectors in each block, 𝑡 is the number of sampling blocks, ♯ indicates that an operation is performed
with a limited (pre-determined) number of times, 𝜌 is the probability of block corruption in a cloud server.

dit and supervision for outsourced data, and offer
efficient evidences for anomalies; and

Lightweight: to allow TPA to perform audit tasks
with the minimum storage, lower communication
cost and less computation overhead.

In this paper, we introduce a dynamic audit ser-
vice for integrity verification of untrusted and out-
sourced storages. Constructed on interactive proof
system (IPS) with the zero-knowledge property, our
audit service can provide public auditability without
downloading raw data and protect privacy of the
data. Also, our audit system can support dynamic
data operations and timely anomaly detection with
the help of several effective techniques, such as frag-
ment structure, random sampling, and index-hash
table. We also propose an efficient approach based on
probabilistic query and periodic verification for im-
proving the performance of audit services. A proof-of-
concept prototype is also implemented to evaluate the
feasibility and viability of our proposed approaches.
Our experimental results not only validate the effec-
tiveness of our approaches, but also show our system
does not create any significant computation cost and
require less extra storage for integrity verification.

We list the features of our scheme in Table 1.
We also make a comparison of related techniques,
involving provable data possession (PDP) [5], scal-
able PDP (SPDP) [6], dynamic PDP (DPDP) [7], and
compact proofs of retrievability (CPOR) [8]. It clearly
shows that our scheme not only supports complete
privacy protection and dynamic data operations, but
also enables significant savings in computation and
communication costs, as well as a high detection
probability of disrupted blocks.

The rest of the paper is organized as follows.
Section 2 describes the research background and re-
lated work. Section 3 addresses our audit system
architecture and main techniques. Sections 4 and
Section 5 describe the definition and construction of
corresponding algorithms, respectively. In Sections 6,
we present the security of our schemes along with
the performance of experimental results in Section 7.
Finally, we conclude this paper in Section 8.

2 BACKGROUND AND RELATED WORK

Traditional cryptographic technologies for data in-
tegrity and availability, based on hash functions and
signature schemes [9], [10], [11], cannot work on
the outsourced data without a local copy of data.
In addition, it is not a practical solution for data
validation by downloading them due to the expensive
communications, especially for large-size files. More-
over, the ability to audit the correctness of data in a
cloud environment can be formidable and expensive
for cloud users. Therefore, it is crucial to realize public
auditability for CSS, so that data owners may resort
to a third party auditor (TPA), who has expertise and
capabilities that a common user does not have, for
periodically auditing the outsourced data. This audit
service is significantly important for digital forensics
and data assurance in clouds.

To implement public auditability, the notions of
proof of retrievability (POR) [2] and provable data
possession (PDP) [5] have been proposed by some
researchers. These approaches were based on a proba-
bilistic proof technique for a storage provider to prove
that clients’ data remain intact. For ease of use, some
POR/PDP schemes work on a publicly verifiable
way, so that anyone can use the verification protocol
to prove the availability of the stored data. Hence,
they help accommodate the requirements from public
auditability. POR/PDP schemes evolved around an
untrusted storage offer a publicly accessible remote
interface to check the tremendous amount of data.

There exist some solutions for audit services on
outsourced data. For example, Xie et al. [12] pro-
posed an efficient method on content comparability
for outsourced database, but it was not suitable for
irregular data. Wang et al. [13] also provided a similar
architecture for public audit services. To support their
architecture, a public audit scheme was proposed with
privacy-preserving property. However, the lack of
rigorous performance analysis for a constructed audit
system greatly affects the practical application of their
scheme. For instance, in this scheme an outsourced
file is directly split into 𝑛 blocks, and then each
block generates a verification tag. In order to maintain
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security, the length of block must be equal to the size
of cryptosystem, that is, 160 bits which are 20 bytes.
This means that 1M bytes file is split into 50,000 blocks
and generates 50,000 tags [8], and the storage of tags
is at least 1M bytes. Therefore, it is inefficient to build
an audit system based on this scheme. To address
such a problem, we introduce a fragment technique
to improve the system performance and reduce the
extra storage (see Section 3.1).

Another major concern is the security issue of
dynamic data operations for public audit services.
In clouds, one of the core design principles is to
provide dynamic scalability for various applications.
This means that remotely stored data might be not
only accessed by the clients, but also dynamically
updated by them, for instance, through block oper-
ations such as modification, deletion and insertion.
However, these operations may raise security issues
in most of existing schemes, e.g., the forgery of the
verification metadata (called as tags) generated by
data owners and the leakage of the user’s secret
key. Hence, it is crucial to develop a more efficient
and secure mechanism for dynamic audit services,
in which a potential adversary’s advantage through
dynamic data operations should be prohibited.

3 ARCHITECTURE AND TECHNIQUES

We introduce an audit system architecture for out-
sourced data in clouds as shown in Fig. 1. In this
architecture, we consider that a data storage service
involves four entities: data owner (DO), who has a
large amount of data to be stored in the cloud; cloud
service provider (CSP), who provides data storage
service and has enough storage space and compu-
tation resources; third party auditor (TPA), who has
capabilities to manage or monitor the outsourced data
under the delegation of data owner; and authorized
applications (AA), who have the right to access and
manipulate the stored data. Finally, application users
can enjoy various cloud application services via these
authorized applications.

Fig. 1. Audit system architecture.

We assume the TPA is reliable and independent
through the following audit functions: TPA should
be able to make regular checks on the integrity and
availability of the delegated data at appropriate in-
tervals; TPA should be able to organize, manage, and
maintain the outsourced data instead of data owners,
and support dynamic data operations for authorized
applications; and TPA should be able to take the
evidences for disputes about the inconsistency of data
in terms of authentic records for all data operations.

To realize these functions, our audit service is com-
prised of three processes:

Tag Generation: the client (data owner) uses a secret
key 𝑠𝑘 to pre-process a file, which consists of a
collection of 𝑛 blocks, generates a set of public
verification parameters (PVP) and index-hash table
(IHT) that are stored in TPA, transmits the file and
some verification tags to CSP, and may delete its
local copy (see Fig. 2(a));

Periodic Sampling Audit: by using an interactive
proof protocol of retrievability, TPA (or other ap-
plications) issues a “Random Sampling” challenge
to audit the integrity and availability of the out-
sourced data in terms of verification informa-
tion (involving PVP and IHT) stored in TPA (see
Fig. 2(b)); and

Audit for Dynamic Operations: An authorized ap-
plication, who holds a data owner’s secret key 𝑠𝑘,
can manipulate the outsourced data and update the
associated IHT stored in TPA. The privacy of 𝑠𝑘
and the checking algorithm ensure that the storage
server cannot cheat the authorized applications and
forge the valid audit records (see Fig. 2(c)).

In general, the authorized applications should be
cloud application services inside clouds for various
application purposes, but they must be specifically
authorized by data owners for manipulating out-
sourced data. Since the acceptable operations require
that the authorized applications must present authen-
tication information for TPA, any unauthorized mod-
ifications for data will be detected in audit processes
or verification processes. Based on this kind of strong
authorization-verification mechanism, we assume nei-
ther CSP is trusted to guarantee the security of stored
data, nor a data owner has the capability to collect the
evidence of CSP’s faults after errors have been found.

