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Abstract—Vehicle intelligence and networking have manifested the significance of the embedded Controller Area 
Network (CAN) bus. However, the lack of message encryption and identity authentication leaves Electric Control Units 
(ECUs) exposed to cyber-attacks. To identify the potential attacks on the CAN, intrusion detection systems are required 
with consideration of their computational burden and the application in vehicles. Therefore, we propose a lightweight 
ECU identification scheme. Explicitly, the proposed method records the periodic intervals of frames and calculates 
accumulated clock offsets with the recursive least square algorithm; meanwhile, the empirical rules are adopted to 
eliminate the noises. Then, the ECU fingerprints have been formulated with the derived clock skew, clock offsets as 
well as their expectations. Furthermore, to accurately identify the attackers in the masquerade attacks, a 
double-verified attacker identification approach is proposed, in which the data dependency and intra-inter class 
algorithm are respectively utilized for better executability. Finally, we have tested the proposed method with an actual 
vehicle and the results manifest that the proposed method could identify the abnormal ECUs with an identification 
accuracy of at least 98% and its execution time is less than 3ms. 
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I.  Introduction 

ITH the development of vehicle intelligence and 

electrification, intelligent connected vehicles have taken 

for more than 86% of the market share [1, 2]. The intelligence 

of vehicles requires the supports from in-vehicle networks, 

such as the CAN networks. For instance, the CAN is widely 

used in real-time control systems, such as powertrain 

controllers [3]. Nevertheless, unlike the Ethernet which 

includes the identity authentication and encrypted messages, 

CAN broadcasts the frames without the relevant information 

authentication mechanism, which are extremely vulnerable to 

cyber-attacks [4, 5]. Miller and Valasek have intruded into the 

in-vehicle CAN by means of remote firmware updates via the 

brittle gateway, which has disabled the brakes and engine 

system [6]. Similarly, the Keen Security Laboratory of Tencent 

has attacked the powertrain of Tesla Model S and T-box 

systems of Mercedes Benz with the Internet-of-Things system 

in 2017 and 2019, respectively [7]. A technical report powered 

by Upstream Security has stated that the cyber-attack events for 

the automobile have grown by 605% from 2016 to 2020 [8].  

To effectively prevent the potential cybersecurity incidents, 

two approaches in existing studies have been adopted: the 

security communication mechanism and the Intrusion 

Detection System (IDS). The security communication 
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mechanism designs a new communication protocol or 

communication medium to protect the information frames. In 

detail, message authentication codes [9], encrypted frames [10] 

and medium protocols [5, 11], are effective approaches. For 

instance, the Security On-board Communication proposed by 

the AutoSAR organization guarantees frame freshness and 

integrality [12]. Although the above measures could prevent 

frames from being tampered, the communication protocol has 

some difficulties for the application on embedded systems due 

to their limitation of communication bandwidth and the 

implementation expense [13]. In contrast, the IDS may be a 

feasible approach to deal with anomaly attacks, since it would 

not change original communication protocols and it also could 

be installed on high-performance processors like the central 

gateway [10, 11, 14].  

A. Related works 

According to the state-of-the-art studies [31, 32], the IDS 

could be classified into two types: the signature-based methods 

and the anomaly-based methods. A signature-based methods 

manage to learn the preset features and identify potential 

attacks by constructing ECU fingerprints. An anomaly-based 

method focuses on knowing normal behaviors to identify any 

deviations caused by potential attacks. In the anomaly-based 

IDS, the message characteristics could be the frame frequency 

[14], frame ID sequence [15] and its derived information 

entropy [16], message context [17] and the remote frame 

intervals [18]. This type of IDS usually could accurately 

identify the attacks though it may have to deal with a large 

amount of data in real time [19]. The signature-based IDS 

exploits the subtle distinctions among different ECUs to 

formulate their unique fingerprints. These fingerprints include 

the clock frequency [20] and clock skew [21, 22], the physical 

voltage signals [23] as well as the signal duration of data frames 
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[24]. For instance, the accumulated clock offsets are exploited 

to formulate a unique ECU fingerprint using the Recursive 

Least Square (RLS) algorithm [21]. Similar signal 

characteristics could be extended into the remote frames [18], 

which utilizes different frame responses to distinguish the 

abnormal ECUs. The above ECU fingerprints process the 

frames of CAN, which are realized with the software 

application and not rely on the extra hardware devices [25, 26]. 

