About
109
Publications
21,789
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,682
Citations
Introduction
Skills and Expertise
Publications
Publications (109)
We jointly select the fronthaul links and optimize the transmit precoding matrices for maximizing the energy efficiency of a multiuser multiple-input multiple-output aided distributed antenna system . The fronthaul link’s power consumption is taken into consideration, which is assumed to be proportional to the number of active fronthaul links quant...
The cloud radio access network (C-RAN) constitutes a promising architecture for next-generation systems. Beneficial centralized signal processing techniques can be realized under the C-RAN framework. Furthermore, given the recent rapid development of cloud computing, this architecture is an ideal platform for supporting network function virtualizat...
This paper studies the impact of hardware mismatch (11M) between the base station (BS) and the user equipment (UE) in the downlink (DL) of large-scale antenna systems. Analytical expressions to predict the achievable rates are derived for different precoding methods, i.e., matched filter (MF) and regularized zero-forcing (RZF), using large system a...
In this paper, we investigate the average achievable data rate (AADR) of the control information delivery from the ground control station (GCS) to unmanned-aerial-vehicle (UAV) under a 3-D channel, which requires ultra-reliable and low-latency communications (URLLC) to avoid collision. The value of AADR can give insights on the packet size design....
An intelligent reflecting surface (IRS) is proposed to enhance the physical layer security in the Rician fading channel wherein the angular direction of the eavesdropper (ED) is aligned with a legitimate user. A two-phase communication system under active attacks and passive eavesdropping is considered in this scenario. The base station avoids dire...
In this paper, we study the transmission design for reconfigurable intelligent surface (RIS)-aided multiuser communication networks. Different from most of the existing contributions, we consider long-term CSI-based transmission design, where both the beamforming vectors at the base station (BS) and the phase shifts at the RIS are designed based on...
Reconfigurable intelligent surface (RIS) or intelligent reflecting surface (IRS) has recently been envisioned as one of the most promising technologies in the future sixth-generation (6G) communications. In this paper, we consider the joint optimization of the transmit beamforming at the base station (BS) and the phase shifts at the RIS for an RIS-...
This letter theoretically compares the active reconfigurable intelligent surface (RIS)-aided system with the passive RIS-aided system. For fair comparison, we consider that these two systems have the same overall power budget that can be used at both the base station (BS) and the RIS. For active RIS, we first derive the optimal power allocation bet...
Reconfigurable intelligent surface (RIS) or intelligent reflecting surface (IRS) has recently been envisioned as one of the most promising technologies in the future sixth-generation (6G) communications. In this paper, we consider the joint optimization of the transmit beamforming at the base station (BS) and the phase shifts at the RIS for an RIS-...
In the past as well as present wireless communication systems, the wireless propagation environment is regarded as an uncontrollable black box that impairs the received signal quality, and its negative impacts are compensated for by relying on the design of various sophisticated transmission/reception schemes. However, the improvements through appl...
In this letter, we investigate a reconfigurable intelligent surfaces (RIS)-aided device to device (D2D) communication system over Rician fading channels with imperfect hardware including both hardware impairment at the transceivers and phase noise at the RISs. This paper has optimized the phase shift by a genetic algorithm (GA) method to maximize t...
In this paper, we study the transmission design for reconfigurable intelligent surface (RIS)-aided multiuser communication networks. Different from most of the existing contributions, we consider long-term CSI-based transmission design, where both the beamforming vectors at the base station (BS) and the phase shifts at the RIS are designed based on...
This letter investigates the reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) systems with a two-timescale design. First, the zero-forcing (ZF) detector is applied at the base station (BS) based on instantaneous aggregated channel state information (CSI), which is the superposition of the direct channel a...
Different from conventional wired line connections, industrial control through wireless transmission is widely regarded as a promising solution due to its reduced cost, increased long-term reliability, and enhanced reliability. However, mission-critical applications impose stringent quality of service (QoS) requirements that entail ultra-reliabilit...
This paper provides a theoretical framework for understanding the performance of reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) with zero-forcing (ZF) detectors under imperfect channel state information (CSI). We first propose a low-overhead minimum mean square error (MMSE) channel estimator, and then d...
We consider a reconfigurable intelligent surface (RIS)-aided massive multi-user multiple-input multiple-output (MIMO) communication system with transceiver hardware impairments (HWIs) and RIS phase noise. Different from the existing contributions, the phase shifts of the RIS are designed based on the long-term angle informations. Firstly, an approx...
We consider a reconfigurable intelligent surface (RIS)-aided massive multi-user multiple-input multiple-output (MIMO) communication system with transceiver hardware impairments (HWIs) and RIS phase noise. Different from the existing contributions, the phase shifts of the RIS are designed based on the long-term angle informations. Firstly, an approx...