The ultimate goal of this audit infrastructure is to
enhance the credibility of cloud storage services, but
not to increase data owner’s burden. Therefore, TPA
should be constructed in clouds and maintained by
a CSP. In order to ensure the trust and security, TPA
must be secure enough to resist malicious attacks, and
it should be strictly controlled to prevent unautho-
rized accesses even for internal members in clouds.
A more practical way is that TPA in clouds should
be mandated by a trusted third party (TTP). This
mechanism not only improves the performance of an
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Fig. 2. Three processes of our audit system.

audit service, but also provides the data owner with a
maximum access transparency. This means that data
owners are entitled to utilize the audit service without
additional costs.

The aforementioned processes involve some pro-
cedures: 𝐾𝑒𝑦𝐺𝑒𝑛, 𝑇𝑎𝑔𝐺𝑒𝑛, 𝑈𝑝𝑑𝑎𝑡𝑒, 𝐷𝑒𝑙𝑒𝑡𝑒, 𝐼𝑛𝑠𝑒𝑟𝑡
algorithms, as well as an Interactive Proof Protocol of
Retrievability. We make use of following techniques
to construct corresponding algorithms and protocols.

3.1 Fragment Structure and Secure Tags
To maximize the storage efficiency and audit perfor-
mance, our audit system introduces a general frag-
ment structure for outsourced storages. An instance
for this framework which is used in our approach
is shown in Fig. 3: an outsourced file 𝐹 is split
into 𝑛 blocks {𝑚1,𝑚2, ⋅ ⋅ ⋅ ,𝑚𝑛}, and each block 𝑚𝑖 is
split into 𝑠 sectors {𝑚𝑖,1,𝑚𝑖,2, ⋅ ⋅ ⋅ ,𝑚𝑖,𝑠}. The fragment
framework consists of 𝑛 block-tag pair (𝑚𝑖, 𝜎𝑖), where
𝜎𝑖 is a signature tag of a block 𝑚𝑖 generated by some
secrets 𝜏 = (𝜏1, 𝜏2, ⋅ ⋅ ⋅ , 𝜏𝑠). We can use such tags and
corresponding data to construct a response in terms of
the TPA’s challenges in the verification protocol, such
that this response can be verified without raw data.
If a tag is unforgeable by anyone except the original
signer, we call it a secure tag.

Finally, these block-tag pairs are stored in CSP
and the encrypted secrets 𝜏 (called as PVP) are in
TTP. Although this fragment structure is simple and
straightforward, but the file is split into 𝑛× 𝑠 sectors

and each block (𝑠 sectors) corresponds to a tag, so
that the storage of signature tags can be reduced with
the increase of 𝑠. Hence, this structure can reduce
the extra storage for tags and improve the audit
performance.

There exist some schemes for the convergence of
𝑠 blocks to generate a secure signature tag, e.g.,
MAC-based, ECC or RSA schemes [5], [8]. These
schemes, built from collision-resistance hash functions
(see Section 5) and a random oracle model, support
the features of scalability, performance and security.

Fig. 3. Fragment structure and sampling audit.

3.2 Periodic Sampling Audit
In contrast with “whole” checking, random “sam-
pling” checking greatly reduces the workload of audit
services, while still achieves an effective detection of
misbehaviors. Thus, a probabilistic audit on sampling
checking is preferable to realize the anomaly detection
in a timely manner, as well as to rationally allocate
resources. The fragment structure shown in Fig. 3
provides probabilistic audit as well: given a ran-
domly chosen challenge (or query) 𝑄 = {(𝑖, 𝑣𝑖)}𝑖∈𝐼 ,
where 𝐼 is a subset of the block indices and 𝑣𝑖 is a
random coefficient, an efficient algorithm is used to
produce a constant-size response (𝜇1, 𝜇2, ⋅ ⋅ ⋅ , 𝜇𝑠, 𝜎

′),
where 𝜇𝑖 comes from all {𝑚𝑘,𝑖, 𝑣𝑘}𝑘∈𝐼 and 𝜎′ is from
all {𝜎𝑘, 𝑣𝑘}𝑘∈𝐼 . Generally, this algorithm relies on ho-
momorphic properties to aggregate data and tags into
a constant-size response, which minimizes network
communication costs.

Since the single sampling checking may overlook
a small number of data abnormality, we propose a
periodic sampling approach to audit outsourced data,
which is named as Periodic Sampling Audit. With this
approach, the audit activities are efficiently scheduled
in an audit period, and a TPA merely needs to access
small portions of files to perform audit in each activity.
Therefore, this method can detect exceptions periodi-
cally, and reduce the sampling numbers in each audit.
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3.3 Index-Hash Table
In order to support dynamic data operations, we
introduce a simple index-hash table to record the
changes of file blocks, as well as generate the hash
value of each block in the verification process. The
structure of our index-hash table is similar to that of
file block allocation table in file systems. Generally,
the index-hash table 𝜒 consists of serial number, block
number, version number, and random integer (see
Table 2 in Section 5). Note that we must assure all
records in the index-hash table differ from one another
to prevent the forgery of data blocks and tags. In ad-
dition to recording data changes, each record 𝜒𝑖 in the
table is used to generate a unique hash value, which in
turn is used for the construction of a signature tag 𝜎𝑖
by the secret key 𝑠𝑘. The relationship between 𝜒𝑖 and
𝜎𝑖 must be cryptographically secure, and we make use
of it to design our verification protocol.

Although the index-hash table may increase the
complexity of an audit system, it provides a higher as-
surance to monitor the behavior of an untrusted CSP,
as well as valuable evidence for computer forensics,
due to the reason that anyone cannot forge the valid
𝜒𝑖 (in TPA) and 𝜎𝑖 (in CSP) without the secret key 𝑠𝑘.

Fig. 4. An example of hash index hierarchy in Hadoop
distributed file system (HDFS).

In practical applications, this architecture can be
constructed into a virtualization infrastructure of
cloud-based storage service [14]. In Fig. 4, we show an
example of Hadoop distributed file system (HDFS) 2,
which is a distributed, scalable, and portable file
system [15]. HDFS’ architecture is composed of Na-
meNode and DataNode, where NameNode maps a
file name to a set of indexes of blocks and DataNode
indeed stores data blocks. To support dynamic audit,
the index-hash table and the metadata of NameNode
should be integrated together to provide an enquiry
service for the hash value 𝜉

(3)
𝑖,𝑘 or index-hash record

𝜒𝑖. Based on these hash values, the clients or TPA can
implement a verification protocol via audit services.
Hence, it is easy to replace the common checksum

2. Hadoop enables applications to work with thousands of nodes
and petabytes of data, and it has been adopted by currently
mainstream cloud platforms from Apache, Google, Yahoo, Amazon,
IBM and Sun.

algorithm with our scheme for anomaly detection
without downloading data in current HDFS.

4 ALGORITHMS FOR AUDIT SYSTEM
In this section we describe the construction of algo-
rithms in our audit architecture. Firstly, we present the
definitions for the tag generation process as follows:
𝒦𝑒𝑦𝐺𝑒𝑛 (1𝜅): takes a security parameter 𝜅 as an input,

and returns a public/secret keypair (𝑝𝑘, 𝑠𝑘); and
𝒯 𝑎𝑔𝐺𝑒𝑛 (𝑠𝑘, 𝐹 ): takes a secret key 𝑠𝑘 and a file 𝐹 ,

and returns a triple (𝜏, 𝜓, 𝜎), where 𝜏 denotes the
secret used to generate verification tags, 𝜓 is a set
of public verification parameters 𝑢 and index-hash
table 𝜒, i.e., 𝜓 = (𝑢, 𝜒), and 𝜎 denotes a set of tags.

A data owner or authorized applications only need to
save the secret key 𝑠𝑘–that is, 𝑠𝑘 would not be neces-
sary for the verification/audit process. The secret of
the processed file 𝜏 can be discarded after tags are
generated due to public verification parameters 𝑢.