In addition, a novel attack named cloaking attack was 

developed by emulating the desired transmission delay to 

deceive the IDS [35]. Two clock skew-based IDSs, i.e., the 

state-of-the-art IDS and its adaption to the network time 

protocol are developed for the validation of the proposed 

cloaking attack. The results indicated that they could succeed 

with little prediction errors of less than 6%. This type of attacks 

is hard to detect due to their concealment and simulation for the 

desired time delay. Recently, physical analog signals of CAN 

are further processed to differentiate the ECUs for potential 

attack detection [27-29]. For instance, the VoltageIDS was 

proposed, which combines the time-frequency features of 

analog voltage signals of CAN frames and learns the subtle 

differences of voltage levels with the intelligent neural 

networks [27]. On this basis, the frame duration has been 

sampled and learned with the RLS algorithm to assess whether 

newly arrived frames are transmitted from a legitimate ECU, 

and the detection accuracy is more than 95% [24, 29].  

B. Motivation and Contributions 

Although the previous state-of-the-art studies have 

effectively addressed the potential attacks by detecting the 

message frequency or physical signals, their actual 

executability requires to be validated. The IDS should be 

lightweight for the low computational burden, and the online 

application in actual ECUs should be experimentally tested; 

meanwhile, the possible noises of message timestamps should 

be processed before the attacker identification. Additionally, 

the identification accuracy of attackers should be considerably 

focused, which could help the auto repairment to quickly find 

the attacked ECUs in the post-processing items [22]. 

To this end, this work designs a real-time ECU identification 

scheme for the in-vehicle CAN, which is composed of three 

parts: data collection and preprocessing, anomaly detection, 

and attacker source identification. Explicitly, in the data 

collection and preprocessing step, the periodic frame intervals 

in the receivers are recorded and meanwhile the abnormal data 

caused by the environmental noise are eliminated with the 

empirical rule algorithm. Then, a typical RLS algorithm is 

introduced to formulate the clock skew, which provides a 

significant design reference for the attack detection. 

Subsequently, a double-verified attacker identification 

algorithm is presented based on the data dependency and 

intra-inter class algorithm. 

II. CAN AND ATTACKS 

A. CAN 

CAN was developed by Bosch GmbH [31], and is widely 

used in real-time systems due to its cost-effective budget and 

full-duplex communication efficiency. To better understand the 

CAN, we will introduce the CAN topology where the standard 

CAN 2.0 protocol is taken as an example.  

CAN topology information: This part mainly describes the 

CAN physical layer and data link layer. In the CAN physical 

layer, CAN signals are coded with the Non-Return to Zero 

method and released at a twisted pair of wires, namely 

CAN-H(high) and CAN-L(low). In the CAN physical protocol, 

the recessive bit “1” indicates that CAN-H and CAN-L are both 

zero-biased at 2.5 volts while the dominant bit “0” indicates 

that CAN-H and CAN-L go around about 3.5 volts and 1.5 

volts, respectively. In the CAN communication, the successive 

dominant/recessive bits fill the data frame. 

The CAN protocol defines four types of frames: data frame, 

remote frame, error frame and overload frame. The standard 

data frame includes seven fields: Start of Frame (SOF), 

arbitration field, control field, data field, Cyclic Redundance 

Check (CRC) field, Acknowledgement (ACK) field, and End 

of Frame (EOF), as shown in Fig. 1.  
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Fig. 1. Standard data frame of CAN 2.0. 

B. Adversary Model 

Current common types of attacks in the bus network include 

spoofing attack, suspension attack, Denial of Service (DoS) 

attacks, fuzzing attacks and masquerade attack [21]. For the 

DoS attacks and fuzzing attacks, the attack is highly frequent, 

which could be easily detected by observing their periods. For 

the spoofing attack, the adversary can monitor the CAN bus and 

inject a series of forged messages to the CAN bus, confusing 

other controllers to execute some wrong instructions. The 

suspension attack takes advantage of the arbitration mechanism 

to stop or suspend the target ECU; i.e., an ECU would stop the 

message transmission when a synchronous message with a 

higher priority is requesting a transmission at the same time. If 

it fails for several times, this ECU would go offline. With this 

arbitration mechanism, the adversary can force the target ECU 

to lose the arbitration for multiple times, causing the messages 

from the target ECU invalid.  

