Hongbo Zhang

Hongbo Zhang
Åbo Akademi University · Turku Centre for Biotechnology

PhD University of Helsinki

About

176
Publications
30,089
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,408
Citations
Citations since 2016
143 Research Items
5780 Citations
201620172018201920202021202202004006008001,0001,2001,400
201620172018201920202021202202004006008001,0001,2001,400
201620172018201920202021202202004006008001,0001,2001,400
201620172018201920202021202202004006008001,0001,2001,400
Additional affiliations
January 2013 - present
University of Helsinki
Position
  • PostDoc Position

Publications

Publications (176)
Article
Full-text available
Pancreatic carcinoma is an aggressive subtype of cancer with poor prognosis, known for its refractory nature. To address this challenge, we have established a stable nanoplatform that combines chemotherapy with photodynamic therapy (PDT) to achieve better curative efficacy. First, we designed and synthesized a disulfide-bonded paclitaxel (PTX)-base...
Article
Full-text available
Tumor Therapy A pH‐responsive cluster metal–organic framework nanoparticle is developed by Wenguo Cui, Baiyong Shen, Hélder A. Santos, and co‐workers in article number 2203915, based on acid‐induced conversion from hydrophilicity to hydrophobicity, leading to aggregated nanoparticles. These nanoparticles inhibit tumor growth and reactivate the tumo...
Article
Full-text available
Ribonucleoprotein (RNP) based CRISPR/Cas9 gene-editing system shows great potential in biomedical applications. However, due to the large size, charged surface and high biological sensitivity of RNP, its efficient delivery with precise control remains highly challenging. Herein, a microfluidic-assisted metal-organic framework (MOF) based biomineral...
Article
Although undergo decades of development, nanoparticulate drug delivery vehicles for efficient cancer therapy remain a challenge, confined by low drug loading, instability, and poor cancer tissue selectivity. Self-assembled prodrug, the combination of prodrug strategy and the self-assembly merits, represents a special chemical entity which spontaneo...
Article
To optimize synergistic breast cancer treatment, a nanocomposite was fabricated with pH-temperature responsive and chemo-photothermal combination therapy. Herein, gold nanorods (AuNRs) are coated with [poly[(N-isopropylacrylamide)-co-(methacrylic acid)] (p(NIPAM-co-MAA)) modified mesoporous silica (MS) for Doxorubicin (DOX) delivery ([email protect...
Article
Full-text available
As a result of the deficient tumor‐specific antigens, potential off‐target effect, and influence of protein corona, the metal‐organic framework nanoparticles have inadequate accumulation in the tumor tissues, limiting the therapeutic effects. In this work, a pH‐responsive linker (L) is prepared by covalently modifying oleylamine (OA) with 3‐(bromom...
Article
Full-text available
An integrated custom cross-response sensing array has been developed combining the algorithm module’s visible machine learning approach for rapid and accurate pathogenic microbial taxonomic identification. The diversified cross-response sensing array consists of two-dimensional nanomaterial (2D-n) with fluorescently labeled single-stranded DNA (ssD...
Article
Full-text available
Antibody-mediated rejection (ABMR) is a major cause of dysfunction and loss of transplanted kidney. The current treatments for ABMR involve nonspecific inhibition and clearance of T/B cells or plasma cells. However, the prognosis of patients following current treatment is poor. T follicular helper cells (Tfh) play an important role in allograft-spe...
Article
Introduction: Gene therapy is becoming increasingly common in clinical practice, giving hope for the correction of a wide range of human diseases and defects. The CRISPR/Cas9 system, consisting of the Cas9 nuclease and single-guide RNA (sgRNA), has revolutionized the field of gene editing. However, efficiently delivering the CRISPR-Cas9 to the tar...
Article
Full-text available
Herein, a smart nanohydrogel with endogenous microRNA-21 toehold is developed to encapsulate gemcitabine-loaded mesoporous silica nanoparticles for targeted pancreatic cancer therapy. This toehold mediated strand displacement method can simultaneously achieve...
Article
The current treatment of wet age-related macular degeneration (wAMD) relies on monthly intravitreal or intravenously injection of vascular endothelial growth factor (VEGF) inhibitor or photodynamic (PDT) agents to inhibit choroidal neovascularization. However, traumatic local therapy and exogenous long-distance fundus drug delivery often lead to se...
