
16256 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 22, NOVEMBER 15, 2021

Multiagent Deep Reinforcement Learning for Task
Offloading and Resource Allocation in

Cybertwin-Based Networks
Wenjing Hou , Graduate Student Member, IEEE, Hong Wen , Senior Member, IEEE,

Huanhuan Song , Graduate Student Member, IEEE, Wenxin Lei, Graduate Student Member, IEEE,

and Wei Zhang , Fellow, IEEE

Abstract—In this article, a hierarchical task offloading
strategy is presented for delay-tolerant and delay-sensitive
missions by integrating edge computing and artificial intel-
ligence into Cybertwin-based network to guarantee user
Quality of Experience (QoE), low latency, and ultrareliable
services, which are huge challenges to the Internet of Things
(IoT) due to diverse application requirements, heterogeneous
multidimensional resources, and time-varying network environ-
ments. The novel scheme achieves faster task processing, dynamic
real-time allocation, and lower overhead by taking advantages
of a multiagent deep deterministic policy gradient (MADDPG).
Moreover, federated learning is used to train the MADDPG
model. Numerical results demonstrate that the proposed algo-
rithm improves system processing efficiency and task completion
ratio compared to the benchmark schemes.

Index Terms—Cybertwin, deep reinforcement learning (RL),
edge computing, federated learning (FL), resource allocation, task
offloading.

I. INTRODUCTION

RECENT advancements in Internet of Things (IoT) and
wireless communication technology have enabled an

explosive growth of smart terminal devices and data traffic. In
the next 6G era, millions of end devices connect to the wire-
less network, accompanied by an increasing number of various
applications (e.g., online games, virtual/augmented reality,
and autonomous driving) [1]–[3]. These applications consume
extensive computation resources and require extreme user
Quality of Experience (QoE), low latency, and ultrareliable

Manuscript received January 30, 2021; revised May 23, 2021; accepted
July 3, 2021. Date of publication July 8, 2021; date of current
version November 5, 2021. This work was supported in part by
the National Key Research and Development Program under Grant
2018YFB0904900 and Grant 2018YFB0904905; in part by the Key
Area Research and Development Program of Guangdong Province under
Grant 2020B0101110003; and in part by the Shenzhen Science &
Innovation Fund under Grant JCYJ20180507182451820. (Corresponding
authors: Hong Wen; Huanhuan Song.)

Wenjing Hou, Hong Wen, Huanhuan Song, and Wenxin Lei are with the
School of Aeronautics and Astronautics, University of Electronic Science and
Technology of China, Chengdu 611731, China (e-mail: uestc_hwj@126.com;
sunlike@uestc.edu.cn; huanhuansong@126.com; leiwenxin@outlook.com).

Wei Zhang is with the School of Electrical Engineering and
Telecommunications, University of New South Wales, Sydney, NSW 2052,
Australia (e-mail: w.zhang@unsw.edu.au).

Digital Object Identifier 10.1109/JIOT.2021.3095677

services [4], [5]. Furthermore, the enormous amount of data
generated at the edge of wireless networks will converge into
the core network, bringing unprecedented challenges to the
existing wireless network architecture [6]. In this regard, the
Cybertwin-based network architecture has recently proposed
to be a potential solution in the 6G network that can support
ultramassive connectivity and provide high-quality services for
end devices.

Edge computing efficiently shifts computing and caching
capabilities to the network edge for augmenting services
and applications [7], [8]. Nevertheless, due to the limited
resources in a single-edge cloud or end device, collaborative
task execution of multiple edges or core clouds is needed.
To accommodate the request, we can leverage Cybertwin to
guide resource cooperation among end-edge-cloud and allo-
cate computing, caching, as well as communication resources
in a distributed way [9]. Specifically, Cybertwin serves as
an intelligent agent located at the edge cloud that connects
directly with end devices and provides high-quality service by
offloading tasks to devices with higher computing power to
meet end devices’ diverse demands. Combined with the char-
acteristics of Cybertwin, the related network architecture can
support scalability, security, mobility, and availability.

However, the Cybertwin-based network architecture
urgently needs to tackle some issues. The first problem is
mixing task performance, since massive end devices generate
various applications with diverse demands, and traditional
hybrid offloading strategies lead to unbalanced consumption
of wireless network resources and severe degradation of the
Quality of Service (QoS). Second, multidimensional wireless
resources are coupled and time varying [13]–[15]. The
distributed and heterogeneous features of network resources
cause the scheduling process to be increasingly complicated.
Additionally, based on the current network state, network
environment, and service requirements, more computing
tasks are selectively accommodated and executed by end
devices, edge computing servers, or cloud computing servers.
Third, the interaction of heterogeneous end devices and
migration across edge clouds can incur plenty of security
and privacy problems [16]–[18]. End devices may not trust
the edge and core clouds and even be reluctant to offload
data related to computational tasks to servers. Meanwhile,

2327-4662 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 29,2022 at 22:07:43 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1186-2373
https://orcid.org/0000-0002-0073-6101
https://orcid.org/0000-0001-8591-6939
https://orcid.org/0000-0002-1059-3642

HOU et al.: MULTIAGENT DEEP REINFORCEMENT LEARNING FOR TASK OFFLOADING AND RESOURCE ALLOCATION 16257

complex and variable network connections and more intensive
communication will increase the probability of information
leakage.

To address the above thorny problems, a hierarchical
task offloading and dynamic resource allocation scheme is
proposed in this article for delay-tolerant and delay-sensitive
missions by integrating edge computing and artificial intel-
ligence (AI) into Cybertwin-based network. AI has been
widely employed in wireless networks to solve high complex-
ity optimization problems and make timely resource allocation
decisions [19], [20]. Nonetheless, conventional AI algorithms
require end devices to transmit their private data to edge
servers or a remote cloud, which directly increases data and
sensitive information leakage risk. Federated learning (FL) is
regarded as a feasible approach for distributed machine learn-
ing to satisfy privacy protection and data security [21], [22].
It allows multiple participants to cooperatively build a shared
model while retaining their privacy-sensitive data locally.

In this article, we integrate deep reinforce learning (DRL)
and FL into Cybertwin-based network by jointly optimizing
hierarchical task offloading and resource allocation and pro-
moting the flexible collaboration of end devices, edge comput-
ing servers, or cloud computing servers for improving system
processing efficiency and security. The main contributions in
this article are summarized as follows.

1) Hierarchical Task Offloading for Cybertwin-Based
Network: We propose the collaborative edge comput-
ing offloading and hybrid alternating offloading pat-
tern for delay-sensitive tasks and delay-tolerant tasks,
respectively.

2) Various Offloading Pattern for Tasks and Typical
Scenarios: Different types of tasks can be processed
by edge computing offloading and hybrid alternat-
ing offloading modes. For different offloading ways,
we construct communication, computation, and cache
models based on multidimensional network resources,
system cost models based on time and energy, and effi-
ciency models based on the hierarchical task offloading
mechanism.

3) Joint Optimization of Hierarchical Task Offloading
and Resource Allocation Based on Multiagent Deep
Deterministic Policy Gradient Algorithm (JHORA-
MADDPG): Joint optimization of the hierarchical task
offloading and resource allocation problem is formu-
lated to maximize the system processing efficiency.
Since resource allocation and offloading task variables
form high-dimensional matrices, traditional single-agent
DRL methods are challenging to obtain the optimal pol-
icy with partial information and a dynamic network
environment. In this article, a multiintelligent reinforce-
ment learning (RL) algorithm is employed to solve this
problem.

4) FL Model for MADDPG: A distributed model training
approach based on the FL algorithm is investigated to
solve the data security and privacy issues in the central-
ized training process of the multiagent deep determinis-
tic policy gradient (MADDPG) model. This approach
only shares the trained model parameters during the

training process without the direct interaction of local
data, protecting privacy while achieving the training
effectiveness of traditional centralized training.

The remainder of this article is organized as follows. In
Section II, we review the corresponding related works. The
system model is given in Section III. Section IV presents
communication, computation, cache, and system cost mod-
els. The problem formulation and MADDPG-based solution
are provided in Section V. Numerical results are discussed in
Section VI. Finally, Section VII concludes this work.