The masquerade attack would not change the ID sequence 

and transmission frequency. To execute a masquerade attack, 

the adversary needs to control two ECUs. As shown in Fig. 2, 

ECU B is firstly controlled by programming an aggressive 

firmware via the system vulnerability, and then monitors the 

communication message of ECU A. By learning the ID and 

frequency of a message from ECU A, ECU B can make ECU A 

invalid with the suspension attack; then, ECU B can send the 

forged message with the same ID and intervals as ECU A, 

implementing the wrong instructions to control vehicles.  
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Fig. 2. Masquerade attack. 

C. Clock Offsets 

Different ECUs present distinct timing deviations due to the 

clock difference and manufacturing deviation. The timing 

deviation could be described with the “clock offset” and “clock 

skew”. They are defined as follows. 

➢ Clock offset: defined as the timing difference between the 

reported clock 
i
 and the actual clock 

t
. In this study, 

the clock offset is denoted by offsets between two 

non-true clocks. 

➢ Clock skew: defined as the frequency difference between the 

reported clock and the actual clock, such as 

i td dt d dt− . In this study, the clock skew is defined 

with two non-true clocks. 

ECU A

ECU B

t=0 22T O+1T O+
33T O+

0n 1 1T O n+ + 2 22T O n+ + 3 33T O n+ +

1 1T O n+ +  2 22T O n+ +  3 33T O n+ + rxT =
 

Fig. 3. Clock offset and timing analysis for frame arrivals. 

To accurately determine the clock skew, an estimation 

process is required. As shown in Fig. 3, ECU A broadcasts a 

frame every T ms and ECU B periodically receives this frame. 

However, ECU A would send the frame with a small delay 

(named as clock offset 
iO ) due to the inconsistence of system 

clocks. Meanwhile, ECU B receives the frame after the time 

delay i iiT O n+ + , where 
in  denotes the network transmission 

delay in the medium and its average value approaches to a fixed 

value. That is, the difference of  in  is nearly same, exactly 

  0iE n = . Thus, the interval between each frame arrival is 

marked as 
,rx i i iT iT O n= + +  ; therefore, the expectation value 

of the timestamp intervals can be expressed as 

,rx rx iE T T  =   . As proved in [33], the average difference 

between the estimated and measured arrival times is defined in 

the following equation. 

                     ( )( ) ( )E E rx i i ii T O n E O= − + +           (1) 

Therefore, the average clock offset can be estimated, which 

is indeed different for distinct transmitters. Under such 

conditions, if the average clock offset could be summed up, the 

accumulated clock offsets could be thereby determined. 

Furthermore, their slopes can be obtained to represent the clock 

skew, which is unique for the ECU devices. 

D. Empirical Rules Based on The Gaussian Distribution 

The Empirical Rule (ER) algorithm is a statistical approach 

based on the Gaussian distribution [33]. If a random variable 

X  follows a Gaussian distribution with an average value   

and variance 
2 , marked as ( )2,X N   , its Probability 

Density Function (PDF) is expressed in Eqn. (2) and features 

are plotted in Fig. 4. 
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According to the PDF, the three-delta principle is widely 

utilized in the data process; the probability of a random variable 

falling within the intervals of ( ),   − +  conforms to 

the following rules: 
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Fig. 4. The illustration of ER for the noisy data. 

In the practical application of IDS, the frame interval is 

influenced by the environmental noise or the message loss. 

However, this influence cannot be eliminated with the error 

frame mechanism. To this end, we introduce the ER to filtrate 

the abnormal noises. For instance, the IDS would preset a 

threshold   and establish an interval of ( ),   − +  to 

remove the accidental noisy data. 

III. PROPOSED IDS AND ATTACKER IDENTIFICATION 

  The proposed IDS utilizes the subtle differences in the frame 

intervals, with which the abnormal attacker sources can be 

accurately located. The proposed attacker identification scheme 

includes three steps: the data collection and preprocessing, the 

intrusion detection, as well as the double-verified attacker 

identification. The former two steps are similar with existing 

studies [21] and the noteworthy points lie in the denoising 

process since the noises in the clock offsets may incur wrong 

identification of the ECU fingerprints. The last double-verified 

attacker identification concerns the improvement of the ECU 

mapping accuracy and the potential attacker identification. In 

detail, the frame intervals are recorded and further denoised 

with the ER algorithm; and the clock offsets are extracted and 

accumulated by the RLS algorithm to establish the clock skew, 

constituting the rudiment of the ECU fingerprints. Therefore, 

the masquerade attack is detected by observing the abnormal 

clock skews. Next, the double-verified attacker identification is 
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realized by combining the mathematical expectation of clock 

offsets and the intra-inter distance algorithm. 