Fig. 5 demonstrates the workflow of our audit
system. Suppose a data owner wants to store a file
in a storage server, and maintains a corresponding
authenticated index structure at a TPA. As shown
in Fig. 5(a), using 𝐾𝑒𝑦𝐺𝑒𝑛(), the owner firstly gen-
erates a public/secret keypair (𝑝𝑘, 𝑠𝑘) by himself or
the system manager, and sends his public key 𝑝𝑘 to
TPA. Note that TPA cannot obtain the client’s secret
key 𝑠𝑘. Then, the owner chooses a random secret 𝜏
and invokes 𝑇𝑎𝑔𝐺𝑒𝑛() to produce public verification
information 𝜓 = (𝑢, 𝜒) and signature tags 𝜎, where 𝜏
is unique for each file and 𝜒 is an index-hash table.
Finally, the owner sends 𝜓 and (𝐹, 𝜎) to TPA and CSP,
respectively.

4.1 Supporting Periodic Sampling Audit
At any time, TPA can check the integrity of a file 𝐹
as follows: TPA first queries database to obtain the
verification information 𝜓 and initializes an interac-
tive protocol 𝑃𝑟𝑜𝑜𝑓(𝐶𝑆𝑃,𝐶𝑙𝑖𝑒𝑛𝑡); then, it performs
a 3-move proof protocol: Commitment, Challenge, and
Response; and it finally verifies the interactive data to
get the results. In fact, since our scheme is a publicly
verifiable protocol, anyone can run this protocol, but
s/he is unable to get any advantage to break the
cryptosystem, even if TPA and CSP cooperate for an
attack. Let 𝑃 (𝑥) denotes the subject 𝑃 holds the secret
𝑥 and ⟨𝑃, 𝑉 ⟩(𝑥) denotes both parties 𝑃 and 𝑉 share
a common data 𝑥 in a protocol. This process can be
defined as follows:
𝒫𝑟𝑜𝑜𝑓 (𝐶𝑆𝑃, 𝑇𝑃𝐴): is an interactive proof

protocol between CSP and TPA, that is,
⟨𝐶𝑆𝑃 (𝐹, 𝜎), 𝑇𝑃𝐴⟩(𝑝𝑘, 𝜓), where a public key
𝑝𝑘 and a set of public parameters 𝜓 are the
common inputs between TPA and CSP, and CSP
takes a file 𝐹 and a set of tags 𝜎. At the end of the
protocol, TPA returns {0∣1}, where 1 means the file
is correctly stored on the server.
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Fig. 5. Workflow of audit system: (a) tag generation and user’s verification, (b) periodic sampling audit, and (c)
dynamic data operations and audit.

An audit service executes the verification process
periodically by using the above-mentioned protocol.
Fig. 5(b) shows such a two-party protocol between
TPA and CSP, i.e., 𝑃𝑟𝑜𝑜𝑓(𝐶𝑆𝑃, 𝑇𝑃𝐴), without the
involvement of a client (DO or AA). It also shows two
verification processes. To improve the efficiency of
verification process, TPA performs audit tasks based
on a probabilistic sampling.

4.2 Supporting Dynamic Data Operations
In order to meet the requirements from dynamic
scenarios, we introduce following definitions for dy-
namic data operations:
𝒰𝑝𝑑𝑎𝑡𝑒(𝑠𝑘, 𝜒𝑖,𝑚′

𝑖): is an algorithm run by AA to up-
date the block of a file 𝑚′

𝑖 at the index 𝑖 by us-
ing 𝑠𝑘, and it returns a new verification metadata
(𝜒′
𝑖, 𝜎

′
𝑖,𝑚

′
𝑖);

𝒟𝑒𝑙𝑒𝑡𝑒(𝑠𝑘, 𝜒𝑖,𝑚𝑖): is an algorithm run by AA to delete
the block 𝑚𝑖 of a file 𝑚𝑖 at the index 𝑖 by us-
ing 𝑠𝑘, and it returns a new verification metadata
(𝜒′
𝑖, 𝜎𝑖, 𝜎

′
𝑖); and

ℐ𝑛𝑠𝑒𝑟𝑡(𝑠𝑘, 𝜒𝑖,𝑚𝑖): is an algorithm run by AA to insert
the block of a file 𝑚𝑖 at the index 𝑖 by using 𝑠𝑘, and
it returns a new verification metadata (𝜒′

𝑖, 𝜎
′
𝑖,𝑚

′
𝑖).

To ensure the security, dynamic data operations are
available only to data owners or authorized applica-
tions, who hold the secret key 𝑠𝑘. Here, all operations
are based on data blocks. Moreover, in order to imple-
ment audit services, applications need to update the
index-hash tables. It is necessary for TPA and CSP
to check the validity of updated data. In Fig. 5(c),
we describe the process of dynamic data operations
and audit. First, an authorized application obtains the
public verification information 𝜓 from TPA. Second,
the application invokes the 𝑈𝑝𝑑𝑎𝑡𝑒,𝐷𝑒𝑙𝑒𝑡𝑒, and 𝐼𝑛𝑠𝑒𝑟𝑡
algorithms, and then sends the new 𝜓′ and 𝜎′ to TPA
and CSP, respectively. Next, the CSP makes use of
an algorithm 𝐶ℎ𝑒𝑐𝑘 to verify the validity of updated
data. Note that the 𝐶ℎ𝑒𝑐𝑘 algorithm is important to

ensure the effectiveness of the audit. Finally, TPA
modifies audit records after the confirmation message
from CSP is received and the completeness of records
is checked.

5 CONSTRUCTION FOR OUR SCHEME
We propose an efficient interactive POR (IPOR)
scheme to realize the integer verification of out-
sourced data. This scheme includes a 3-move inter-
active proof protocol, which also provides privacy
protection property to ensure the confidentiality of
secret data.

5.1 Notations and Preliminaries
Let ℋ = {𝐻𝑘} be a keyed hash family of functions
𝐻𝑘 : {0, 1}∗ → {0, 1}𝑛 indexed by 𝑘 ∈ 𝒦. We say
that an algorithm 𝒜 has advantage 𝜖 in breaking the
collision-resistance of ℋ if Pr[𝒜(𝑘) = (𝑚0,𝑚1) : 𝑚0 ∕=
𝑚1, 𝐻𝑘(𝑚0) = 𝐻𝑘(𝑚1)] ≥ 𝜖, where the probability is
over random choice of 𝑘 ∈ 𝒦 and random bits of 𝒜.
This hash function can be obtained from hash function
of BLS signatures [16].

We set up our systems using bilinear pairings
proposed by Boneh and Franklin [17]. Let 𝔾 and
𝔾𝑇 be two multiplicative groups using elliptic curve
conventions with a large prime order 𝑝. The function 𝑒
be a computable bilinear map 𝑒 : 𝔾×𝔾 → 𝔾𝑇 with the
following properties: for any 𝐺,𝐻 ∈ 𝔾 and all 𝑎, 𝑏 ∈
ℤ𝑝, we have 1) Bilinearity: 𝑒(𝐺𝑎, 𝐻𝑏) = 𝑒(𝐺,𝐻)𝑎𝑏; 2)
Non-degeneracy: 𝑒(𝐺,𝐻) ∕= 1 unless 𝐺 or 𝐻 = 1; and
3) Computability: 𝑒(𝐺,𝐻) is efficiently computable.
A bilinear map system is a tuple 𝕊 = ⟨𝑝,𝔾,𝔾𝑇 , 𝑒⟩
composed of the objects as described above.