II. RELATED WORKS

A. Resource Allocation in Edge Computing

Resource allocation, including networking, caching,
and computing, has received considerable attention.
Yang et al. [23] studied the tradeoff between delay and
energy consumption in the Maritime Internet of Things
(M-IoT). A two-stage joint optimal offloading algorithm
is proposed to allocate computation and communication
resources. Ren et al. [24] investigated the collaborative cloud
and edge computing scheme, where tasks can be partially
processed by both the edge node and the cloud server. A
general communication, computation, and caching framework
was introduced in [25], where mobile devices form device-
to-device (D2D) connections and share any combination
of the three resources. Wu et al. [26] established a hybrid
offloading model for edge and core cloud servers. Although
these excellent works have investigated edge computing
and resource allocation in wireless networks, they did not
consider resource allocation for hierarchical task offloading
with end-edge-cloud collaboration.

B. Artificial Intelligence-Enabled Edge Computing

Since AI and machine learning are emerging as powerful
tools, some work has been done to explore how to design task
offloading and resource allocation using AI in edge computing.
Peng and Shen [27] formulated a joint vehicle association and
multidimensional resource optimization problem in a vehicu-
lar network. They designed an RL solution to maximize the
number of completed tasks. Li et al. [28] proposed a model-
free DRL approach to reduce computational service latency
and improve service reliability. He et al. [29] presented a
novel DRL scheme for allocating network resources under the
framework for trust-based social networks. Dai et al. [30] used
the DRL-based computation offloading and resource alloca-
tion algorithm to minimize system energy consumption in a
multiuser end-edge-cloud orchestrated network. Unfortunately,
these works ignored end-user privacy protection and data secu-
rity in the training process, while the long centralized training
time may impact delay-sensitive applications.

C. Federated Learning-Enabled Edge Computing

Currently, some existing research on FL and edge comput-
ing aims to tackle the data security issue. Niknam et al. [31]
discussed an FL framework for wireless communications.
They adopted several use cases to introduce energy, band-
width, delay, and data privacy concerns. In [32], DRL and FL

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 29,2022 at 22:07:43 UTC from IEEE Xplore. Restrictions apply.

16258 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 22, NOVEMBER 15, 2021

Fig. 1. Architecture of end-edge-cloud Cybertwin-based network.

were integrated into smart ocean FL IoT networks for resource
allocation. Yu et al. [33] proposed a two-timescale deep
RL method for joint optimization of computation offloading,
resource allocation, and service caching placement with FL.
However, incorporating FL to an end-edge-cloud Cybertwin-
based network has not been widely studied.

In this article, we investigate a hierarchical task offloading
and resource allocation strategy for end-edge-cloud collabora-
tion in a Cybertwin-based network by leveraging FL to train
the proposed MADDPG model in a distributed way for data
security and privacy enhancement.

III. SYSTEM OVERVIEW

A. Network Architecture

As shown in Fig. 1, we consider an end-edge-cloud
Cybertwin-based network similar to [6] and [9], which con-
sists of the end device plane, edge cloud plane, core cloud
plane, and Cybertwin. In the end device plane, ends (smart-
phones, intelligent manufacturing equipment, UAVs, cars, etc.)
generate various applications with diverse demands (e.g.,
online games, virtual/augmented reality, autonomous driv-
ing, and manufacturing). The computational tasks generated
by the end device i at time slot t is given by Di(t) =
{ϕda

i (t), ϕco
i (t), ϕde

i (t)}, where ϕda
i (t), ϕco

i (t), and ϕde
i (t) denote

the size of the task, the required computing resources, and
the maximum tolerance delay, respectively. They can compute
their tasks locally or offload tasks to anyone of their neighbor
device via D2D communication.

In the edge cloud plane, multiple distributed edge servers
are deployed on the edge of networks, responding to ends’
requests faster and assisting core clouds in providing high-
quality services. Each end device can offload tasks to its
associated edge cloud or from the associated edge cloud to the
neighboring edge cloud. The available spectrum, computation,
and cache resources of the edge cloud k ∈ K are expressed as
{Csp

k , Cco
k , Cca

k }. Note that per computing resource is defined
as the CPU resource required to process one unit of computing
task.

The core cloud plane consists of multiple core cloud servers.
It is fully connected via high-speed optical links to consti-
tute the core network that provides computing, caching, and
communication resources to the end devices. Therefore, delay-
tolerant and computing-intensive tasks can be offloaded on
the central cloud servers to address the traffic and computing
pressure on the edge cloud.

Cybertwin is a mirrored digital mapping of the end devices
in virtual cyberspace, which serves as an intelligent agent
located at the edge cloud that connects directly with end
devices. It provides high-quality service and a more promis-
ing user experience by knowing requirements well on behalf of
end devices and flexibly scheduling resources compared with
the traditional edge computing architecture. For the end edge-
cloud Cybertwin-based network, end devices first connect to
the Cybertwin located in the edge cloud to acquire required
services without the connection between ends and servers.
Cybertwin provides efficient and high-quality services for end
devices by managing various computing, caching, and commu-
nication resources in a distributed way from the cloud network
(including the edge and core clouds) and offloading comput-
ing tasks to better computing devices. In short, Cybertwin acts
as the assistant of end devices to achieve various required
services.

In the above scenario, task execution owns five patterns:
1) local processing; 2) offloading to the edge cloud; 3) offload-
ing to the nearby edge cloud; 4) offloading to the core cloud;
and 5) offloading to the nearby device.

B. System Framework

Cybertwin can establish connections with end devices under
its coverage to obtain real-time state information of end
devices (e.g., task queues, positions, current computing, cache,
and spectrum resources). It also collects the real-time state
information of available resources on the edge cloud and the
core cloud as a service agent. By providing the function of
communications assistant, network behavior logger, and digi-
tal asset, Cybertwin high-efficiently supports online services.
Thus, it serves as a scheduling agent to decide task offloading
and resource allocation (e.g., spectrum, computing, and cache
resource allocation) schemes as in Fig. 2.

Step 1: First, Cybertwin, located in the edge cloud, gathers
real-time state information of task queue, end devices, edge
cloud, and core cloud.

Step 2: According to the acquired state information,
multidimensional resource management and system cost mod-
els are designed under the edge-dominated system for het-
erogeneous computing tasks. Furthermore, the problem of
joint hierarchical task offloading and resource allocation is
formulated for maximizing processing efficiency.

Step 3: A multiagent RL algorithm (MADDPG) is used to
obtain the hierarchical task offloading and resource allocation
scheme.

Step 4: Finally, Cybertwin transmits the corresponding
offloading and resource allocation decisions to the end devices
if computing tasks are processed locally or through other
neighbor devices. Alternately, it will share the offloading

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 29,2022 at 22:07:43 UTC from IEEE Xplore. Restrictions apply.

HOU et al.: MULTIAGENT DEEP REINFORCEMENT LEARNING FOR TASK OFFLOADING AND RESOURCE ALLOCATION 16259

Fig. 2. System framework.

and allocation results to the edge cloud and core cloud if
computing tasks are performed on the edge cloud and core
cloud.

IV. SYSTEM MODEL

Next-generation networks are expected to accommodate
large-scale computing-intensive and latency-sensitive applica-
tions, which can be processed selectively on the end device,
edge cloud, or core cloud. Most of the existing research con-
centrates on hybrid offloading strategies without differentiating
delay-sensitive and delay-tolerant task, which inevitably gen-
erates excessive consumption of wireless network resources
and severe degradation of QoS. Therefore, under the edge-
dominated system, we design a hierarchical task offloading
and multidimensional resource allocation strategy. For delay-
sensitive tasks which cannot be processed by the cloud, the
collaborative edge computing offloading mode, including local
processing, offloading to the edge cloud, and offloading to
the nearby edge cloud, is proposed. Additionally, we design
hybrid alternating offloading for delay-tolerant tasks, including
offloading to the cloud and offloading to the nearby device.
Since the D2D offloading needs to match other devices with
sufficient available resources, it is suitable for delay-tolerant
tasks.