A. Data Collection and Preprocessing 

To realize the ECU fingerprints, frame intervals are 

measured firstly. The IDS devices can be connected to the CAN 

bus and monitor all frames from the target ECU. Then, frame 

intervals 
,r iT  of all ECUi are recorded at the receivers. The RLS 

algorithm can be utilized to estimate the average clock offset, 

which should converge to a non-zero constant.  

Nevertheless, we found that the frame intervals come with 

abnormal noises in the practical application. These noises 

deviate less than an average frame period, which cannot be 

detected with the error-frame method [24]. Therefore, we 

introduce the ER algorithm to eliminate abnormal noises and 

determine the normal range of the frame intervals. The steps 

about the data collection and preprocess are expressed.  

Step 1. Data collection. 

The detection node (IDS) is connected to the CAN 

bus and monitors the frame intervals from the target 

ECU. The ER parameters are updated when N sets of 

data are sampled. Meanwhile, IDS records the frame 

interval 
iO , and calculates the average interval 

k  and 

the standard deviation 
k . 

Step 2. Noisy data filtration.  

The noises are accurately identified with the ER 

algorithm. If the data satisfy 2i k kO  −  , the 

recorded data are regarded as healthy data; otherwise, 

the newly recorded data are regarded as noisy data, 

which would be abandoned.  

Step 3. Data storage and parameter update. 

1). Save reasonable data for the subsequent intrusion 

detection. The database is updated cyclically using 

a sliding window based on the first-in-first-out 

principle. In the sliding window, the first data in 

the database are removed and the newly reasonable 

data will be filled to the end.  

2). Update the ER parameters. According to the fresh 

database, the mean value 
k  and standard 

deviation 
k  are updated again.  

B. Anomaly Detection Based on The Clock Skew 

Since different ECUs present distinct clock offsets, the 

average clock offsets can be summed up to formulate the 

accumulated clock offset. In detail, the IDS includes two parts: 

the clock skew formulation and anomaly detection. Since the 

clock offsets in the same ECU are constant, the accumulated 

clock offsets are linearly distributed. The accumulated clock 

offset is identified with the following equation.  

       accO i s i n i e i=  +                             (4) 

where [ ]accO i  denotes the accumulated clock offset at the step i, 

and [ ]n i  is the frame instance number; s  is the regression 

parameter, representing the estimated clock skew; e  denotes 

the regression error, representing the model residual, which can 

be utilized to detect the abnormal information. In this model, 

the RLS algorithm is used to estimate the clock skew.  

As aforementioned, if an anomaly intrusion happens, the 

clock skew would deviate from the reasonable path, resulting in 

a non-zero model residual. Under such assumptions, the 

cumulative sum (CUSUM) method can be introduced to 

observe the sudden change of the model residual. In the 

CUSUM, two diagnostic variables, denoting the upper and 

lower boundaries of the accumulated identification error, are 

defined as follows, respectively. 

( )

( )

max 0,

max 0,

i e e

i e e

L L e

L L e
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  

+ +

− −

  + − − 

  − − − 

                        (5) 

where ( )e  and ( )e  denote the average value and standard 

deviation of the model residuals at the observation window 

, and  is a noisy parameter, representing the maximum 

acceptable error. Then, the diagnostic variables can be 

observed in real time and if their values exceed the preset 

threshold, the IDS can declare that there is an anomaly 

intrusion. 

C. Double-verified Attacker Identification 

The traditional attacker identification method, such as the 

dynamic time warping (DTW), may be inaccurate and 

time-consuming [22]. Therefore, we propose a new 

double-verified attack identification approach based on the data 

dependency of clock offsets and the intra-inter distance 

algorithm. In the proposed algorithm, there are two steps to 

validate the attacker sources. 

The first verification initially determines the possible ECU 

sources according to the distribution of clock offsets. At first, 

the average clock offsets would be determined with the RLS 

algorithm. Then, the correlation coefficients between the 

sampled average clock offsets and the existing ones are 

evaluated with the following expression: 
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   

 

(6) 

where ,ref iO  denotes the reference offsets in the existing ECUs, 

which can be updated with the historical data. N represents the 

frame instance number in the sliding window. If the above 

correlation coefficient is approaching to 1, the current ECU can 

be initially determined as the attacker, which constitutes the 

first validation in the proposed approach. 