Article
Full-text available
Biofilms are currently responsible for 80% of human chronic bacterial infections, being composed of bacterial communities within self‐produced extracellular polymeric substances (EPS) that can resist various adverse factors in the bacterial microenvironment. Therefore, the development of powerful antibacterial systems by disrupting biofilms first a...
Article
Full-text available
Microfluidics has become a popular method for constructing nanosystems in recent years, but it can also be used to coat other materials with polymeric layers. The polymeric coating may serve as a diffusion barrier against hydrophilic compounds, a responsive layer for controlled release, or a functional layer introduced to a nanocomposite for achiev...
Article
Full-text available
Thrombosis and infections are the two major complications associated with extracorporeal circuits and indwelling medical devices, leading to significant mortality in clinic. To address this issue, here, we report a biomimetic surface engineering strategy by the integration of mussel-inspired adhesive peptide, with bio-orthogonal click chemistry, to...
Article
Triple-negative breast cancer (TNBC) remains the most challenging breast cancer subtype. In the presented work, we have combined several emerging technologies to build up a nanoplatform for TNBC treatment: photothermal therapy, prodrug design and tumor cell camouflage formulation. First, we synthesized a paclitaxel (PTX) based prodrug PTX-SS, and t...
Article
Kidney transplantation is the most effective therapy for patients with end‐stage renal disease. However, antibody‐mediated rejection (ABMR) threatens long‐term survival of renal grafts. Although ABMR can be controlled by donor‐specific antibody clearance and B‐ or (and) plasma‐cells inhibition, the treatment often causes severe side effects in pati...
Article
Full-text available
Abstract Zeta potential is an essential surface parameter in the characterization of nanoparticles, determined at the interface of loosely bound ions (diffuse layer) at the nanoparticle surface and free ions in solution. The ionic concentration and pH of the solution are known to, by definition, influence the composition of the diffuse layer and ze...
Article
Neutrophils are the most abundant innate immune cells in human circulation; however, their derived exosomes have been rarely studied for tumor treatment. Here, we reported that exosomes from neutrophils (N-Ex) induce tumor cell apoptosis by delivering cytotoxic proteins and activating caspase signaling pathway. In addition, we decorated N-Ex with s...
Article
Full-text available
A novel chemical functionalization of guar gum (GG) by benzoic acid (BA) via nucleophilic substitution reaction in aqueous solution has been reported. BA moieties are chosen due to coordination chemistry of carboxylic acid moieties, hydrophobicity and intermolecular interaction of aromatic rings. The presence of conjugated BA on guar gum-benzoic ac...
Article
Hearing loss has become the most common sensory disorder worldwide. Despite intensive research on the pathophysiology of hearing loss, biological therapeutic approaches are limited by the anatomical and physiological characteristics of the inner ear. Challenges in inner ear drug delivery involve biotherapeutic instability, membrane inaccessibility...
Article
Full-text available
Immune cells play a crucial regulatory role in inflammatory phase and proliferative phase during skin healing. How to programmatically activate sequential immune responses is the key for scarless skin regeneration. In this study, an “Inner-Outer” IL-10-loaded electrospun fiber with cascade release behavior was constructed. During the inflammatory p...
Article
Full-text available
Appropriate tuning of robust artificial coatings can not only enhance intracellular delivery but also preserve the biological functions of genetic molecules in gene based therapies. Here, we report a strategy to synthesize controllable nanostructures in situ by encapsulating CRISPR/Cas9 plasmids into metal-organic frameworks (MOFs) via biomimetic m...
Article
Full-text available
This article provides a broad spectrum about the nanoprodrug fabrication advances co‐driven by prodrug and nanotechnology development to potentiate cancer treatment. The nanoprodrug inherits the features of both prodrug concept and nanomedicine know‐how, attempts to solve underexploited challenge in cancer treatment cooperatively. Prodrugs can rele...
Article
Full-text available
Although great promise has been achieved with nanomedicines in cancer therapy, limitations are still encountered, such as short retention time in the tumor. Herein, a nanosystem that can modulate the particle size in situ by near‐infrared (NIR) light is self‐assembled by cross‐linking the surface‐modified poly(lactic‐co‐glycolic acid) from the up‐c...
Cover Page
Full-text available
In article number 2101262, Gang Chen, Hélder A. Santos, Wenguo Cui, and co-workers construct a light-controlled nanosystem with in situ modulated particle size by near-infrared irradiation with a synergistic effect using photochemotherapy for tumor suppression. The nanosystem at the tumor leads to rapid shedding of polye thylene glycol by near-infr...