5.2 Proposed Construction
We present our IPOR construction in Fig. 6. In our
scheme, each client holds a secret key 𝑠𝑘, which can
be used to generate the tags of many files. Each pro-
cessed file produces a public verification parameter
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KeyGen(1𝜅): Given a bilinear map group system 𝕊 = (𝑝,𝔾,𝔾𝑇 , 𝑒) and a collision-resistant hash function
𝐻𝑘(⋅), chooses a random 𝛼, 𝛽 ∈𝑅 ℤ𝑝 and computes 𝐻1 = ℎ𝛼 and 𝐻2 = ℎ𝛽 ∈ 𝔾. Thus, the secret key is
𝑠𝑘 = (𝛼, 𝛽) and the public key is 𝑝𝑘 = (𝑔, ℎ,𝐻1, 𝐻2).

TagGen(𝑠𝑘, 𝐹 ): Splits the file 𝐹 into 𝑛× 𝑠 sectors 𝐹 = {𝑚𝑖,𝑗} ∈ ℤ𝑛×𝑠𝑝 . Chooses 𝑠 random 𝜏1, ⋅ ⋅ ⋅ , 𝜏𝑠 ∈ ℤ𝑝

as the secret of this file and computes 𝑢𝑖 = 𝑔𝜏𝑖 ∈ 𝔾 for 𝑖 ∈ [1, 𝑠] and 𝜉(1) = 𝐻𝜉(“𝐹𝑛”), where 𝜉 =
∑𝑠

𝑖=1 𝜏𝑖
and 𝐹𝑛 is the file name. Builds an index-hash table 𝜒 = {𝜒𝑖}

𝑛
𝑖=1 and fills out the item 𝜒𝑖 = (𝐵𝑖 = 𝑖, 𝑉𝑖 =

1, 𝑅𝑖 ∈𝑅 {0, 1}∗) in 𝜒 for 𝑖 ∈ [1, 𝑛], then calculates its tag as 𝜎𝑖 ← (𝜉
(2)
𝑖 )𝛼 ⋅ 𝑔

∑
𝑠
𝑗=1 𝜏𝑗⋅𝑚𝑖,𝑗 ⋅𝛽 ∈ 𝔾. where

𝜉
(2)
𝑖 = 𝐻𝜉(1)(𝜒𝑖) and 𝑖 ∈ [1, 𝑛]. Finally, sets 𝑢 = (𝜉(1), 𝑢1, ⋅ ⋅ ⋅ , 𝑢𝑠) and outputs 𝜓 = (𝑢, 𝜒) to TPA, and
𝜎 = (𝜎1, ⋅ ⋅ ⋅ , 𝜎𝑛) to CSP.

Proof(𝐶𝑆𝑃, 𝑇𝑃𝐴): This is a 3-move protocol between Prover (CSP) and Verifier (TPA), as follows:
∙ Commitment(𝐶𝑆𝑃 → 𝑇𝑃𝐴): CSP chooses a random 𝛾 ∈ ℤ𝑝 and 𝑠 random 𝜆𝑗 ∈𝑅 ℤ𝑝 for 𝑗 ∈ [1, 𝑠],

and sends its commitment 𝐶 = (𝐻 ′
1, 𝜋) to TPA, where 𝐻 ′

1 = 𝐻𝛾
1 and 𝜋 ← 𝑒(

∏𝑠
𝑗=1 𝑢

𝜆𝑗

𝑗 , 𝐻2);
∙ Challenge(𝐶𝑆𝑃 ← 𝑇𝑃𝐴): TPA chooses a random challenge set 𝐼 of 𝑡 indexes along with 𝑡 random

coefficients 𝑣𝑖 ∈ ℤ𝑝. Let 𝑄 be the set of challenge index coefficient pairs {(𝑖, 𝑣𝑖)}𝑖∈𝐼 . TPA sends 𝑄 to
CSP;

∙ Response(𝐶𝑆𝑃 → 𝑇𝑃𝐴): CSP calculates the response 𝜃, 𝜇 as 𝜎′ ←
∏

(𝑖,𝑣𝑖)∈𝑄
𝜎𝛾⋅𝑣𝑖𝑖 , 𝜇𝑗 ← 𝜆𝑗 + 𝛾 ⋅∑

(𝑖,𝑣𝑖)∈𝑄
𝑣𝑖 ⋅𝑚𝑖,𝑗 , where 𝜇 = {𝜇𝑗}𝑗∈[1,𝑠]. 𝑃 sends 𝜃 = (𝜎′, 𝜇) to TPA; and

∙ Check: The verifier TPA checks whether the response is correct by

𝜋 ⋅ 𝑒(𝜎′, ℎ)
?
= 𝑒(

∏
(𝑖,𝑣𝑖)∈𝑄

(𝜉
(2)
𝑖 )𝑣𝑖 , 𝐻 ′

1) ⋅ 𝑒(

𝑠∏
𝑗=1

𝑢
𝜇𝑗

𝑗 , 𝐻2).

Fig. 6. Proposed IPOR scheme for key generation, tag generation and verification protocol.

𝜓 = (𝑢, 𝜒), where 𝑢 = (𝜉(1), 𝑢1, ⋅ ⋅ ⋅ , 𝑢𝑠), 𝜒 = {𝜒𝑖}𝑖∈[1,𝑛]

is the index-hash table. We define 𝜒𝑖 = (𝐵𝑖∣∣𝑉𝑖∣∣𝑅𝑖),
where 𝐵𝑖 is a sequence number of block, 𝑉𝑖 is a
version number of updates for this block, and 𝑅𝑖 is a
random integer to avoid collision. The value 𝜉(1) can
be considered as the signature of the secret 𝜏1, ⋅ ⋅ ⋅ , 𝜏𝑠.
Note that it must assure that 𝜓s are different for all
processed files.

In our construction, the verification protocol has 3-
move structure: commitment, challenge and response.
This protocol is similar to Schnorr’s Σ protocol [18],
which is a zero-knowledge proof system. By using this
property, we ensure the verification process does not
reveal anything. To prevent the leakage of stored data
and tags in the verification process, the private data
{𝑚𝑖,𝑗} are protected by a random 𝜆𝑗 ∈ ℤ𝑝 and the
tags {𝜎𝑖} are randomized by a 𝛾 ∈ ℤ𝑝. Furthermore,
the values {𝜆𝑗} and 𝛾 are protected by the simple
commitment methods, i.e., 𝐻𝛾

1 and 𝑢𝜆𝑖

𝑖 ∈ 𝔾, to prevent
the adversaries from gaining those properties.

Moreover, it is obvious that this construction admits
a short constant-size response 𝜃 = (𝜎′, 𝜇) ∈ 𝔾 × ℤ𝑠𝑝

without being dependent on the size of challenge.
That is extremely important for large-size files.

5.3 Implementation of Dynamic Operations
To support dynamic data operations, it is necessary
for TPA to employ an index-hash table 𝜒 to record the
current status of the stored files. Some existing index
schemes for dynamic scenarios are insecure due to
replay attack on the same Hash values. To solve this
problem, a simple index-hash table 𝜒 = {𝜒𝑖} is used

Fig. 7. Framework of IPOR model.

as described in Table 2, which includes four columns:
No. denotes the real number 𝑖 of data block 𝑚𝑖, 𝐵𝑖
is the original number of block, 𝑉𝑖 stores the version
number of updates for this block, and 𝑅𝑖 is a random
integer to avoid collision.