The second verification judges the forged ECU with the 

intra-inter distance algorithm [34]. To improve the 

identification accuracy, more elements including the average 

clock offsets iO , their mathematical expectations ( )kE O , and 

the estimated clock skew is , are selected as the identification 

parameters. Since these parameters are not binary, we utilize 

the Euclidean distance as a metric. Euclidean distance between 
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two values can be defined as ( ) ( ),
2

d    = − . Therefore, 

the intra and inter distances 
intra

  and 
inter

  based on the 

identification parameters such as the skews and clock offsets 

are defined in Eqn. (7): 

( ) ( ) ( )( ) 

( ) ( ) ( )( ) 

intra

inter

, , , ECU ,

, , , ECU , ECU

i

i j

i d id id id id id id

i j d id id id id





 

 

      =   

    =    

                        (7) 

where the parameter ( )id  denotes the resulting pair, which 

should run over all identification parameters. According to the 

intra-inter distance algorithm, the inter distances represent the 

distances among the messages transmitted by a distinct ECUs 

while the intra distances represent the distance among the 

messages from the same ECU. In the practical application, we 

measure the identification parameters in the newly received 

messages and run the intra-inter distance over these parameters. 

Hence, the attackers are compared with the existing ECU 

fingerprints. 

    Step 1. Preparation of the ECU identification parameters. 

To realize the attacker identification, the identification 

parameter database needs to be built offline, which is the 

reference.  

    a). The IDS samples every arriving frame interval 
,r iT  for the 

target ECUs at each sliding window with the fixed scale N=20. 

Then, the aforementioned data preprocess step would work to 

eliminate the noisy data, thereby forming the database . 

    b). The average clock offsets iO  are obtained by running the 

RLS algorithm. Thus, the average clock offsets in the healthy 

communication would be selected as the reference ,ref iO , which 

is subsequently utilized to calculate the correlation coefficients 

in the first validation of the attacker identification. Accordingly, 

other required identification parameters, such as ( )kE O , and 

the estimated clock skew is , could also be determined.  

    c). With the sliding window forwarding, the RLS parameters 

and noise preprocessing parameters are updated. Then, the 

database  would be updated simultaneously.  

    d). By running multiple rounds of the above calculation, the 

corresponding identification parameters are established. Then, 

the offline training, such as the intra-inter distance is further 

executed to formulate the unique ECU fingerprints. 

    Step 2. First validation of the attacker source identification 

based on the clock-offset correlation. 

    a). The IDS samples the newly arriving frame intervals and 

calculates the average clock offset iO  with the RLS algorithm.  

    b). The correlation coefficients between the newly arrived 

offsets and the references in the target ECUs are calculated, 

with which the most relevant ECU can be further determined by 

computing over all target ECUs. If the correlation coefficients 

are higher than 0.8, the possible counterfeit ECUs are initially 

determined. 

    Step 3. Secondary validation of the attacker identification 

based on the intra-inter distance algorithm. 

    a). The system extracts the identification parameters 

according to the sampled frame intervals. 

    b). The system establishes the testing matrix with the 

intra-inter distance algorithm in the light of the identification 

parameters. 

    c). Next, we evaluate the testing matrix compared with the 

existing ECU fingerprints and thereby determine the 

counterfeit ECU. 

    d). Finally, the attacker source is located and the abnormal 

ECU is determined. 

IV. PERFORMANCE EVALUATION 

To evaluate the effectiveness of the proposed attacker 

identification method, an experimental test is implemented 

based on a mass-produced vehicle.  

 A. Experimental Setup 

Real vehicle: In this article, a Chery electric vehicle is used 

for our experiments in an isolated and secure environment, as 

shown in Fig. 5. The test device is wired within one CAN bus 

via the On-Board Diagnostic (OBD-II) port in the actual 

vehicle. As for the test nodes, typical controllers including a 

vehicle control unit (ECU1), motor control unit (ECU2) and 

two battery management systems (ECU3 and ECU4) are 

employed. These devices are electrically disconnected from the 

actual power components for the sake of security in the 

practical experiments. The CAN baud-rate is set at 500Kbps 

and communication period among the four ECUs ranges from 

10ms to 500ms. 