In this paper, intelligent reflecting surface (IRS) is introduced to enhance the network performance of cognitive radio (CR) systems. Specifically, we investigate robust beamforming design based on both bounded channel state information (CSI) error model and statistical CSI error model for primary user (PU)-related channels in IRS-aided CR systems....
This letter investigates the reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) systems with a two-timescale design. First, the zero-forcing (ZF) detector is applied at the base station (BS) based on instantaneous aggregated CSI, which is the superposition of the direct channel and the cascaded user-RIS-BS...
We investigate a reconfigurable intelligent surface (RIS)-aided multi-user massive multiple-input multi-output (MIMO) system where low-resolution digital-analog converters (DACs) are configured at the base station (BS) in order to reduce the cost and power consumption. An approximate analytical expression for the downlink achievable rate is derived...
This paper investigates the reconfigurable reflecting surface (RIS)-aided multiple-input-single-output (MISO) systems with imperfect channel state information (CSI), where RIS-related channels are modeled by Rician fading. Considering the overhead and complexity in practical systems, we employ the low-complexity maximum ratio combining (MRC) beamfo...
This paper investigates the two-timescale transmission design for reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) systems, where the beamforming at the base station (BS) is adapted to the rapidly-changing instantaneous channel state information (CSI), while the passive beamforming at the RIS is adapted t...
Channel estimation in the RIS-aided massive multiuser multiple-input single-output (MU-MISO) wireless communication systems is challenging due to the passive feature of RIS and the large number of reflecting elements that incur high channel estimation overhead. To address this issue, we propose a novel cascaded channel estimation strategy with low...
Reconfigurable intelligent surfaces (RISs) or intelligent reflecting surfaces (IRSs), are regarded as one of the most promising and revolutionizing techniques for enhancing
the spectrum and/or energy efficiency of wireless systems. These devices are capable of reconfiguring the wireless propagation environment by carefully tuning the phase shifts o...
In this paper, we investigate a reconfigurable intelligent surface (RIS) aided multi-pair communication system, in which multi-pair users exchange information via an RIS. We derive an approximate expression for the achievable rate by assuming that statistical channel state information (CSI) is available. A genetic algorithm (GA) to solve the rate m...
Wireless powered mobile edge computing (WP-MEC) has been recognized as a promising technique to provide both enhanced computational capability and sustainable energy supply to massive low-power wireless devices. However, its energy consumption becomes substantial, when the transmission link used for wireless energy transfer (WET) and for computatio...
We investigate a reconfigurable intelligent surface (RIS)-aided multi-user massive multiple-input multi-output (MIMO) system where low-resolution digital-analog converters (DACs) are configured at the base station (BS) in order to reduce the cost and power consumption. An approximate analytical expression for the downlink achievable rate is derived...
Different from conventional wired line connections, industrial control through wireless transmission
is widely regarded as a promising solution due to its reduced cost, increased long-term reliability, and
enhanced reliability. However, mission-critical applications impose stringent quality of service (QoS)
requirements that entail ultra-reliabilit...
In practice, residual transceiver hardware impairments inevitably lead to distortion noise which causes the performance loss. In this paper, we study the robust transmission design for a reconfigurable intelligent surface (RIS)-aided secure communication system in the presence of transceiver hardware impairments. We aim for maximizing the secrecy r...
This paper investigates the performance of reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (mMIMO) systems with direct links, and the phase shifts of the RIS are designed based on the statistical channel state information (CSI). We first derive the closed-form expression of the uplink ergodic data rate. Then, b...
A fundamental challenge for millimeter wave (mmWave) communications lies in its sensitivity to the presence of blockages, which impact the connectivity of the communication links and ultimately the reliability of the network. In this paper, we analyze a mmWave communication system assisted by multiple reconfigurable intelligent surface (RISs) for e...
In practice, residual transceiver hardware impairments inevitably lead to distortion noise which causes the performance loss. In this paper, we study the robust transmission design for a reconfigurable intelligent surface (RIS)-aided secure communication system in the presence of transceiver hardware impairments. We aim for maximizing the secrecy r...
In this paper, we derive the uplink achievable rate expression of intelligent reflecting surface (IRS)-aided millimeter-wave (mmWave) systems, taking into account the phase noise at IRS and the quantization error at base stations (BSs). We show that the performance is limited only by the resolution of analog-digital converters (ADCs) at BSs when th...