Article
In the inflammatory peri-implant microenvironment, excessive polarization of macrophages to the proinflammatory M1 phenotype can trigger the secretion of inflammatory cytokines, which promote bone resorption and impede osteogenesis around implants. The direct consequence of this process is the failure of prosthetic implants due to aseptic loosening...
Article
Full-text available
CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-associated protein 9) is a potent technology for gene-editing. Owing to its high specificity and efficiency, CRISPR/Cas9 is extensity used for human diseases treatment, especially for cancer, which involves multiple genetic alterations. Different concepts of cancer treatment by...
Article
Full-text available
Local minimally invasive injection of anticancer therapies is a compelling approach to maximize the utilization of drugs and reduce the systemic adverse drug effects. However, the clinical translation is still hampered by many challenges such as short residence time of therapeutic agents and the difficulty in achieving multi-modulation combination...
Article
Full-text available
Communication between biological components is critical for homeostasis maintenance among the convergence of complicated bio-signals. For therapeutic nanoparticles (NPs), the general lack of effective communication mechanisms with the external cellular environment causes loss of homeostasis, resulting in deprived autonomy, severe macrophage-mediate...
Article
Full-text available
Gene therapy is identified as a powerful strategy to overcome the limitations of traditional therapeutics to achieve satisfactory effects. However, various challenges related to the dosage form, delivery method, and, especially, application value, hampered the clinical transition of gene therapy. Here, aiming to regulate the cartilage inflammation...
Article
Bone regenerative engineering provides a great platform for bone tissue regeneration covering cells, growth factors and other dynamic forces for fabricating scaffolds. Diversified biomaterials and their fabrication methods have emerged for fabricating patient specific bioactive scaffolds with controlled microstructures for bridging complex bone def...
Article
Full-text available
Extracellular vesicles (EVs) have emerged as a novel cell-free strategy for the treatment of many diseases including cancer. As a result of their natural properties to mediate cell-to-cell communication and their high physiochemical stability and biocompatibility, EVs are considered as excellent delivery vehicles for a variety of therapeutic agents...
Article
Full-text available
Dynamic covalent materials in response to specific stimuli enable generation of new structures by reversibly forming/breaking chemical bonds, holding a great potential for application in controlled drug release. However, it remains challenging to utilize dynamic covalent chemistry for programming drug delivery kinetics. Here, in situ polymerization...
Article
Full-text available
Surgical resection is commonly used for therapeutic management of different solid tumors and is regarded as a primary standard of care procedure, but precise localization of tumor margins is a major intraoperative challenge. Herein, a generalized method by optimizing gold nanoparticles for intraoperative detection and photothermal ablation of tumor...
Article
Full-text available
Bladder cancer is one of the concerning malignancies worldwide, which is lacking effective targeted therapy. Gene therapy is a potential approach for bladder cancer treatment. While, a safe and effective targeted gene delivery system is urgently needed for prompting the bladder cancer treatment in vivo. In this study, we confirmed that the bladder...
Article
Full-text available
Self-assembled prodrugs (SAPDs), which combine prodrug strategy and the merits of self-assembly, not only represent an appealing type of therapeutics, enabling the spontaneous organization of supramolecular nanocomposites with defined structures in aqueous environments, but also provide a new method to formulate existing drugs for more favorable ou...
Article
Full-text available
Recently, there has been an increasing interest for utilizing the host immune system to fight against cancer. Moreover, cancer vaccines, which can stimulate the host immune system to respond to cancer in the long term, are being investigated as a promising approach to induce tumor-specific immunity. In this work, we prepared an effective cancer vac...
Article
Full-text available
Biofunctionalization of artificial nerve implants by incorporation of specific bioactive factors has greatly enhanced the success of grafting procedures for peripheral nerve regeneration. However, most studies on novel biofunctionalized implants have emphasized the promotion of neuronal and axonal repair over vascularization, a process critical for...
Article
Full-text available
The analysis of nanoparticles’ biocompatibility and immunogenicity is mostly performed under a healthy condition. However, more clinically relevant evaluation conducted under pathological condition is less known. Here, the immunogenicity and bio–nano interactions of porous silicon nanoparticles (PSi NPs) are evaluated in an acute liver inflammation...
Article
Full-text available
Zeolitic imidazolate framework (ZIF-8), composed of zinc ion and dimethylimidazole, is widely used in drug delivery, due to the easy fabrication process and the good biosafety. However, ZIF-8 suffers from low affinity to non-electric-rich drugs and does not have surface functional groups. Here, to target deliver doxorubicin (DOX) with ZIF-8, DOX wa...