In order to ensure the security, we require that
each 𝜒𝑖 = “𝐵𝑖∣∣𝑉𝑖∣∣𝑅𝑖” is unique in this table. Al-
though the same values of “𝐵𝑖∣∣𝑉𝑖” may be produced
by repeating the insert and delete operations, the
random 𝑅𝑖 can avoid this collision. An alterative
method is to generate an updated random value
by 𝑅′

𝑖 ← 𝐻𝑅𝑖
(
∑𝑠

𝑗=1𝑚
′
𝑖,𝑗), where the initial value is

𝑅𝑖 ← 𝐻𝜉(1)(
∑𝑠

𝑗=1𝑚𝑖,𝑗) and 𝑚𝑖 = {𝑚𝑖,𝑗} denotes the
𝑖-th data block. We show a simple example to describe
the change of index-hash table for different operations
in Table 2, where an empty record (𝑖 = 0) is used
to support the operations on the first record. The
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TABLE 2
Index-hash table with random values.

No. 𝐵𝑖 𝑉𝑖 𝑅𝑖

0 0 0 0
1 1 2 𝑟′1
2 2 1 𝑟2
3 4 1 𝑟3
4 5 1 𝑟5
5 5 2 𝑟′5
...

...
...

...
n n 1 𝑟𝑛

n+1 n+1 1 𝑟𝑛+1

← Used to head
← Update

← Delete

← Insert

← Append

“Insert” operation on the last record is replaced with
“Append” operation. It is easy to prove that each 𝜒𝑖
is unique in 𝜒 in our scheme.

Update(𝑠𝑘, 𝜓,𝑚′
𝑖): modifies the version number

by 𝑉𝑖 ← max𝐵𝑖=𝐵𝑗
{𝑉𝑗}+1 and chooses a new 𝑅𝑖

in 𝜒𝑖 ∈ 𝜒 to get a new 𝜒′
𝑖; computes the new hash

𝜉
(2)
𝑖 = 𝐻𝜉(1)(“𝐵𝑖∣∣𝑉𝑖∣∣𝑅𝑖”); by using 𝑠𝑘, computes

𝜎′
𝑖 = (𝜉

(2)
𝑖 )𝛼 ⋅ (

∏𝑠

𝑗=1 𝑢
𝑚′

𝑖,𝑗

𝑗 )𝛽 , where 𝑢 = {𝑢𝑗} ∈ 𝜓,
finally outputs 𝑂 = (𝜒′

𝑖, 𝜎
′
𝑖,𝑚

′
𝑖).

Delete(𝑠𝑘, 𝜓,𝑚𝑖): computes the original 𝜎𝑖 by
𝑚𝑖 and computes the new hash 𝜉

(2)
𝑖 =

𝐻𝜉(1)(“𝐵𝑖∣∣0∣∣𝑅𝑖”) and 𝜎′
𝑖 = (𝜉

(2)
𝑖 )𝛼 by 𝑠𝑘; deletes

𝑖-th record to get a new 𝜓′; finally outputs
𝑂 = (𝜒′

𝑖, 𝜎𝑖, 𝜎
′
𝑖).

Insert(𝑠𝑘, 𝜓,𝑚′
𝑖): inserts a new record in 𝑖-th po-

sition of the index-hash table 𝜒 ∈ 𝜓, and the
other records move backward in order; modifies
𝐵𝑖 ← 𝐵𝑖−1, 𝑉𝑖 ← max𝐵𝑖=𝐵𝑗

{𝑉𝑗} + 1, and a
random 𝑅𝑖 in 𝜒𝑖 ∈ 𝜒 to get a new 𝜒′

𝑖; computes
the new hash 𝜉

(2)
𝑖 = 𝐻𝜉(1)(“𝐵𝑖∣∣𝑉𝑖∣∣𝑅𝑖”) and

𝜎′
𝑖 = (𝜉

(2)
𝑖 )𝛼 ⋅ (

∏𝑠

𝑗=1 𝑢
𝑚′

𝑖,𝑗

𝑗 )𝛽 , where 𝑢 = {𝑢𝑗} ∈ 𝜓,
finally outputs 𝑂 = (𝜒′

𝑖, 𝜎
′
𝑖,𝑚

′
𝑖).

Check(𝑈/𝐷/𝐼,𝑂): The application sends the op-
eration type 𝑈/𝐷/𝐼 and the result 𝑂 is given to
𝐶𝑆𝑃 via a secure channel.
∙ For Update or Insert operations, 𝐶𝑆𝑃

must check whether the following
is held: for (𝜒′

𝑖, 𝜎
′
𝑖,𝑚

′
𝑖), 𝑒(𝜎′

𝑖, ℎ)
?
=

𝑒(𝜉
(2)
𝑖 , 𝐻1) ⋅ 𝑒(

∏𝑠
𝑗=1 𝑢

𝑚′

𝑖,𝑗

𝑗 , 𝐻2); and
∙ For Delete operation, 𝐶𝑆𝑃 must check

whether 𝜎𝑖 is equal to the stored 𝜎𝑖 and
𝑒(𝜎′

𝑖, ℎ)
?
= 𝑒(𝐻𝜉(1)(“𝐵𝑖∣∣0∣∣𝑅𝑖”), 𝐻1).

In addition, 𝑇𝑃𝐴 must replace 𝜒𝑖 with the new
𝜒′
𝑖 and check the completeness of 𝜒′

𝑖 ∈ 𝜓.

Fig. 8. Algorithms for dynamic operations.

Based on the construction of index-hash tables, we
propose a simple method to provide dynamic data
modification as illustrated in Fig. 8. All tags and the
index-hash table should be renewed and reorganized

periodically to improve the performance. Obviously,
we can replace the sequent lists with dynamically
linked lists to improve the efficiency of updating the
index-hash table.

6 SECURITY ANALYSIS
First, we prove the completeness of our construc-
tion: for every available tag 𝜎 ∈ 𝑇𝑎𝑔𝐺𝑒𝑛(𝑠𝑘, 𝐹 )
and a random challenge 𝑄 = (𝑖, 𝑣𝑖)𝑖∈𝐼 , the pro-
tocol always passes the verification test, that is,
Pr[⟨𝐶𝑆𝑃 (𝐹, 𝜎), 𝑇𝑃𝐴∗⟩(𝑝𝑘, 𝜓) = 1] = 1. We can prove
this equation holds by using Equation (1).

Next, to protect the confidentiality of checked data,
we are more concerned about the leakage of private
information (which includes the verified data {𝑚𝑖}
and their tags {𝜎𝑖}) in public verification process. To
address this problem, we introduce Zero-Knowledge
property into our construction:

Definition 1 (Zero-knowledge): An interactive proof of
retrievability scheme is computational zero knowledge
if there exists a probabilistic polynomial-time algorithm
𝑆∗ (call a Simulator) such that for every probabilistic
polynomial-time (PPT) algorithm 𝐷 and 𝑉 ∗, every poly-
nomial 𝑝(⋅), and all sufficiently large 𝑠, it holds that
∣∣∣∣

Pr[𝐷(𝑝𝑘, 𝜓, 𝑆∗(𝑝𝑘, 𝜓)) = 1]−
Pr[𝐷(𝑝𝑘, 𝜓, ⟨𝑃 (𝐹, 𝜎), 𝑉 ∗⟩(𝑝𝑘, 𝜓)) = 1]

∣∣∣∣ ≤ 1/𝑝(𝑠),

where, 𝑆∗(𝑝𝑘, 𝜓) denotes the output of simulator 𝑆. That
is, for all 𝜎 ∈ 𝑇𝑎𝑔𝐺𝑒𝑛(𝑠𝑘, 𝐹 ), the ensembles 𝑆∗(𝑝𝑘, 𝜓)
and ⟨𝑃 (𝐹, 𝜎), 𝑉 ∗⟩(𝑝𝑘, 𝜓) 3 are computationally indistin-
guishable.