Execution environment: The proposed method is 

programmed using the embedded devices (S32K148, NXP), 

which are running at the main frequency of 48MHz and have a 

2MB flash memory. The embedded devices can record the 

timestamps and frame intervals for the actual intrusion 

detection analysis. Therefore, it could evaluate the validity of 

the IDS in the actual in-vehicle environment.   

Picoscope

LaptopCAN 
interface

OBD-II

(a) (b) (c)   

Fig. 5. Experimental environment.   (a) Chery vehicle, (b) Actual test 

environment, (c) OBD-II ports. 

Attack introduction: Considering that the masquerade attack 

is more sophisticated than other attacks, like suspension attacks 

and spoofing attacks, we have selected the masquerade attacks 

to test the proposed method. Since the masquerade attack 

would not change the transmission periods and ID message, 

and only change the sender source, we make ECU4 invalid and 

replace it with a new attacker ECU3. For instance, a frame 

massage with ID 0x401 originally generated from ECU4 would 

be transmitted by ECU3 when the attack instance is introduced. 

 B. ECU Clock Skews 

To validate whether the clock offsets can be optimized with 

the RLS algorithm, we conducted an experiment on the real 
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vehicle to extract the accumulated clock offsets. In this 

experiment, four ECUs are used and two types of ID messages 

are recorded. ECU1 sends messages with IDs 0x541 and 0x542 

at a period T=10ms; ECU2 transmits frame messages with IDs 

0x469 and 0x46A at a period of 100ms; ECU3 sends messages 

with IDs 0x403 and 0x460 at a period of 100ms; ECU4 sends 

messages with IDs 0x411 and 0x401 at a period of 50ms. Then, 

we run the RLS algorithm over the four ECUs to evaluate the 

accumulated clock offsets, which are shown in Fig. 6. 

 

Fig. 6. Clock skews for target ECUs in the real vehicle. 

According to Fig. 6, the accumulated clock offsets in the 

same ECU share a similar tendency regardless of the ID 

sequence, and different ECUs present distinct clock skews, 

which indicates that the clock skew features are only related to 

the hardware configuration. Specifically, the clock skew (slope 

of the accumulated offset curve) of ECU3 is -30.85 10 ; ECU4 

has the smallest clock skew with -41.06 10 , which indicates 

that the frame periods have little effects on the ECU clock 

offsets. Therefore, the deviation of the accumulated clock 

offsets could be assessed when the ECU is tampered. 

In the experiments, we found that the original frame intervals 

come with some high-frequency noises, which would affect the 

identification accuracy of the average clock offsets. Therefore, 

we introduce the ER algorithm to eliminate the intervention of 

noises. In this test, frame intervals of ECU1 are recorded before 

and after the data preprocess are shown in Fig. 7. The original 

frame intervals without the de-noising process come with some 

noises at frames 246, 395, 734 and 891. Since the amplitude of 

this noise is less than a standard frame period, the IDS system 

cannot mark them as an error frame. However, the processed 

frame intervals with the proposed de-noising algorithm in Fig. 

7(b) present good distribution characteristics and there is little 

abnormal noise. Fig. 7(c) shows the accumulated clock offsets 

under the presence and absence of noise. Due to the abnormal 

noise intervention at frame 246, the accumulated clock offset 

has deviated from its original slope. Thus, the estimated clock 

skew with the noise intervention would be recognized as an 

anomaly attack. On the contrary, the estimated clock skew with 

the noise preprocess would follow the right tendency. 

 C. Evaluation of the Anomaly Detection 

The above results of the accumulated clock offsets prove that 

the model residual in the RLS algorithm approaches to zero 

under healthy conditions. If an attack occurs, the clock skew 

would contort, causing non-zero model residuals. Hence, the 

diagnostic variables defined in (5) can visualize the sudden 

increase or decrease under the abnormal attack conditions. We 

introduce the masquerade attack on the ECU4 at frame number 

2500. Before the attack instance, healthy messages with ID 

0x401 were generated by the ECU4; however, when the attack 

occurs, the healthy messages are overwritten and replaced by 

the new messages with the same ID 0x401 transmitted by the 

attacker ECU3. 

Fig. 7. Comparison results of the noise preprocessing on the ECU1.  

(a) Original frame intervals                    (b) Frame intervals after preprocessing                      (c) Accumulated clock 
offset 

Fig. 8. Intrusion detection results for the masquerade attack on the ECU4. 

 (a) Frame intervals                                    (b) Accumulated clock offset                           (c) Diagnostic variables 
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Fig. 8 shows the detection results of the masquerade attacks. 