Let ζi ∈ {0, 1} denote the decision variable on the exe-
cution mode of task Di. If task Di is processed by the
collaborative edge computing offloading mode, ζi = 1. If task
Di is processed by the hybrid alternating offloading mode,
ζi = 0. Furthermore, for delay-sensitive tasks, we define
φi,l, φi,k, φi,h,k ∈ {0, 1} as the decision variable on the collabo-
rative edge computing mode of taskDi. If taskDi is processed
locally, φi,l = 1; otherwise, φi,l = 0. If task Di is offloaded
to the edge cloud k, φi,k = 1; otherwise, φi,k = 0. If the edge
cloud h offloads taskDi to edge cloud k, φi,h,k = 1; otherwise,
φi,h,k = 0. For delay-tolerant tasks, we define γi,c, γi,j ∈ {0, 1}
as the decision variable on the hybrid alternating mode of
task Di. If task Di is offloaded to the core cloud, γi,c = 1;

otherwise, γi,c = 0. If task Di is offloaded to end device j by
D2D communication, γi,j = 1; otherwise, γi,j = 0.

A. Communication Model

1) End Device to Edge Cloud: When the end device i
selects to offload computing task Di to the edge cloud
k ∈ K, the total available uplink spectrum resources are
given by Csp

k . The number of total uplink channels is
denoted by Nk and the uplink channel set is represented
by N

k. Then, ck = Csp
k /Nk indicates the bandwidth of

each subchannel, and the available transmission rate of
channel n assigned to end device i, can be expressed as

rk
i,n(t) = ck log2

(
1+ Pk

i gk
i,n(t)

σ 2 + ηk
i,n(t)

)
(1)

where Pk
i indicates the transmission power of end device

i and edge cloud k. We employ gk
i,n(t) and ηk

i,n(t) to
represent the channel gain and interference of channel
n, respectively. xk

i,n = 1 represents channel n which is
assigned to the end device; otherwise, xk

i,n = 0. Then,
the total uplink transmission rate between end device i
and edge cloud k can be given as

rk
i (t) =

∑
n∈Nk

xk
i,nrk

i,n(t). (2)

2) Interedge Cloud: Due to the computing burden on the
edge cloud, the hth end cloud cannot always own enough
resources to meet the task requirement. Thus, the end
cloud h ∈ Hk often offloads the task Di to the nearby
edge cloud k ∈ K. Let Hk denote the set of neighbor-
ing edge clouds to end cloud k. Denote Csp

k2k the total
available uplink spectrum resources. Nk2k is the number
of total uplink channels and N

k2k is the uplink channel
set. Then, ck2k = Csp

k2k/Nk2k indicates the bandwidth of
each subchannel, and the available transmission rate of
channel n assigned to end cloud k, can be described as

rh,k
i,n (t) = ck2k log2

(
1+ Ph,k

i gh,k
i,n (t)

σ 2 + η
h,k
i,n (t)

)
(3)

where Ph,k
i indicates the transmission power of end cloud

k and nearby edge cloud h. We employ gh,k
i,n (t) and

η
h,k
i,n (t) to represent the channel gain and interference

of channel n, respectively. xh,k
i,n = 1 denotes channel n

which is assigned to the end cloud k for the commu-
nication between end cloud k and nearby edge cloud
h; otherwise, xh,k

i,n = 0. Then, the total uplink transmis-
sion rate between end cloud h and edge cloud k can be
expressed as

rh,k
i (t) =

∑
n∈Nk2k

xh,k
i,n rh,k

i,n (t). (4)

3) Interedge Device: To fully exploit computation resources
of end devices, the end device k can offload the task Di

to the nearby end devices with available computation
resources and wireless resources by D2D communica-
tion. Denote Ji the set of neighboring edge devices

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 29,2022 at 22:07:43 UTC from IEEE Xplore. Restrictions apply.

16260 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 22, NOVEMBER 15, 2021

to end devices i. Let Csp
d2d indicate the total available

uplink spectrum resources. Nd2d is the number of total
uplink channels and N

d2d is the uplink channel set. Then,
cd2d = Csp

d2d/Nd2d denotes the bandwidth of each sub-
channel, and the available transmission rate of channel
n assigned to end device i, can be described as

rj
i,n(t) = cd2d log2

(
1+ Pj

ig
j
i,n(t)

σ 2 + η
j
i,n(t)

)
(5)

where Pj
i indicates the transmission power of end device

i and nearby edge device j. We employ gj
i,n(t) and η

j
i,n(t)

to represent the channel gain and interference of chan-
nel n, respectively. xj

i,n = 1 represents channel n which
is assigned to the end device j for the communication
between end device i and nearby edge device j; oth-
erwise, xj

i,n = 0. Then, the total uplink transmission
rate between end device i and edge device j can be
expressed as

rj
i(t) =

∑
n∈Nd2d

xj
i,nrj

i,n(t). (6)

B. Computation Model

Collaborative Edge Computing Offloading Pattern: For end
device i, the delay-sensitive tasks Di can be executed in three
ways, including local processing, offloading to the edge cloud,
and offloading to the nearby edge cloud.

1) Local Processing: When task Di selects to be executed
locally, the total computing resource of end device i will
be leveraged for task completion [34]. fi is the computing
resource of end device i. Thus, the local task delay can
be described as

T loc
i,l (t) = ϕco

i (t)

fi
. (7)

κi(fi)2 indicates the energy consumption of unit com-
puting resource on device i, and κi relays on the chip
structure [34]. Subsequently, the local energy consump-
tion of computing task Di is given as follows:

Eloc
i,l (t) = κiϕ

co
i (t)(fi)

2. (8)

2) Offloading to the Edge Cloud: Suppose that end devices
under the same edge cloud coverage upload their mis-
sions to the edge cloud simultaneously. Each mission
will be allocated for a portion of computing resources
on the edge cloud. Cco

k is the total computing resource
of end cloud k. λk

i is the proportion of the computing
resources of the edge cloud k assigned to device i for
processing task Di. Since the computing result has a
short return time, we neglect the transmission time of
the result [23]. Accordingly, the completion task delay
includes transmission delay and execution delay, which
can be depicted as

Tedge
i,k (t) = ϕda

i (t)

rk
i (t)
+ ϕco

i (t)

λk
i (t)C

co
k

. (9)

Then, the energy consumption per computing resource
for the edge cloud is denoted by ek. The total energy
consumption mainly consists of transmission and com-
puting [35]. Thus, the total energy consumption of task
Di offloaded to edge cloud is expressed as

Eedge
i,k (t) = Pk

i ϕ
da
i (t)

rk
i (t)

+ ϕco
i (t)ek. (10)

3) Offloading to the Nearby Edge Cloud: Due to the com-
putational and storage limitation of the edge cloud h,
the end cloud h ∈ Hk often offloads the ith end device’s
task to the nearby edge cloud k for higher computa-
tional resources. λh→k

i is the proportion of the computing
resources of the edge cloud k assigned to device i from
the edge cloud h. Similarly, the completion task delay
includes transmission delay between the ith end device
and the hth edge cloud, transmission delay between the
hth edge cloud and the kth edge cloud, and execution
delay can be expressed as

Tedge
i,h,k (t) = ϕda

i (t)

rh
i (t)
+ ϕda

i (t)

rh,k
i (t)

+ ϕco
i (t)

λh→k
i (t)Cco

k

. (11)

Then, the total energy consumption of task Di is
depicted as

Eedge
i,h,k(t) =

Ph
i ϕ

da
i (t)

rh
i (t)

+ Ph,k
i ϕda

i (t)

rh,k
i (t)

+ ϕco
i (t)ek. (12)

Hybrid Alternating Offloading Pattern: For end device i, the
delay-tolerant tasksDi can be executed in two ways, including
offloading to the cloud and offloading to the nearby device.

1) Offloading to the Core Cloud: When end device i selects
to offload its task to the core cloud directly, we ignore
the execution time and energy consumption on the cloud
due to a sufficient amount of computation and storage
resources [23]. Thus, the completion task delay can be
expressed as

Tcloud
i,c (t) = ϕda

i (t)

rk
i (t)
+ ϕda

i (t)

rc
k(t)

(13)

where rc
k(t) is the transmission rate between edge cloud

k and the core cloud. Pc
k denotes the transmission power

between edge cloud k and the core cloud. Then, the total
energy consumption for task Di is given as

Ecloud
i,c (t) = Pk

i ϕ
da
i (t)

rk
i (t)

+ Pc
kϕ

da
i (t)

rc
k(t)

. (14)

2) Offloading to the Nearby End Device: When end device i
selects to offload its task to the nearby end device j ∈ Ji,
similarly, the completion task delay includes transmis-
sion delay and matching processing delay between the
ith end device and the jth edge device, execution delay,
which can be described as

Td2d
i,j (t) = ϕda

i (t)

rj
i(t)
+ ϕco

i (t)

fj
. (15)

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 29,2022 at 22:07:43 UTC from IEEE Xplore. Restrictions apply.