Actually, zero-knowledge is a property that cap-
tures 𝑃 ’s robustness against attempts to gain knowl-
edge by interacting with it. For our IPOR scheme, we
make use of the zero-knowledge property to guaran-
tee the security of data blocks and signature tags. We
have the following theorem (see Appendix A):

Theorem 1: Our IPOR scheme is a (computational) zero-
knowledge provable data possession (called as ZKPOR)
with respect to the polynomial-time simulators.

Then, we turn attention to the audit security for
dynamic operations. It is easy to discover that the
security of our scheme against dynamic operations is
built on collision-resistant of all hash values 𝜉

(2)
𝑖 =

𝐻𝜉(1)(𝜒𝑖), where 𝜉(1) = 𝐻𝜉(“𝐹𝑛”), 𝜉 =
∑𝑠

𝑖=1 𝜏𝑖
(mod 𝑝) and 𝜒𝑖 = “𝐵𝑖∣∣𝑉𝑖∣∣𝑅𝑖” ∈ 𝜒. Firstly, in an
index-hash table 𝜒 = {𝜒𝑖} and 𝜒𝑖 = “𝐵𝑖∣∣𝑉𝑖∣∣𝑅𝑖”,
there exists no identical records 𝜒𝑖 and 𝜒𝑗 for all
dynamic operations only if 𝐵𝑖 ∕= 𝐵𝑗 , 𝑉𝑖 ∕= 𝑉𝑗 , or
𝑅𝑖 ∕= 𝑅′

𝑗 for any indexes 𝑖, 𝑗 ∈ ℕ. Furthermore, the
secrets {𝜏1, ⋅ ⋅ ⋅ , 𝜏𝑠} ∈ ℤ𝑠𝑝 are also used to avoid a
collision of files that have the same file name. For both

3. The output of the interactive machine 𝑉 ∗ after interacting with
𝑃 (𝐹, 𝜎) on common input (𝑝𝑘, 𝜓).
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𝜋 ⋅ 𝑒(𝜎′, ℎ) = 𝑒(𝑔, ℎ)𝛽
∑𝑠

𝑗=1 𝜏𝑗 ⋅𝜆𝑗 ⋅ 𝑒

⎛
⎝ ∏

(𝑖,𝑣𝑖)∈𝑄

(𝜉
(2)
𝑖 )𝑣𝑖 , ℎ

⎞
⎠
𝛼⋅𝛾

⋅ 𝑒(𝑔, ℎ)𝛾⋅𝛽
∑

𝑠
𝑗=1(𝜏𝑗 ⋅

∑
(𝑖,𝑣𝑖)∈𝑄

𝑣𝑖⋅𝑚𝑖,𝑗)

= 𝑒(𝑔, ℎ)𝛽
∑𝑠

𝑗=1 𝜏𝑗 ⋅𝜆𝑗 ⋅ 𝑒

⎛
⎝ ∏

(𝑖,𝑣𝑖)∈𝑄

(𝜉
(2)
𝑖 )𝑣𝑖 , ℎ

⎞
⎠
𝛼⋅𝛾

⋅ 𝑒(𝑔, ℎ)𝛽
∑𝑠

𝑗=1(𝜏𝑗 ⋅𝜇𝑗−𝜏𝑗⋅𝜆𝑗)

= 𝑒

⎛
⎝ ∏

(𝑖,𝑣𝑖)∈𝑄

(𝜉
(2)
𝑖 )𝑣𝑖 , ℎ𝛼⋅𝛾

⎞
⎠ ⋅

𝑠∏
𝑗=1

𝑒(𝑢
𝜇𝑗

𝑗 , ℎ
𝛽). (1)

mechanisms, we can prove the following theorem (see
Appendix B):

Theorem 2: The hash values 𝜉(2)𝑖 is (𝜀,
√
2𝐿+2𝑝 ln 1

1−𝜀 )

collision-resistant in our scheme 4 , even if a client gen-
erates

√
2𝑝 ⋅ ln 1

1−𝜀 files with the same file name, and the

client repeats
√
2𝐿+1 ⋅ ln 1

1−𝜀 times to modify, insert and
delete data blocks, where the collision probability is at least
𝜀, 𝜏𝑖 ∈ ℤ𝑝, and ∣𝑅𝑖∣ = 𝐿.

Based on collision-resistant of 𝜒, we consider a
new notion of security for our scheme on dynamic
operations, which is called dynamic existential un-
forgeability under an adaptive chosen message at-
tack [19], [20]. This kind of security can be defined
using the following game between a challenger ℬ and
an adversary 𝒜:

1) Initial: Given a file 𝐹 , the challenger ℬ simulates
𝐾𝑒𝑦𝐺𝑒𝑛(1𝜅) and 𝑇𝑎𝑔𝐺𝑒𝑛(𝑠𝑘, 𝐹 ) to generate the
public parameters 𝑝𝑘 and 𝜓, and sends them to
the adversary 𝒜;

2) Learning: 𝒜 adaptively issues at most 𝑞𝑡 times
queries 𝑞1, ⋅ ⋅ ⋅ , 𝑞𝑡 to learn the information of tags
via dynamic operations, as follows:
a) Update query (𝑖,𝑚′

𝑖): ℬ generates (𝜒′
𝑖, 𝜎

′
𝑖,𝑚

′
𝑖)

← 𝑈𝑝𝑑𝑎𝑡𝑒(𝑠𝑘, 𝜒𝑖,𝑚
′
𝑖) and sends it to 𝒜;

b) Delete query (𝑖): ℬ generates (𝜒′
𝑖, 𝜎𝑖, 𝜎

′
𝑖) ←

𝐷𝑒𝑡𝑒𝑙𝑒(𝑠𝑘, 𝜒𝑖,𝑚𝑖) and sends it to 𝒜;
c) Insert query (𝑖,𝑚′

𝑖): ℬ generates (𝜒′
𝑖, 𝜎

′
𝑖,𝑚

′
𝑖)

← 𝐼𝑛𝑠𝑒𝑟𝑡(𝑠𝑘, 𝜒𝑖,𝑚𝑖) and sends it to 𝒜;
At any time, 𝒜 can query the hash values 𝜉(2)𝑖 =
𝐻𝜉(1)(𝜒𝑖) on at most 𝑞ℎ records of its choice {𝜒𝑖}
and ℬ responds with random values.

3) Output: Eventually, 𝒜 outputs a forgery
(𝜒∗
𝑖 ,𝑚

∗
𝑖 , 𝜎

∗
𝑖 ) and wins the game if:

∙ (𝜒∗
𝑖 ,𝑚

∗
𝑖 , 𝜎

∗
𝑖 ) is not any of 𝑞𝑡 queries; and

∙ (𝜒∗
𝑖 ,𝑚

∗
𝑖 , 𝜎

∗
𝑖 ) is a valid tag for 𝜉

(2)
𝑖 , that is,

𝑒(𝜎∗
𝑖 , ℎ) = 𝑒(𝜉

(2)
𝑖 , 𝐻1) ⋅ 𝑒(

∏𝑠
𝑗=1 𝑢

𝑚∗

𝑖,𝑗

𝑗 , 𝐻2).