In this paper, we investigate the design of robust and secure transmission in intelligent reflecting surface (IRS) aided wireless communication systems. In particular, a multi-antenna access point (AP) communicates with a single-antenna legitimate receiver in the presence of multiple single-antenna eavesdroppers, where the artificial noise (AN) is...
This paper investigates the performance of reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) systems with direct links, and the phase shifts of the RIS are designed based on the statistical channel state information (CSI). We first derive the closed-form expression of the uplink ergodic data rate. Then, ba...
In millimeter wave (mmWave) systems, it is challenging to ensure the reliable connectivity of communications due to its sensitivity to the presence of blockages. In order to improve the robustness of the mmWave system under the presence of the random blockages, multiple reconfigurable intelligent surfaces (RISs) are deployed to enhance the spatial...
In this paper, we investigate the robust outage constrained transmission design for an intelligent reflecting surface (IRS) aided secure communication system. We assume that a single-antenna legitimate receiver (Bob) served by a multi-antenna base station (BS) is overheard by multiple single-antenna eavesdroppers (Eves), and the artificial noise (A...
Reconfigurable intelligent surfaces (RISs) or intelligent reflecting surfaces (IRSs) are regarded as one of the most promising and revolutionizing technologies for enhancing the spectrum and energy efficiency of wireless systems. These devices reconfigure the wireless propagation environment by carefully tuning the phase shifts of a large number of...
This paper considers an uplink reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) system with statistical channel state information (CSI). The RIS is deployed to help conventional massive MIMO networks serve the users in the dead zone. We consider the Rician channel model and exploit the long-time statistic...
This paper considers an artificial noise (AN)-aided secure MIMO wireless communication system. To enhance the system security performance, the advanced intelligent reflecting surface (IRS) is invoked, and the base station (BS), legitimate information receiver (IR) and eavesdropper (Eve) are equipped with multiple antennas. With the aim for maximizi...
In this paper, we study the average packet error probability (APEP) and effective throughput (ET) of the control link in unmanned-aerial-vehicle (UAV) communications, where the ground central station (GCS) sends control signals to the UAV that requires ultra-reliable and low-latency communications (URLLC). To ensure the low latency, short packets a...
A fundamental challenge for millimeter wave (mmWave) communications lies in its sensitivity to the presence of blockages, which impact the connectivity of the communication links and ultimately the reliability of the entire network. In this paper, we analyze a reconfigurable intelligent surface (RIS)-aided mmWave communication system for enhancing...
Intelligent reflection surface (IRS) has recently been recognized as a promising technique to enhance the performance of wireless systems due to its ability of reconfiguring the signal propagation environment. However, the perfect channel state information (CSI) is challenging to obtain at the base station (BS) due to the lack of radio frequency (R...
In this paper, we derive the uplink achievable rate expression of intelligent reflecting surface (IRS)-aided millimeter-wave (mmWave) systems, taking into account the phase noise at IRS and the quantization error at base stations (BSs). We show that the performance is limited only by the resolution of analog-digital converters (ADCs) at BSs when th...
In this paper, we investigate an intelligent reflecting surface (IRS) assisted multi-pair communication system, in which multiple pairs of users exchange information via an IRS. We derive an approximate expression for the achievable rate when only statistical channel state information (CSI) is available. Then, a genetic algorithm (GA) is proposed t...
This letter considers an unmanned aerial vehicle (UAV)-enabled relay communication system for delivering latency-critical messages with ultra-high reliability, where the relay is operating under amplifier-and-forward (AF) mode. We aim to jointly optimize the UAV location and power to minimize decoding error probability while guaranteeing the latenc...
Ultra-reliable low latency communication (URLLC) is one of three primary use cases in the fifth-generation (5G) networks, and its research is still in its infancy due to its stringent and conflicting requirements in terms of extremely high reliability and low latency. To reduce latency, the channel blocklength for packet transmission is finite, whi...
In this paper, intelligent reflecting surface (IRS) is proposed to enhance the physical layer security in a Rician fading channel scenario where the angle direction of the eavesdropper is aligned with a legitimate user. In this scenario, this paper considers a two-phase communication system under the active attacks and passive eavesdropping. In par...
Perfect channel state information (CSI) is challenging to obtain due to the limited signal processing capability at the intelligent reflection surface (IRS). This is the first work to study the worst-case robust beamforming design for an IRS-aided multiuser multiple-input single-output (MU-MISO) system under the assumption of imperfect CSI. We aim...
Intelligent reflecting surface (IRS) has recently been envisioned to offer unprecedented massive multiple-input multiple-output (MIMO)-like gains by deploying large-scale and low-cost passive reflection elements. By adjusting the reflection coefficients, the IRS can change the phase shifts on the impinging electromagnetic waves so that it can smart...