HOU et al.: MULTIAGENT DEEP REINFORCEMENT LEARNING FOR TASK OFFLOADING AND RESOURCE ALLOCATION 16261

Then, the energy consumption per computing resource
for the end devices j is denoted by κj(fj)2, the total
energy consumption of task Di is depicted as

Ed2d
i,j (t) = Pj

iϕ
da
i (t)

rj
i(t)

+ κjϕ
co
i (t)

(
fj
)2

. (16)

C. Cache Model

If the end device i decides to offload task Di to the
edge cloud or the nearby edge cloud, a portion of the cache
resources will be preallocated to the end device’s task offload-
ing request. The related data for each task should be cached
before task execution. Let ωk

i and ωh→k
i be the proportion of

the cache resource assigned to the end device’s task Di. Thus,
the task is completed by the edge cloud or the nearby edge
cloud, satisfying the following requirements:

Cca
k ωk

i ≥ ϕda
i (t) ∀k ∈ K

Cca
h ωh→k

i ≥ ϕda
i (t) ∀h ∈ Hk. (17)

D. System Cost Model

For the end device i at time t, based on the above task
execution for different offloading patterns, the total completion
time of the task Di can be expressed as

Ti(t) = ζi(t)T
�
i (t)+ (1− ζi(t))T

�
i (t) (18)

where T�
i (t) and T�i (t) denote the task completion time by the

collaborative edge computing offloading and hybrid alternating
offloading patterns, respectively. Then, the completion time
T�

i (t) is given as

T�
i (t) = φi,lT

loc
i,l (t)+

∑
k∈K

φi,kTedge
i,k (t)

+
∑

h∈Hk,k �=h

∑
k∈K

φi,h,kTedge
i,h,k (t). (19)

Similarly, the completion time T�i (t) is denoted as

T�i (t) = γi,cTcloud
i,c (t)+

∑
j∈Ji,j �=i

γi,jT
d2d
i,j (t). (20)

The total energy consumption of the task Di can be
expressed as

Ei(t) = ζi(t)E
�
i (t)+ (1− ζi(t))E

�
i (t) (21)

where E�
i (t) and E�i (t) indicate the task energy consumption

by the collaborative edge computing offloading and hybrid
alternating offloading patterns, respectively. Then, the energy
consumption E�

i (t) is formulated as

E�
i (t) = φi,lE

loc
i,l (t)+

∑
k∈K

φi,kEedge
i,k (t)

+
∑

h∈Hk,k �=h

∑
k∈K

φi,h,kEedge
i,h,k(t). (22)

Similarly, the energy consumption E�i (t) is denoted as

E�i (t) = γi,cEcloud
i,c (t)+

∑
j∈Ji,j �=i

γi,jE
d2d
i,j (t). (23)

The total system cost of computing tasks can be expressed as

Qi(t) = αiEi(t)+ βiTi(t) (24)

where αi and βi denote the weight coefficient of energy con-
sumption and completion time, respectively. Mathematically,
the relationship between the two weight coefficients is
expressed as

αi + βi = 1

0 ≤ αi ≤ 1

0 ≤ βi ≤ 1. (25)

V. PROBLEM FORMULATION AND DIFFERENT SCENARIOS

A. Problem Formulation

Cybertwin acts as a communication assistant, network
behavior logger, and digital asset owner for the entire network
architecture. Due to the limited resources of edge clouds or end
devices under traditional edge computing, it is usually required
to execute tasks by multiple edge clouds or core clouds.
Therefore, we leverage Cybertwin to guide resource collabora-
tion among end-edge-cloud and formulate task offloading and
resource allocation problems. To measure the edge-dominated
Cybertwin network’s performance, we consider two factors,
i.e., the system cost as well as the number of completed tasks
to formulate the processing efficiency of the system, which
can be depicted as

η(t) =
∑

i∈N(t)

|Mi(t)|
Qi(t)

(26)

where N(t) and Mi(t) denote the number of end devices and
completed tasks for the system at time slot t, respectively. We
aim to decrease the system cost while increasing the number
of completed tasks. The objective of the optimization problem
is to maximize the system’s processing efficiency with the
constraints of the task requirement, hierarchical computing
offloading, and multidimensional resource. The combinatorial
optimization problem is represented as

max
ζ(t),φ(t),γ (t)λ(t),ω(t)

η(t) (27)

s.t. λk
i (t), ω

k
i (t) ∈ [0, 1] (27a)

ζi(t), φi,l(t), φi,k(t), φi,h,k(t), γi,c(t)

γi,j(t) ∈ {0, 1} (27b)

ζi

⎛
⎝φi,l(t)+

∑
k∈K

φi,k(t)

+
∑

h∈Hk,k �=h

∑
k∈K

φi,h,k(t)

⎞
⎠ ≤ 1 (27c)

(1− ζi)

⎛
⎝ ∑

j∈Ji,i �=j

γi,j + γi,c

⎞
⎠ ≤ 1 (27d)

λk
i (t)+

∑
h∈Hk

λh→k
i (t) ≤ 1 ∀k ∈ K (27e)

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 29,2022 at 22:07:43 UTC from IEEE Xplore. Restrictions apply.

16262 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 22, NOVEMBER 15, 2021

ωk
i (t)+

∑
h∈Hk

ωh→k
i (t) ≤ 1 ∀k ∈ K (27f)

∑
I

xj
i,n ≤ 1 ∀i ∈ I, j ∈ Ji, n ∈ N

d2d

(27g)∑
I

xk
i,n ≤ 1 ∀i ∈ I, k ∈ K, n ∈ N

k (27h)

∑
K

xh,k
i,n ≤ 1 ∀k ∈ K, h ∈ Hk, n ∈ N

k2k

(27i)

Ti(t) ≤ ϕde
i (t) ∀i ∈ I. (27j)

Constraint (27a) represents that the allocation variables of
computing and cache resources for the edge cloud. Constraint
(27b) denotes the offloading decisions of two computing
patterns, including five modes. Constraints (27c) and (27d)
indicate end devices only choose one way to handle their
tasks. Constraints (27e) and (27f) represent that the allocation
of computing and cache resources on the edge cloud cannot
exceed the total resources. Constraints (27g), (27h), and (27j)
imply each channel should be allocated to only one end device
or edge cloud for the end device to edge cloud, interedge
cloud, and D2D communication at each time slot. Constraint
(27k) denotes the task delay need to satisfy the task’s delay
requirement.

B. Different Scenarios

In the Cybertwin-based network architecture, we design
hierarchical task offloading with end-edge-cloud collaboration
for delay-sensitive tasks and delay-tolerant tasks. In addition,
we discuss four task execution cases in terms of the col-
laborative edge computing offloading and hybrid alternating
offloading modes and further analyze the four computing sce-
narios. First, we consider the four cases of task execution
processing in the system as follows.

1) Case 1: Both collaborative edge computing offloading
side and hybrid alternating offloading side simultane-
ously have computing tasks being processed.

2) Case 2: The collaborative edge computing offload-
ing side has computing tasks being processed, while
the hybrid alternating offloading side does not have
computing tasks.

3) Case 3: The hybrid alternating offloading side has com-
puting tasks being processed, while the collaborative
edge computing offloading side does not have computing
tasks.

4) Case 4: There are no computing tasks on both the
hybrid alternating offloading and the collaborative edge
computing offloading side.

Next, we assume t = 0. There are tasks to be processed on
both the hybrid alternating offloading side and the edge coop-
erative offloading side (i.e., case 1). Thus, when t ∈ [0, T],
four computing scenarios exist in the system, as shown in
Fig. 3.

1) Scenario 1: At time t ∈ [0, T], all computing tasks on
the collaborative edge computing offloading side have
been completed, while the hybrid alternating computing

Fig. 3. Different scenarios of hierarchical task offloading.

side has computing tasks to be addressed (i.e., case 3).
After the time t, the remaining computing tasks on the
hybrid alternating offloading side are handed over to the
edge computing and hybrid alternating offloading side
for cooperative execution (i.e., case 1).