An adversary 𝒜 is said to (𝜀, 𝑞𝑡, 𝑞ℎ)-break our
scheme if 𝒜 makes at most 𝑞𝑡 tag queries for dy-
namic operations and 𝑞ℎ hash queries, as well as

4. We use the terminology (𝜀,𝑄) to denote an algorithm with
average-case success probability 𝜀, in which the number of oracle
queries made by the algorithm is at most 𝑄.

success probability of game with at least 𝜀. A scheme
is (𝜀, 𝑞𝑡, 𝑞ℎ)-dynamically and existentially unforgeable
under an adaptively chosen message attack if there
exists no forgery that is susceptible to (𝜀, 𝑞𝑡, 𝑞ℎ)-break.

We note that the above-mentioned defintion cap-
tures a stronger version of existential unforgeability
than the standard one on signature schemes, as it
requires that the adversary cannot even generate a
new tag on a previously signed message. Based on
this game, we prove that our scheme is (𝜀, 𝑞𝑡, 𝑞ℎ)-
dynamically and existentially unforgeable for the
Computational Diffie-Hellman (CDH) problem (see
Appendix C), as follows:

Theorem 3: Given the (𝜀′, 𝑞′)-CDH in a cyclic group
𝔾 ∈ 𝕊 with an order 𝑝, our audit scheme is an (𝜀, 𝑞𝑡, 𝑞ℎ)-
dynamically existentially unforgeable to resist the attacks
of tag forgery for dynamic data operations with random
oracle model, whenever 𝑞𝑡 + 𝑞ℎ ≤ 𝑞′ and all 𝜀 satisfy
𝜀 ≥ 𝜀′/(1 − 𝑞𝑡

𝑝
) if each 𝜒𝑖 is collision-resistant in index-

hash table 𝜒.

7 PERFORMANCE AND EVALUATION
It is obvious that enormous audit activities would
increase the computation and communication over-
heads of our audit service. However, the less fre-
quent activities may not detect anomalies in a timely
manner. Hence, the scheduling of audit activities is
significant for improving the quality of audit services.
In order to detect anomalies in a low-overhead and
timely manner, we attempt to optimize the audit per-
formance from two aspects: performance evaluation
of probabilistic queries and scheduling of periodic
verification. Our basic idea is to maintain a tradeoff
between overhead and accuracy, which helps us im-
prove the performance of audit systems.

7.1 Probabilistic Queries Evaluation
The audit service achieves the detection of CSP
servers’ misbehaviors in a random sampling mode
to reduce the workload on the server. The detection
probability 𝑃 of disrupted blocks is an important pa-
rameter to guarantee that these blocks can be detected
in a timely manner. Assume TPA modifies 𝑒 blocks out
of the 𝑛-block file. The probability of disrupted blocks
is 𝜌𝑏 = 𝑒

𝑛
. Let 𝑡 be the number of queried blocks for

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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a challenge in the protocol proof. We have detection
probability 𝑃 = 1− (𝑛−𝑒

𝑛
)𝑡 = 1− (1− 𝜌𝑏)

𝑡. Hence, the
number of queried blocks is 𝑡 = log(1−𝑃 )

log(1−𝜌𝑏)
≈ 𝑃 ⋅𝑛

𝑒
for a

sufficiently large 𝑛.5 This means that the number of
queried blocks 𝑡 is directly proportional to the total
number of file blocks 𝑛 for the constant 𝑃 and 𝑒. In
Fig. 9, we show the results of the number of queried
blocks under different detection probabilities (from 0.5
to 0.99), different number of file blocks 𝑛 (from 10 to
10,000), and constant number of disrupted blocks (10
for 𝑛 < 1,000 and 100 for 𝑛 ≥ 1,000).
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Fig. 9. Number of queried blocks under different detec-
tion probabilities and different numbers of file blocks.

We observe the ratio of queried blocks in the total
file blocks 𝑤 = 𝑡

𝑛
under different detection probabili-

ties. Based on our analysis, it is easy to determine that
this ratio holds since 𝑤 = 𝑡

𝑛
= log(1−𝑃 )

𝑛⋅log(1−𝜌𝑏)
≈ 𝑃

𝑒
. How-

ever, the estimation of 𝑤 is not an accurate measure-
ment. To clearly represent this ratio, Fig. 10 plots 𝑤
for different values of 𝑛, 𝑒 and 𝑃 . It is obvious that the
ratio of queried blocks tends to be a constant value for
a sufficiently large 𝑛. For instance, in Fig. 10(a) if there
exist 100 disrupted blocks, the TPA asks for 𝑤 = 4.5%
and 2.3% of 𝑛 (𝑛 > 1, 000) in order to achieve 𝑃
of at least 99% and 90%, respectively. However, this
ratio 𝑤 is also inversely proportional to the number
of disrupted blocks 𝑒. For example, in Fig. 10(b) if
there exist 10 disrupted blocks, the TPA needs to ask
for 𝑤 = 45% and 23% of 𝑛 (𝑛 > 1, 000) in order to
achieve the same 𝑃 , respectively. It demonstrates our
audit scheme is effective under the higher probability
of disrupted blocks.

Note that, instead of probability verification, our
IPOR scheme also supports absolute integrity verifica-
tion, in which TPA checks all file blocks in a challenge
query 𝑄 = {(𝑖, 𝑣𝑖)}𝑖∈𝐼 , that is, 𝐼 = [1, 𝑛]. Furthermore,
in order to shorten the length of challenge query 𝑄,
we simply send a random 𝑠𝑒𝑒𝑑 to CSP, and then
CSP generates the challenge index coefficient pair
(𝑖, 𝑣𝑖) = (𝑖,𝐻𝑠𝑒𝑒𝑑(𝑖)) for all 𝑖 = [1, 𝑛], where 𝐻𝑘(⋅) is a

5. In terms of (1− 𝑒
𝑛
)𝑡 = 1− 𝑒⋅𝑡

𝑛
, we have 𝑃 = 1−(1− 𝑒⋅𝑡

𝑛
) = 𝑒⋅𝑡

𝑛
.

collision-resistant hash function.

7.2 Schedule of Periodic Verification

Too frequent audits may waste the network band-
width and computing resources of TPA and CSPs.
However, less frequent audits would not be conducive
to detect the exceptions in a timely manner. Thus,
it is necessary to disperse the audit tasks (in which
the total number of queried blocks is evaluated as
we discussed in the previous section) throughout the
entire audit cycle so as to balance the overload and
increase the difficulty of attacks in a relatively short
period of time.

The sampling-based audit has the potential to sig-
nificantly reduce the workload on the servers and in-
crease the audit efficiency. Firstly, we assume that each
audited file has an audit period 𝑇 , which depends
on how important it is for the owner. For example, a
common audit period may be assigned as one week
or one month, and the audit period for important files
may be set as one day. Of course, these audit activities
should be carried out at night or on weekend.

Also, we make use of the audit frequency 𝑓 to
denote the number of occurrences of an audit event.
This means that the number of TPA’s queries is 𝑇 ⋅ 𝑓
in an audit period 𝑇 . Our evaluation indicates the
detection probability 𝑃 = 1 − (1 − 𝜌𝑏)

𝑛⋅𝑤 in each
audit event. Let 𝑃𝑇 denotes the detection probability
in an audit period 𝑇 . Hence, we have the equation
𝑃𝑇 = 1 − (1 − 𝑃 )𝑇 ⋅𝑓 . Given 1 − 𝑃 = (1 − 𝜌𝑏)

𝑛⋅𝑤, the
detection probability 𝑃𝑇 can be denoted as 𝑃𝑇 = 1−
(1−𝜌𝑏)

𝑛⋅𝑤⋅𝑇 ⋅𝑓 . Based on this equation, TPA can obtain
the probability 𝜌𝑏 depending on the transcendental
knowledge of the cloud storage provider. Moreover,
the audit period 𝑇 can be predefined by a data owner
in advance. Hence, the above equation can be used to
analyze the parameter values 𝑤 and 𝑓 . It is obvious
to obtain the equation 𝑓 = log(1−𝑃𝑇 )

𝑤⋅𝑛⋅𝑇 ⋅log (1−𝜌𝑏)
.
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Fig. 11. Ratio of queried blocks in total file blocks under
different audit frequency for 10 disrupted blocks and
10,000 file blocks.
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Fig. 10. Ratio of queried blocks under different detection probabilities and different number of disrupted blocks.