Article
Full-text available
Metal–organic frameworks (MOFs) have proven to be a promising class of drug carriers due to their high porosity, crystalline properties with defined structure information, and abundant surface chemistry for further functionalization. However, there has not been extensive research on MOF-based drug carriers with stimuli-responsive, dual-drug deliver...
Article
Full-text available
Traditional chemotherapy, along with antiangiogenesis drugs (combination cancer therapy), has shown reduced tumor recurrence and improved antitumor effects, as tumor growth and metastasis are often dependent on tumor vascularization. However, the effect of combination chemotherapy, including synergism and additive and even antagonism effects, depen...
Article
Full-text available
Rationale: Endophthalmitis, which is one of the severest complications of cataract surgeries, can seriously threaten vision and even lead to irreversible blindness owing to its complicated microenvironment, including both local bacterial infection and severe inflammation. It is urgent to develop a comprehensive treatment for both anti-bacterial and...
Article
Full-text available
In this study, direct and effective intracellular delivery of CRISPR/Cas9 plasmids for homology‐directed repair is achieved by functionalized mesoporous silica nanoparticles (MSNs). The functionalized MSNs (Cy5.5‐MSNs‐NLS) are synthesized by in situ labeling of a fluorescent dye (Cy5.5) and surface conjugation of nuclear localization sequence (NLS,...
Article
Full-text available
The aim of this study was to study an AMP, aurein 1.2, which substantially increased protein delivery directly into multiple mammalian inner ear cell types in vivo. Different concentrations of aurein 1.2 with superpositively charged GFP (+36-GFP) protein fused with Cre recombinase were delivered to P1-2 and adult cochleae of Cre reporter transgenic...
Preprint
Full-text available
Metal-organic frameworks (MOFs) have proven to be a promising class of drug carriers due to their high porosity, crystalline properties with defined structure information, and their potential for further functionalization. However, to date, no extensive research has been conducted on MOF-based drug carriers with stimuli-responsive, dual-drug delive...
Article
Full-text available
The development of science and technology often drew lessons from natural phenomena. Herein, inspired by drying‐driven curling of apple peels, hydrogel‐based micro‐scaled hollow tubules (MHTs) are proposed for biomimicking microvessels, which promote microcirculation and improve the survival of random skin flaps. MHTs with various pipeline structur...
Article
Full-text available
Inspired by drying‐driven curling of apple peels, hydrogel‐based micro‐scaled hollow tubules are proposed in article number 1903553 by Yuguang Zhang, Xiaoming Sun, Hélder A. Santos, Wenguo Cui, and co‐workers for biomimicking microvessels with diameters of 50–500 μm, which promote microcirculation and improve the survival of random skin flaps. The...
Article
Chronic infections, caused by multidrug-resistant (MDR) bacteria, constitute a serious problem yet often underappreciated in clinical practice. The in situ monitoring of the bacteria-infected disease is also necessary to track and verify the therapeutic effect. Herein we present a facile approach to overcome the above challenges through a Raman tag...
Article
Liposome is one of the most commonly used drug delivery systems in the world, due to its excellent biocompatibility, satisfactory ability in controlling drug release, and passive targeting capability. However, some drawbacks limit the application of liposomes in clinical, such as problems in transporting, storing, and difficulties in maintaining th...
Article
Full-text available
A pH/redox-triggered mesoporous silica nanoparticle (MSN)-based nano-platform has been fabricated for doxorubicin/paclitaxel (DOX/PTX) co-delivery. In this drug-delivery system (DDS), PTX is covalently attached to the surface of DOX loaded MSN via a linker with disulfide bond. By directly attaching PTX to MSN, we can significantly enhance the PTX´s...
Article
Full-text available
Gene therapy provides an ideal potential treatment for intervertebral disk degeneration by delivering synthetic microRNAs (miRNAs) to regulate the gene expression levels. However, it is very challenging to deliver miRNAs directly, which leads to inactivation, low transfection efficiency, and short half‐life. Here, Agomir is loaded in hydrogel to co...
Article
Polypeptides with short chains of amino acid monomers have been widely applied in the clinic because of their various biological functions. However, the easily‐inactivated characteristics and burst releasing of the peptides limit their application in vivo. Here, a novel osteogenic polypeptide hydrogel (GelMA‐c‐OGP) is created by co‐cross‐linking te...