2) Scenario 2: At time t ∈ [0, T], all computing tasks on
the collaborative edge computing offloading and hybrid
alternating computing sides have been completed (i.e.,
case 4). Thus, the edge computing and hybrid alternating
offloading side wait for the computing task to come in
the next time slot T + 1.

3) Scenario 3: At time t = T , the computing tasks have
not been completed on both the collaborative edge com-
puting offloading and hybrid alternating offloading sides
(i.e., case 1). The remaining computing tasks will then
be added to the task queue of the collaborative edge
computing offloading and hybrid alternating offloading
sides in the next time slot T + 1, respectively (the
remaining tasks are placed at the head of the queue).

4) Scenario 4: At time t = T , the computing tasks have
not been completed on the collaborative edge comput-
ing offloading, while hybrid alternating offloading sides’
tasks have been completed (i.e., case 2). Subsequently,
the remaining computing tasks will be added to the task
queue of the collaborative edge computing offloading in
the next time slot T+ 1 (the remaining computing tasks
are placed at the head of the queue).

VI. MADDPG FOR THE JHORA PROBLEM

A. MADDPG-Based Solution

The above optimization problem intends to complete as
many tasks as possible while reducing the system process-
ing cost. From (27), the assignment of communication, cache,
and computational resources is coupled with each other.
An increasing number of end devices directly leads to the
higher computational complexity of the problem. Traditional

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 29,2022 at 22:07:43 UTC from IEEE Xplore. Restrictions apply.

HOU et al.: MULTIAGENT DEEP REINFORCEMENT LEARNING FOR TASK OFFLOADING AND RESOURCE ALLOCATION 16263

optimization methods are hard to solve this optimization
problem rapidly. Therefore, we employ an RL approach
to cope with the proposed task hierarchical offloading and
resource allocation problem.

In RL, the agent learns how to interact with the environment,
automatically optimize its policy based on the observation of
rewards. As a model-free RL algorithm, Q-learning has been
widely exploited to solve various complex sequential decision
problems in wireless networks. However, RL takes much time
to obtain the optimal policy since it needs to know the whole
state of the environment, and RL is not suitable for networks
with large-scale end devices access. Integrating deep learning
and RL is regarded as a pivotal solution to solve the above
problem. Deep RL trains learning models by utilizing deep
neural networks (DNNs) for faster learning speed and better
performance.

Based on the main idea of deep RL, the above optimization
problem is transformed into a Markov decision process
(MDP) to represent the hierarchical task offloading and
multidimensional resource allocation decision-making pro-
cess. Nevertheless, due to heterogeneous multidimensional
resources and time-varying network environments, the tradi-
tional single-agent approach cannot learn collaborative hier-
archical offloading and resource allocation strategies for
end-edge-cloud to satisfy various end devices’ requirements.

We design an MADDPG-based solution in which
Cybertwin, located on the edge cloud, acts as an agent to learn
collaborative hierarchical offloading and resource allocation
schemes. In the policy update process, each Cybertwin agent
should consider the actions of other Cybertwin agents instead
of only using its action to update the policy. We train the model
by the MADDPG method. Then, we gain the optimal offload-
ing and resource allocation policy according to the trained
model. In the following, we introduce the MDP, including the
state space, action space, and reward function.

1) Observation State: At the beginning of each time slot,
Cybertwin collects the computing task request from the end
device under its coverage and currently available resources.
Then, Cybertwin establishes virtual task queues. For the edge
cloud k, we define the observations state which consists of the
following elements at time slot t.

1) Let Otask
k (t) = (D1,k(t),D2,k(t), . . . ,DN(t),k(t)) denote

the state of unprocessed tasks managed by Cybertwin,
located on the edge cloud k. At time t, if end device i
is far away from the coverage of the edge cloud k, we
define Di,k(t) = 0.

2) At time t, the available spectrum resources managed by
Cybertwin, located on the edge cloud k, are represented
as Osp

k (t) = Csp
k (t).

3) At time t, the available computing resources managed by
Cybertwin, located on the edge cloud k, are represented
as Oco

k (t) = Cco
k (t).

4) At time t, the available cache resources managed by
Cybertwin, located on the edge cloud k, are represented
as Oca

k (t) = Cca
k (t).

The observation state of Cybertwin, located on the
edge cloud k, at time t, can be described as Ok(t) =
(Otask

k (t),Osp
k (t),Oco

k (t),Oca
k (t)). Thus, a set of system obser-

vation can be defined as

O(t) = (O1(t), . . . ,OK(t)). (28)

In this problem, the environment is fully observed,
thus the observations are equivalent to the environment
state.

2) Action Space: At time t, the action a(t) contains the
collaborative edge computing offloading and hybrid alternat-
ing offloading strategy selected by Cybertwin for the end
device i. Cybertwin makes decisions on whether to execute
tasks locally, offload tasks to the edge cloud and nearby edge
cloud, offload tasks to the core cloud and other end devices via
obtaining multidimensional resources from end device, edge
clouds, and core cloud. For Cybertwin, at the beginning of
each time slot, collecting tasks under its coverage is denoted
as Otask

k (t) =∑i→kDi(t). For end device N = {1, 2, . . . , N},
it only can select one way to handle its task Di(t) at each
time slot. The decision variable on the execution mode is
φi,l(t), φi,k(t), φi,h,k(t), γi,c(t), γi,j(t) ∈ {0, 1}. Therefore, we
can define the constraint φi,l(t)+ φi,k(t)+ φi,h,k(t)+ γi,c(t)+
γi,j(t) ∈ {0, 1}. Then, we analyze the transform processing of
five processing modes as follows.

1) When task Di(t) is executed on the edge cloud k, we
define φi,k(t) = 1; otherwise, φi,k(t) = 0. Let λi,k(t) and
ωi,k(t) be the allocated computing and cache resources
for task Di(t).

2) When task Di(t) is allocated to the edge cloud k from
the edge cloud h, we define φi,h,k(t) = 1; otherwise,
φi,h,k(t) = 0.

3) WhenDi,k(t) �= 0, Cybertwin, located on the edge cloud
k manages the task request of end device i. If task Di(t)
is assigned to locally execution, i.e., φi,l(t) = 1. Thus,
we define φi,l,k(t) = 1 as locally execution; otherwise,
φi,l,k(t) = 0.

4) When Di,k(t) �= 0, task Di(t) is assigned to the core
cloud for execution, i.e., γi,c(t) = 1. Thus, we define
γi,c,k(t) = 1 as the core cloud for execution; otherwise,
γi,c,k(t) = 0.

5) When Di,k(t) �= 0, task Di(t) is assigned to
other end devices for execution, i.e., γi,j(t) = 1.
Thus, we define γi,j,k(t) = 1 as D2D execution;
otherwise, γi,j,k(t) = 0.

In short, we can obtain the constraint φi,l,k(t) +
φi,k(t) + φi,h,k(t) + γi,c,k(t) + γi,j,k(t) ∈ {0, 1}.
For Cybertwin, we define its action as ak(t) =
(φi,l,k(t), φi,k(t), φi,h,k(t), γi,c,k(t), γi,j,k(t), λi,k(t), ωi,k(t)),
the system action is expressed as

a(t) = (a1(t), . . . , aK(t)). (29)

3) Reward Function: To enhance the system’s processing
efficiency for the tradeoff between the number of completed
tasks and the cost of system, we consider the processing
efficiency in the Cybertwin-based framework as the system
reward.

Cybertwin of each edge cloud k is an agent. For each
edge cloud k, the processing efficiency is represented as
ηk(t) = [(

∑
i:Di,k(t) �=0 |Mi(t)|)/(∑i:Di,k(t) �=0 Qi(t))], associated

with the cost of time and resource (i.e., spectrum, comput-
ing, and cache resource) for task execution, and the number
of completed tasks. Thus, according to the constraints and

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 29,2022 at 22:07:43 UTC from IEEE Xplore. Restrictions apply.