This means that the audit frequency 𝑓 is inversely
proportional to the ratio of queried blocks 𝑤. That is,
with the increase of verification frequency, the number
of queried blocks decreases at each verification pro-
cess. In Fig. 11, we show the relationship between 𝑓
and 𝑤 under 10 disrupted blocks for 10,000 file blocks.
We can observe a marked drop of 𝑤 along with the
increase of frequency.

In fact, the relationship between 𝑓 and 𝑤 is com-
paratively stable for 𝑃𝑇 , 𝜌𝑏, and 𝑛 due to 𝑓 ⋅ 𝑤 =

log(1−𝑃𝑇 )
𝑛⋅𝑇 ⋅log (1−𝜌𝑏)

. TPA should choose an appropriate fre-
quency to balance the overhead. For example, if 𝑒 = 10
blocks in 10,000 blocks (𝜌𝑏 = 0.1%), then TPA asks
for 658 blocks and 460 blocks for 𝑓 = 7 and 10 to
achieve at least 99% of 𝑃𝑇 . Hence, an appropriate
audit frequency would greatly reduce the sampling
numbers, as well as computation and communication
overheads of an audit service.

7.3 Implementation and Experimental Results
To validate our approaches, we have implemented a
prototype public audit service. Our prototype utilizes
three existing services/applications: Amazon Simple
Storage Service (S3), which is an untrusted data stor-
age server; a local application server, which pro-
vides our audit service; and an existing open source
project called Pairing-Based Cryptography (PBC) li-
brary upon which to build our prototype. We present
some details about these three components as follows:
Storage service: Amazon Simple Storage Service (S3)

is a scalable, pay-per-use online storage service.
Clients can store a virtually unlimited amount of
data, paying for only the storage space and band-
width that they are using, without an initial start-
up fee. The basic data unit in S3 is an object, and
the basic container for objects in S3 is called a
bucket. In our example, objects contain both data
and meta-data (tags). A single object has a size limit
of 5 GB, but there is no limit on the number of
objects per bucket. Moreover, a script on Amazon

Elastic Compute Cloud (EC2) is used to provide the
support for verification protocol and dynamic data
operations.

Audit service: We used a local IBM server with two
Intel Core 2 processors at 2.16 GHz running Win-
dows Server 2003. Our scheme was deployed in this
server, and then the server performs the integrity
check in S3 storage, conforming the assigned sched-
ule via 250 MB/sec of network bandwidth. A socket
port was also opened to support the applications’
accesses and queries for the audit service.

Prototype software: Using GMP and PBC libraries,
we have implemented a cryptographic library upon
which temporal attribute systems can be con-
structed. These C libraries contain approximately
5,200 lines of codes and were tested on both Win-
dows and Linux platforms. The elliptic curve uti-
lized in our experiments is a MNT curve, with a
base field size 159 bits and the embedding degree
6. The security level is chosen to be 80 bit, which
means ∣𝑝∣ = 160.

Firstly, we quantified the performance of our audit
scheme under different parameters, such as file size
𝑠𝑧, sampling ratio 𝑤, and sector number per block 𝑠.
Our analysis shows that the value of 𝑠 should grow
with the increase of 𝑠𝑧 to reduce computation and
communication costs. Thus, experiments were carried
out as follows: the stored files were chosen from 10KB
to 10MB, the sector numbers were changed from 20 to
250 in terms of the file size, and the sampling ratios
were also changed from 10% to 50%. The experimental
results are shown in Fig. 12(a). These results indi-
cate that computation and communication costs grow
slowly with increase of file size and sampling ratio.

Next, we compared the performance of each activ-
ity in our verification protocol. It is easy to derive
theoretically that the overheads of “commitment” and
“challenge” resemble one another, and the overheads
of “response” and “verification” also resemble one an-
other. To validate such theoretical results, we changed
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Fig. 12. Experiment results under different file size, sampling ratio, and sector number.

the sampling ratio 𝑤 from 10% to 50% for a 10MB
file and 250 sectors per block. In Fig. 12(b), we show
the experiment results, in which the computation and
communication costs of “commitment” and “chal-
lenge” are slightly changed for sampling ratio, but
those for “response” and “verification” grow with the
increase of sampling ratio.

Then, in the Amazon S3 service, we set that the
size of block is 4K bytes and the value of 𝑠 is 200.
Our experiments also show that, in TagGen phase, the
time overhead is directly proportional to the number
of blocks. Ideally, this process is only executed when
a file is uploaded into the S3 service. The verification
protocol can be run in approximately constant time.
Similarly, three dynamic data operations can be per-
formed in approximately constant time for any block.

Finally, reducing the communication overheads and
average workloads is extremely critical for an effi-
cient audit schedule. With probabilistic algorithm, our
scheme is able to realize the uniform distribution
of verified sampling blocks based on the security
requirements of clients, as well as the dependabilities
of storage services and running environments. In our
experiments, we make use of a simple schedule to
periodically manage all audit tasks. The results show
that audit services based on our scheme can support
a great deal of audit tasks, and the performance
of scheduled audits are more preferable than the
straightforward individual audit.

8 CONCLUSIONS

In this paper, we presented a construction of dynamic
audit services for untrusted and outsourced storages.
We also presented an efficient method for periodic
sampling audit to enhance the performance of third
party auditors and storage service providers. Our
experiments showed that our solution has a small,
constant amount of overhead, which minimizes com-
putation and communication costs.

ACKNOWLEDGMENTS
The work of Yan Zhu and Shimin Chen was partially
supported by the National Development and Reform
Commission under Project “A cloud-based service
for monitoring security threats in mobile Internet”.
This work of Gail-J. Ahn and Hongxin Hu was
partially supported by the grants from US National
Science Foundation (NSF-IIS-0900970 and NSF-CNS-
0831360) and Department of Energy (DE-SC0004308).
This work of Stephen S. Yau and Ho G. An was
partially supported by the grants from US National
Science Foundation (NSF-CCF-0725340).

REFERENCES
[1] Amazon.com, “Amazon s3 availability event: July 20, 2008,”

Online at http://status.aws.amazon.com/s3-20080720.html,
July 2008.

[2] A. Juels and B. S. K. Jr., “Pors: proofs of retrievability for large
files,” in Proceedings of the 2007 ACM Conference on Computer
and Communications Security, CCS 2007, 2007, pp. 584–597.

[3] M. Mowbray, “The fog over the grimpen mire: Cloud comput-
ing and the law,” HP Lab., Tech. Rep. HPL-2009-99, 2009.

[4] A. A. Yavuz and P. Ning, “Baf: An efficient publicly verifi-
able secure audit logging scheme for distributed systems,” in
ACSAC, 2009, pp. 219–228.

[5] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L. Kissner,
Z. N. J. Peterson, and D. X. Song, “Provable data possession
at untrusted stores,” in Proceedings of the 14th ACM Conference
on Computer and Communications Security, 2007, pp. 598–609.

[6] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scal-
able and efficient provable data possession,” in Proceedings
of the 4th international conference on Security and privacy in
communication netowrks, SecureComm, 2008, pp. 1–10.
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