
Hongming Zhou- Nanyang Technological University
Hongming Zhou
- Nanyang Technological University
About
13
Publications
17,209
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,736
Citations
Current institution
Publications
Publications (13)
Maintaining a desired comfort level while minimizing the total energy consumed is an interesting optimization problem in Heating, ventilating and air conditioning (HVAC) system control. This paper proposes a localized control strategy that uses Computational Fluid Dynamics (CFD) simulation results and K-means clustering algorithm to optimally parti...
The increasing demands of location-based services have spurred the rapid development of indoor positioning system and indoor localization system interchangeably (IPSs). However, the performance of IPSs suffers from noisy measurements. In this paper, two kinds of robust extreme learning machines (RELMs), corresponding to the close-to-mean constraint...
Computational fluid dynamics (CFD) simulation is a useful tool to provide temperature and air flow patterns of an indoor environment. However, one big drawback of the CFD simulation is that it usually requires high computational power and takes long time for one simulation. Thus it is hard to apply the CFD results in the HVAC real-time dynamic visu...
Extreme learning machine (ELM) has recently attracted many researchers' interest due to its very fast learning speed, good generalization ability, and ease of implementation. It provides a unified solution that can be used directly to solve regression, binary, and multiclass classification problems. In this paper, we propose a stacked ELMs (S-ELMs)...
Export Date: 28 July 2014
Geoffrey Hinton and Pascal Vincent showed that a restricted Boltzmann machine (RBM) and auto-encoders (AE) could be used for feature engineering. These engineered features then could be used to train multiple-layer neural networks, or deep networks. Two types of deep networks based on RBM exist: the deep belief network (DBN)1 and the deep Boltzmann...
In this paper, we propose a silicon implementation of extreme learning machines (ELM) using spiking neural circuits. The major components of a silicon spiking neural network, neuron, synapse and ‘Address Event Representation’ (AER) for asynchronous spike based communication, are described. The benefits of using this hardware to implement an ELM as...
Credit risk evaluation has become an increasingly important field in financial risk management for financial institutions, especially for banks and credit card companies. Many data mining and statistical methods have been applied to this field. Extreme learning machine (ELM) classifier as a type of generalized single hidden layer feed-forward netwo...
Extreme Learning Machine (ELM) as a type of generalized single-hidden layer feed-forward networks (SLFNs) has demonstrated its good generalization performance with extreme fast learning speed in many benchmark and real applications. This paper further studies the performance of ELM and its variants in object recognition using two different feature...
Due to the simplicity of their implementations, least square support vector machine (LS-SVM) and proximal support vector machine (PSVM) have been widely used in binary classification applications. The conventional LS-SVM and PSVM cannot be used in regression and multiclass classification applications directly, although variants of LS-SVM and PSVM h...
The original extreme learning machine (ELM), based on least square solutions, is an efficient learning algorithm used in “generalized” single-hidden layer feedforward networks (SLFNs) which need not be neuron alike. Latest development [1] shows that ELM can be implemented with kernels. Kernlized ELM can be seen as a variant of the conventional LS-S...
Extreme learning machine (ELM) as an emergent technology has shown its good performance in regression applications as well as in large dataset (and/or multi-label) classification applications. The ELM theory shows that the hidden nodes of the “generalized” single-hidden layer feedforward networks (SLFNs), which need not be neuron alike, can be rand...