16264 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 22, NOVEMBER 15, 2021

Fig. 4. MADDPG framework for JHORA in cybertwin-based networks.

objective functions, we denote the reward as

Rk(t) = − 1

ηk(t)
+ϒk(t). (30)

Note that ϒk(t) represents the failure penalty for each
Cybertwin of edge cloud k, which is related to the four sce-
narios of hierarchical task processing schemes, and the failure
penalty emerges if assigned tasks are not completed within the
time slot.

B. Joint Hierarchical Offloading and Resource Allocation
Algorithm Based on MADDPG

We present the JHORA-MADDPG framework in this sec-
tion, as shown in Fig. 4. MADDPG is an algorithm based
on actor–critic. Each Cybertwin agent K owns the actor and
critic with two DNNs, namely, the target network and the
evaluation network, in order to obtain the hierarchical offload-
ing and resource allocation strategy by the deep deterministic
policy gradient (DDPG) method. The actor makes action
decisions on the basis of the agent’s state, and the critic
is responsible for evaluating the actor’s behavior. Thus, the
target and evaluation networks are used to update param-
eters θ

μ
K and θ

Q
K . Cybertwin’s experience replay buffer D

is leveraged to save transitions related to observations and
action for the training stage. When updating the parameters
of target and evaluation networks, the evaluation network can
randomly obtain the transitions from Cybertwin’s experience
replay buffer. The experience replay and actor–critic network
can improve the stability of the DDPG training process while
breaking the correlation of training data.

DDPG aims to obtain optimal policies and learns the corre-
sponding action functions through interaction with the environ-
ment. The pseudocode of the proposed MADDPG algorithm
for the JHORA problem is illustrated in Algorithm 1. During

the training state, assume that θ = {θ1, . . . , θk} is the param-
eter set of networks for the K agents. The parameter set
of the corresponding deterministic policy is represented by
μ = {μθ1 , . . . , μθk }. Thus, the gradient of the deterministic
policy for agent k can be represented as

∇θk J(μk)

= Es,a∼D
[
∇θkμk

(
oj
)∇ak Qμ

k (s, a1, · · · , aK)
∣∣
ak=μk(ok)

]
(31)

where D is the experience replay with (s, a, r, s′). The
Q-function is denoted as Qμ

k (s, a1, . . . , ak, . . . , aK). In addi-
tion, the critic updates the loss function of the target Q-
function as follows:

L(θk) = Es,a,r,s′
(

y− Qμ′
k (s, a1, . . . , aK)

)2

y = rk + γ Qμ′
k

(
s, a′1, . . . , a′K

)∣∣∣
a′j=μ′j

(
ot

j

) (32)

where γ is denoted as the discount factor. The action network
is updated by minimizing the policy gradient of the agent,
which can be expressed as

∇θk J ≈ 1

X
∑

i

∇θkμk

(
oi

j

)
∇ak Qμ

k

(
si, ai

1, . . . , ai
K

)|ak=μk(o′k)

(33)

where i denotes the index of samples, and X represents the
size of mini-batch. Finally, the target network parameters can
be updated as

θk = κθk +
(
1− κθ ′k

)
. (34)

For Algorithm 1, one can observe that the training algo-
rithm mainly consists of the actor network, critic network, and
replay buffer. The actor and critic networks of each Cybertwin
agent K are performed via two DNNs, namely, the target
network and the evaluation network. Thus, the complexity of

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 29,2022 at 22:07:43 UTC from IEEE Xplore. Restrictions apply.

HOU et al.: MULTIAGENT DEEP REINFORCEMENT LEARNING FOR TASK OFFLOADING AND RESOURCE ALLOCATION 16265

Algorithm 1: MADDPG Algorithm for JHORA
Initialize: the actor’s evaluation network and critic’s
target network for the agent;
for episode = 1 : M do

Initialize a random process N for exploration of
action;
Receive initial observations o;
Set initial state s and r�=0;
for t = 1 : max-episode-length do

Each agent k chooses action
ak(t) = μθk(ok(t))+Nt by the current policy and
exploration;
Execute actions a(t) = (a1(t), · · · , aK(t));
Obtain reward r(t) and new observation o′k(t);
Input the new state s′k(t) to each agent k;
Store (s, a(t), r(t), s′) into the reply buffer D;
s← s′
for agent k = 1 : K do

Sample a random minibatch of X samples(
si, ai, ri, si′

)
from D;

Set yi = ri
k + γ Qμ′

k

(
si, a′1, · · · , a′K

)∣∣∣
a′j=μ′j

(
ot

j

);

Update critic’s evaluation network through
minimizing the loss:

L(θk) = 1
X
∑

i

(
yi − Qμ′

k

(
si, ai

1, · · · , ai
K

))2
;

Update actor’s evaluation network utilizing
the sampled policy gradient based on Eq.(33)

end
Update target network parameters for each agent:
θk ← κθk +

(
1− κθ ′k

)
;

end
r� = r� + r�(t)

end

Algorithm 1 is mainly affected by four neural networks, which
can be expressed as [36]

2×
J∑

j=0

nactor,j · nactor,j+1 + 2×
L∑

l=0

ncritic,l · ncritic,l+1

= O
⎛
⎝ J∑

j=0

nactor,j · nactor,j+1 +
L∑

l=0

ncritic, l · ncritic, l+1

⎞
⎠ (35)

where J and L are assumed to be the number of fully connected
layers for the actor DNN network and critic DNN network,
respectively. nactor,j and ncritic, l denote the unit number in the
jth actor layer and the critic lth layer. The input size is nactor,0
and ncritic, 0.

C. Distributed MADDPG Model Based on Federated
Learning

The proposed MADDPG-enabled joint hierarchical offload-
ing and resource allocation algorithm aims to make it possible
to process as many tasks as possible while significantly
reducing the system processing cost. Under the proposed sce-
nario, end devices send their task offloading requests to the

Fig. 5. FL model in Cybertwin-based networks.

Fig. 6. Rewards achieved per episode of individual agent.

agent on the edge of the network. Thus, a large amount of
end device privacy information is aggregated in Cybertwin.
However, when training a multiagent deep RL model, end
devices may not trust Cybertwin and provide detailed task
offloading requests (preserving privacy-sensitive data locally)
to Cybertwin. It brings a significant challenge for hierarchical
offloading and resource allocation.

To solve the sensitive information leakage issue and
relieve the computational pressure at the edge while
improving the edge computing-oriented Cybertwin network’s
performance, we construct an FL model in Cybertwin-
based networks, as shown in Fig. 5. In the initial phase,
end devices obtain the global MADDPG model W(t)
from the associated Cybertwin, then end devices train the
local model W1(t),W2(t), . . . ,WN(t) based on local data
and global model. Next, local model parameters will be
transmitted to the Cybertwin, then Cybertwin aggregates
the updated parameters and conducts federated averaging
FL(|Mi(t)|i:Di,k(t) �=0, |Qi(t)||i:Di,k(t) �=0) for an updated global
MADDPG model W(t+ 1). The pseudocode of the proposed
FL-based MADDPG algorithm is presented in Algorithm 2.

VII. NUMERICAL RESULTS

A. Simulation Setting

In this section, Python and TensorFlow are utilized to
implement an MADDPG-based algorithm for hierarchical

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 29,2022 at 22:07:43 UTC from IEEE Xplore. Restrictions apply.

16266 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 22, NOVEMBER 15, 2021

Algorithm 2: FL-Based MADDPG Training Model for
JHORA

Initialize:
Cybertwin side:
At the beginning of the learning phase t = 0, initialize
the weight values of the MADDPG model W(0);
End device side:
Initialize the weight values of the local MADDPG model
Wi(0), (i = 1, 2, . . . , N);
Obtain W(0) from the Cybertwin;
Denote Wi(0) =W(0),(i = 1, 2, · · · , N);
for t = 1 : max-episode-length do

function FL
(
|Mi(t)|i:Di,k(t) �=0, |Qi(t)||i:Di,k(t) �=0

)
;

End device side:
for i = 1 : N do

Obtain W(t) from the Cybertwin;
Denote Wi(t) =W(t);
Execute locally training based on Wi(t) with the
current value
FL

(
|Mi(t)|i:Di,k(t) �=0, |Qi(t)||i:Di,k(t) �=0

)
;

Update the trained weight values Wi(t + 1) and
transmit corresponding values to Cybertwin;

end
Cybertwin side:
for k = 1 : K do

Aggregate the updated weight values Wi(t) of
end devices under its coverage;
Conduct federated averaging (FedAvg);
Broadcast the averaged weight value Wi(t + 1);

end
end function;

end

TABLE I
TRAINING PARAMETERS

task offloading and resource management. Compared to
benchmark algorithms, we verify the effectiveness of the
proposed JHORA-MADDPG scheme in several simulations.
Specifically, Considering a Cybertwin-based network with one
core cloud, k = 3 edge clouds, and N = 100–300 end devices
randomly distributed under the edge cloud’s coverage. Each
edge cloud is composed of four Intel next units of comput-
ing (NUC) as agents connected via wireless networks. Then,
we set the time slot interval to 2 s. In the JHORA-MADDPG
scheme, the evaluation network consists of one input layer,

Fig. 7. Average rewards of different algorithms.