From Fig. 8(a), frame intervals increased from 50.103ms to 

50.268ms after masquerade attacks, manifesting that the 

difference of hardware configuration surely affect the periodic 

frame intervals. When the attack occurs at frame 2500, the 

slope of the accumulated clock offset begins to tilt. This 

abnormal curve also leads to a sudden increase of the diagnostic 

variable L+, exceeding the preset threshold 10. The mentioned 

anomaly would be regarded as the anomaly intrusion behavior. 

Normally, when the clock skew of the attacker ECU is greater 

than that of the original ECU, the diagnostic variable L+ would 

suddenly increase; on the contrary, when the clock skew is 

smaller than that of the original ECU, the diagnostic variable L- 

would suddenly increase. 

 
(a) Original frame intervals 

 
(b) Frame intervals after the ER data process 

Fig. 9 Results of the validation of ER data processes 

To validate the effectiveness of the ER data processing 

method, we select the datasets from [21] to make another test. 

The relevant results are shown in Fig. 9. In the dataset, the 

frame intervals of periodic messages are recorded as shown in 

Fig. 9(a), in which the average frame interval is about 245ms. 

However, some frame intervals have obviously exceeded 

300ms and some frame intervals are less than 200ms, both of 

which may result in the wrong clock skew. In contrast, the 

frame intervals after the ER data process behaves more 

regularly and the frame intervals are mostly constrained within 

in 230-250ms, which implies that the three-delta principle 

could be effective for the test dataset in the actual ECUs. 

 D. Identification of Attacker Sources 

The effectiveness of the proposed double-verified attacker 

identification algorithm is evaluated. The masquerade attack is 

mounted at the number 250 where the healthy frame originally 

transmitted by the ECU4 would be replaced by forged frames 

with the same ID 0x401 from the attacker ECU3. In this test, 

the correlation coefficients of the four ECUs in the first 

validation step are illustrated in Fig. 10. 

 
Fig. 10. The correlation coefficients of the four ECUs in the first 
validation of the attacker identification. 

 
Fig. 11. The probability distribution of clock offsets in the four ECUs. 

In Fig. 10, the correlation coefficient of ECU4 approaches to 

1 before the attack instance while those of the other ECUs are 

lower than 0.1, and after the attack is introduced, the correlation 

coefficient of ECU4 has rapidly decreased to less than 0.1 while 

that of the anormal ECU3 is about 0.9, which shows that the 

corresponding frame has been transmitted by the abnormal 

ECU rather than the healthy ECU. In the experiment, most 

attacker sources can be well detected with a high identification 

accuracy of more than 90%. Thus, if the identification accuracy 

is not considerably considered, the first validation is sufficient. 

To achieve more accurate identification and higher 

robustness of the related algorithms, the double-verified 

algorithm is introduced. Fig. 11 shows the probability 

distribution of the average clock offsets in the four ECUs. 

Different ECUs present distinct probability density curves 

regardless of the maximum probability density or the average 

offsets. Therefore, it is reasonable to distinguish the frame 

offsets according to their mathematical expectation values. 

Thus, we select the expectation of the average clock offset as an 

identification parameter in the second validation. 

Next, we compared the proposed method with the existing 

dynamic time warping (DTW) method [22]. The attack test has 

been implemented in the embedded systems for more than 

10000 times. The confusion matrix about the identification of 

the proposed method and the DTW algorithm are listed in 

Tables I and II. From Table I, the identification accuracy of all 

ECUs is more than 98%, which manifests that the proposed 

double-verified attacker identification algorithm can well 

distinguish the ECUs and precisely locate the masquerade 

attack. The maximum mismatching rate among all ECUs is 

only 0.272% for ECU2. Table II shows the identification 

accuracy of the DTW method. The identification accuracy of 

the traditional DTW method is lower than 95%. The maximum 

mismatching rate is 5.233% for ECU4.  
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Table I 

IDENTIFICATION ACCURACY OF THE ATTACKER SOURCES FOR THE PROPOSED 

DOUBLE-VERIFIED ALGORITHM 

ECU item ECU1 ECU2 ECU3 ECU4 

0x401 by ECU1 99.721 0 0 0.231 

0x401 by ECU2 0 98.672 0.02 0.191 

0x401 by ECU3 0 0.012 99.122 0 

0x401 by ECU4 0.06 0.272 0.041 98.223 

Table II 

IDENTIFICATION ACCURACY OF ATTACKER SOURCES FOR DTW ALGORITHM 

ECU item ECU1 ECU2 ECU3 ECU4 

0x401 by ECU1 92.433 0 0 5.233 

0x401 by ECU2 0.254 93.654 0.32 2.222 

0x401 by ECU3 0.432 0.494 94.223 0.032 

0x401 by ECU4 5.087 3.232 0.011 91.326 

 E. Evaluation of the Real-time Executability 

Since the actual embedded system in the vehicle control unit 

requires high real-time performance, the executability of the 

proposed method is assessed. We choose the DTW method [22] 

as a comparison group. The relevant test results are depicted in 

Table III and almost 10000 tests were performed, in which the 

average running time, standard deviation and maximum 

deviation are comprehensively analyzed. According to the 

comparison results, the average running time of the DTW 

algorithm is 20.456ms and the maximal time expense is 

25.809ms, which is a huge computational burden for embedded 

systems. The proposed double-verified attacker identification 

algorithm only consumes about 2.852ms and the maximum 

consuming time is only 3.737ms, which has reduced the 

execution time by 86%. The results indicate that the proposed 

algorithm is more appropriate for the actual application. 

Notably, the first step validation takes about 0.534ms, denoting 

that the attacker identification based on the correlation 

coefficients is more proper. If a high detection accuracy is not 

considered, one-step verification (denoted by the first 

validation method) is also an effective and efficient approach.  

In general, the double-verified method proposed in this work 

is superior to the DTW method in terms of the identification 

accuracy and execution time. The test results on the four ECUs 

in the experiment have illustrated that the double-verified 

method has improved the identification accuracy by about 5% 

as shown in Table I and Table II. The DTW method only 

analyzes the clock skews, which may misidentify the ECUs. 

Instead, the proposed method could take the clock skew, clock 

offsets as well as the mathematical expectations into training 

process for a better identification accuracy. As for the 

execution time, the DTW utilizes the time-consuming dynamic 

programming as the solution-seeking method, which would 

compare all sampled data and find similar one. In contrast, the 

intra-inter distance has trained the models offline and utilized 

them online, which is much more efficient. 

In general, the proposed double-verified IDS differs with the 

existing DTW method [22] and the clock skew method [21]. In 

detail, compared with the clock skew method, the subsequent 

ECU source identification and multiple-step validations in the 

proposed method are supplied, in which multiple elements such 

as the clock offset, skew as well as the expectation could be 

utilized for the higher identification accuracy. Compared with 

the DTW method, the proposed method presents higher 

performance in the executability and the identification accuracy. 

Meanwhile, the proposed method has been experimentally 

tested in embedded systems. 
Table III 

THE REAL-TIME PERFORMANCE EVALUATION RESULTS. 

Methods 
Avg. time 

(ms) 

Std. deviation 

(ms) 

Max. deviation 

(ms) 

DTW 20.456 2.542 5.353 

First step validation 0.534 0.104 0.204 

Proposed method 2.852 0.368 0.885 

V. CONCLUSION 

This article proposed a real-time ECU fingerprinting and 

attacker identification approach. It can formulate the unique 

ECU fingerprints and eliminate abnormal noises, thereby 

constructing a much more robust IDS. More importantly, rather 

than applying a complicated global optimization on the 

counterfeit ECU identification using the high-performant 

processors, the proposed double-verified attacker identification 

algorithm can be directly programmed into the embedded 

systems to locate the attacker sources with a higher 

identification accuracy and better executability. Experimental 

results manifest that the proposed attacker identification 

approach has improved the identification accuracy, reaching a 

value higher than 98% while the actual execution time has been 

decreased to less than 3ms. Therefore, the proposed ECU 

fingerprinting and attacker identification approach has 

significantly enhanced the in-vehicle networks security with 

the higher practicability and adaptiveness. 

Although the proposed method could effectively address the 

potential masquerade attacks according to the ECU mapping 

results, limitations still exist. For instance, the proposed method 

is hard to address the possible birthday paradox problem under 

which the clock skews of two ECUs are similar. As for this 

problem, more fingerprints are required, such as ECU physical 

features including their high-level voltages, rising-falling edges, 

duration time of high-voltage levels, plateau time, etc. 

Additionally, this method is also hard to deal with non-periodic 

messages, which should be further addressed in the future 

research.  
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