Fig. 8. System processing efficiency of different algorithms.

four fully connected hidden layers, and one output layer.
Furthermore, in the output layer, each agent’s actor adopts
the tanh function to constrain the output value. We train the
MADDPG model based on Algorithm 1 and set the maximum
number of episodes as 20 000. The related training parameters
of the neural network are presented in Table I.

To evaluate the proposed algorithm’s performance, we com-
pare it with the following benchmark algorithms as follows.

1) Deep Deterministic Policy Gradient [37]: Assume that
one agent centrally manages the state information of all
end devices, their corresponding edge clouds, as well as
the core cloud in the system. The single agent’s action is
the offloading decision and resource allocation strategy
for all the end devices.

2) Random Task Offloading (Random): Latency-tolerant
and latency-sensitive tasks are allocated randomly to the
local execution, edge cloud execution, offloading from
the edge cloud to the nearby edge cloud execution, D2D
execution, and core cloud execution.

3) Local Computing (LP): All computation tasks are pro-
cessed locally.

B. Performance Analysis

We train different Cybertwin agents based on the MADDPG
algorithm. Fig. 6 presents the rewards achieved per episode
for the individual agent. Obviously, the rewards of Cybertwin
increase with the number of training episodes. In the 0–2000
episodes, the rewards of Cybertwin are small and drastically
fluctuate, after which both the MADDPG and DDPG algo-
rithms can achieve the convergence state. Compared with the

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 29,2022 at 22:07:43 UTC from IEEE Xplore. Restrictions apply.

HOU et al.: MULTIAGENT DEEP REINFORCEMENT LEARNING FOR TASK OFFLOADING AND RESOURCE ALLOCATION 16267

Fig. 9. Task completion ratio versus the amounts of spectrum, computational, and caching resources under different algorithms. (a) Task completion ratio
versus spectrum resources. (b) Task completion ratio versus computing resources. (c) Task completion ratio versus caching resources.

DDPG algorithm, the rewards of Cybertwin by the MADDPG
algorithm fluctuate in a smaller range and converge faster.

The individual agent’s average rewards under the MADDPG
and DDPG algorithms are shown in Fig. 7. Specifically, the
number of episodes is 20 000, and the save rate is set to 200.
With the increase in the training episodes/save rate, the aver-
age reward of the MADDPG algorithm always performs higher
than the DDPG algorithm, eventually obtains a stable reward.
The reason is that the proposed MADDPG algorithm owns dif-
ferent target and evaluation networks for each Cybertwin that
can leverage the characteristics of Cybertwin and implement
a better hierarchical task offloading and resource allocation
strategy. Note that the DDPG algorithm has only one target
and evaluation network for all Cybertwins.

Fig. 8 shows the system processing efficiency of differ-
ent algorithms for the different number of end devices. With
the increase in the number of end devices, the system pro-
cessing efficiency of all strategies decreases. This is because
the increment of end devices will generate more compu-
tation tasks with diverse requirements to compete for the
limited spectrum, computation, and cache resources of the
edge cloud, which results in some computation tasks cannot
be processed before the deadline. Due to the fixed amounts
of spectrum, computation, and cache resources in the edge
cloud, more latency-sensitive tasks will be executed locally.
Most of the latency-tolerant tasks can only be allocated to
hybrid alternating strategies for execution rather than being
selected for collaborative edge computing offloading strate-
gies. Thus, system processing cost increases, and the system
processing efficiency gradually decreases accordingly.

Meanwhile, it can be seen that the proposed JHORA-
MADDPG algorithm can ensure that the system processing
efficiency is always higher than the Random and Local com-
puting algorithm. As the number of end devices increases,
the system processing efficiency of the MADDPG algo-
rithm decreases more slowly, compared with the Random and
DDPG algorithms. The reason is that the proposed JHORA-
MADDPG algorithm can efficiently utilize the resources of
end devices, edge clouds, and core clouds according to the
requirements of different computing tasks such that the system
can process as many tasks as possible.

In Fig. 9(a), it can be seen that the task completion ratio
of the proposed JHORA-MADDPG algorithm, DDPG, and
Random algorithms slowly increases as the spectrum resource

of the edge cloud increases from 1 to 10 MHz and even-
tually achieves a stable task completion ratio. In addition,
the task completion ratio of the proposed JHORA-MADDPG
algorithm with edge computing dominant scheme is higher
than those of the DDPG and random algorithms. This is
because computing tasks are completed with the satisfied
latency requirement, determined by the spectrum and com-
putational resource. More spectrum resources are leveraged
to satisfy computing tasks’ latency requirements as utiliz-
ing more computational resources, which is beneficial to the
collaborative edge computing offloading strategy.

In Fig. 9(b), the results show that the task completion
ratio of different algorithms with the edge cloud’s differ-
ent computing resources. As the edge cloud’s computational
resources increase, the increment of computational resources
available for the collaborative edge computing offloading strat-
egy can satisfy more tasks. Also, the proposed MADDPG
algorithm performs better than Random and DDPG algorithms
in terms of task completion ratio, and this is because the
proposed JHORA-MADDPG algorithm enables hierarchically
offload tasks with different requirements under the dominance
of edge computing and more accurately allocate computa-
tional resources. For the MADDPG-based algorithm, different
Cybertwin agents are trained cooperatively to achieve the
maximum reward.

In Fig. 9(c), the task completion ratio of the proposed
JHORA-MADDPG algorithm, DDPG, and Random algo-
rithm increases slowly when the edge cloud’s cache resource
increases from 1 to 100 MHz. This is due to the fact that com-
puting tasks are allocated to a collaborative edge computing
offloading strategy with higher probability, and more com-
puting tasks are offloaded to the edge cloud. Likewise, both
MADDPG and DDPG-based algorithms manage the cache
resource better in the edge cloud, compared to the random
algorithm in which tasks are hybrid offloaded. Accordingly,
the proposed JHORA-MADDPG and DDPG-based algorithms
achieve a higher completion ratio than the random algorithm
for different cache resources.

VIII. CONCLUSION

In this article, a joint hierarchical task offloading and
resource allocation for the Cybertwin-based network architec-
ture with edge computing and FL was proposed to achieve
faster task processing and lower overhead while enhancing

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 29,2022 at 22:07:43 UTC from IEEE Xplore. Restrictions apply.

16268 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 22, NOVEMBER 15, 2021

the system’s security and protecting data privacy. We first
presented a hierarchical task offloading strategy for delay-
tolerant and delay-sensitive missions, including collaborative
edge computing offloading and hybrid alternating offloading
patterns. Then, both hierarchical task offloading and resource
allocation management were studied, and the MADDPG algo-
rithm was presented to improve processing efficiency. Finally,
we proposed the FL-based distributed model training approach
for the MADDPG model to protect end devices’ data privacy.
Numerical results demonstrated that the proposed JHORA-
MADDPG algorithm could effectively achieve faster task
processing and lower overhead for better system processing
efficiency and task completion ratio than other algorithms.

The MADDPG model and federation learning for
Cybertwin-based network architectures are still an open issue.
In the future, it is valuable to investigate the blockchain-
enabled edge computing architecture. Our next step is to
leverage FL and blockchain technologies to train the proposed
model in a distributed way for data security and the training
lightweight overhead.

REFERENCES

[1] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund,
“Industrial Internet of Things: Challenges, opportunities, and directions,”
IEEE Trans. Ind. Infomat., vol. 14, no. 11, pp. 4724–4734, Nov. 2018.

[2] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628–1656, 3rd Quart., 2017.

[3] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and
P. A. Polakos, “A comprehensive survey on fog computing: State-of-
the-art and research challenges,” IEEE Commun. Surveys Tuts., vol. 20,
no. 1, pp. 416–464, 1st Quart. 2018.

[4] N. Abbas,Y. Zhang, A.Taherkordi, and T. Skeie, “Mobile edge com-
puting: A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450–465,
Feb. 2018.

[5] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A survey on enabling technologies, pro-
tocols, and applications,” IEEE Commun. Surveys Tuts., vol. 17, no. 4,
pp. 2347–2376, 4th Quart. 2015.

[6] Q. Yu, J. Ren, H. Zhou, and W. Zhang, “A cybertwin based network
architecture for 6G,” in Proc. 2nd 6G Wireless Summit (6G SUMMIT),
Levi, Finland, 2020, pp. 1–5.

[7] S. Chen, Z. Pang, H. Wen, K. Yu, T. Zhang, and Y. Lu, “Automated
labeling and learning for physical layer authentication against clone node
and Sybil attacks in industrial wireless edge networks,” IEEE Trans. Ind.
Informat., vol. 17, no. 3, pp. 2041–2051, Mar. 2021.

[8] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A sur-
vey on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[9] Q. Yu, J. Ren, Y. Fu, Y. Li, and W. Zhang, “Cybertwin: An origin of
next generation network architecture,” IEEE Wireless Commun., vol. 26,
no. 6, pp. 111–117, Dec. 2019.

[10] M. Li, F. R. Yu, P. Si, and Y. Zhang, “Green machine-to-machine
(M2M) communications with mobile edge computing (MEC) and
wireless network virtualization,” IEEE Commun. Mag., vol. 56, no. 5,
pp. 148–154, May 2018.

[11] S. Fu et al., “Virtualization enabled multi-point cooperation with conver-
gence of communication, caching, and computing,” IEEE Netw., vol. 34,
no. 1, pp. 94–100, Jan./Feb. 2020.

[12] B. Ji, L. Sun, C. Li, C. Han, and H. Wen, “Throughput enhance-
ment for wireless sensor network based on network allocation vector
caching algorithms,” Ad Hoc Sens. Wireless Netw., vol. 40, pp. 49–72,
Nov. 2018.

[13] Y. Wei, F. R. Yu, M. Song, and Z. Han, “Joint optimization of caching,
computing, and radio resources for fog-enabled IoT using natural actor–
critic deep reinforcement learning,” IEEE Internet Things J., vol. 6,
no. 2, pp. 2061–2073, Apr. 2019.

[14] J. Ni, A. Zhang, X. Lin, and X. S. Shen, “Security, privacy, and fairness
in fog-based vehicular crowdsensing,” IEEE Commun. Mag., vol. 55,
no. 6, pp. 146–152, Jun. 2017.

[15] Q.-V. Pham et al., “A survey of multi-access edge computing in 5G
and beyond: Fundamentals, technology integration, and state-of-the-art,”
IEEE Access, vol. 8, pp. 116974–117017, 2020.

[16] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial neu-
ral networks-based machine learning for wireless networks: A tutorial,”
IEEE Commun. Surveys Tuts., vol. 21, no. 4, pp. 3039–3071, 4th Quart.,
2019.

[17] W. Du et al., “Approximate to be great: Communication efficient and
privacy-preserving large-scale distributed deep learning in Internet of
Things,” IEEE Internet Things J., vol. 7, no. 12, pp. 11678–11692,
Dec. 2020.

[18] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A sur-
vey on Internet of Things: Architecture, enabling technologies, security
and privacy, and applications,” IEEE Internet Things J., vol. 4, no. 5,
pp. 1125–1142, Oct. 2017.

[19] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, “Deep learn-
ing for IoT big data and streaming analytics: A survey,” IEEE Commun.
Surveys Tuts., vol. 20, no. 4, pp. 2923–2960, 4th Quart., 2018.

[20] H. Ke, J. Wang, L. Deng, Y. Ge, and H. Wang, “Deep reinforcement
learning-based adaptive computation offloading for MEC in heteroge-
neous vehicular networks,” IEEE Trans. Veh. Technol., vol. 69, no. 7,
pp. 7916–7929, Jul. 2020.

[21] S. Luo, X. Chen, Q. Wu, Z. Zhou, and S. Yu, “HFEL: Joint edge
association and resource allocation for cost-efficient hierarchical fed-
erated edge learning,” IEEE Trans. Wireless Commun., vol. 19, no. 10,
pp. 6535–6548, Oct. 2020.

[22] W. Y. B. Lim et al., “Federated learning in mobile edge networks: A
comprehensive survey,”İ IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 2031–2063, Aug. 2020.

[23] T. Yang et al., “Two-stage offloading optimization for energy–latency
tradeoff with mobile edge computing in maritime Internet of Things,”
IEEE Internet Things J., vol. 7, no. 7, pp. 5954–5963, Jul. 2020.

[24] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge com-
puting for latency minimization,” IEEE Trans. Veh. Technol., vol. 68,
no. 5, pp. 5031–5044, May 2019.

[25] M. Tang, L. Gao, and J. Huang, “Communication, computation, and
caching resource sharing for the Internet of Things,” IEEE Commun.
Mag., vol. 58, no. 4, pp. 75–80, Apr. 2020.

[26] H. Wu, Z. Zhang, C. Guan, K. Wolter, and M. Xu, “Collaborate edge and
cloud computing with distributed deep learning for smart city Internet
of Things,” IEEE Internet Things J., vol. 7, no. 9, pp. 8099–8110,
Sep. 2020.

[27] H. Peng and X. Shen, “Multi-agent reinforcement learning based
resource management in MEC- and UAV-assisted vehicular networks,”
IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 131–141, Jan. 2021.

[28] M. Li, J. Gao, L. Zhao, and X. Shen, “Deep reinforcement learning
for collaborative edge computing in vehicular networks,” IEEE Trans.
Cogn. Commun. Netw., vol. 6, no. 4, pp. 1122–1135, Dec. 2020.

[29] Y. He, C. Liang, F. R. Yu, and V. C. M. Leung, “Integrated computing,
caching, and communication for trust-based social networks: A big data
DRL approach,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Abu Dhabi, UAE, Feb. 2019, pp. 1–6.

[30] Y. Dai, K. Zhang, S. Maharjan, and Y. Zhang, “Edge intelligence for
energy-efficient computation offloading and resource allocation in 5G
beyond,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 12175–12186,
Oct. 2020.

[31] S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated learning for wire-
less communications: Motivation, opportunities, and challenges,” IEEE
Commun. Mag., vol. 58, no. 6, pp. 46–51, Jun. 2020.

[32] D. Kwon, J. Jeon, S. Park, J. Kim, and S. Cho, “Multiagent DDPG-
based deep learning for smart ocean federated learning IoT networks,”
IEEE Internet Things J., vol. 7, no. 10, pp. 9895–9903, Oct. 2020.

[33] S. Yu, X. Chen, Z. Zhou, X. Gong and D. Wu, “When deep rein-
forcement learning meets federated learning: Intelligent multitimescale
resource management for multiaccess edge computing in 5G ultra-
dense network,” IEEE Internet Things J., vol. 8, no. 4, pp. 2238–2251,
Feb. 2021.

[34] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint computation offloading
and user association in multi-task mobile edge computing,” IEEE Trans.
Veh. Technol., vol. 67, no. 12, pp 12313–12325, Dec. 2018.

[35] W. Hu and G. Cao, “Quality-aware traffic offloading in wire-
less networks,” IEEE Trans. Mobile Comput., vol. 16, no. 11,
pp. 3182–3195, Nov. 2017.

[36] C. Qiu, Y. Hu, Y. Chen, and B. Zeng, “Deep deterministic policy gradi-
ent (DDPG)-based energy harvesting wireless communications,” IEEE
Internet Things J., vol. 6, no. 5, pp. 8577–8588, Oct. 2019.

[37] W. Zhan et al., “Deep-reinforcement-learning-based offloading schedul-
ing for vehicular edge computing,” IEEE Internet Things J., vol. 7, no. 6,
pp. 5449–5465, Jun. 2020.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 29,2022 at 22:07:43 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

