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ABSTRACT 

 

Pathologists make a diagnostic decision by viewing a specimen and measuring various 

diagnostically important attributes of an isolated object such as size, shape, darkness, colour 

and texture. This is a complex process. In recent years, computer-aided image processing and 

analysis systems have played a significant role in quantitative pathology. This paper 

summarises basic image processing and analysis techniques and reviews related work in 

pathology and cytology based on computational image processing since 1987. Firstly, we 

present a general introduction to image enhancement, segmentation, morphometry and 

visualisation for those medical colleagues who may not have the necessary background in this 

area. (The mathematical treatment is kept to minimum and appropriate references are cited to 

satisfy the more mathematically oriented readers. Selected examples are provided to 

demonstrate the effects of various basic image processing algorithms on a MRI scan. It should 

be emphasised that the reviewed techniques are generally used as preprocessing steps in 

analysing microscopic images and powerful algorithms are more evolved and 

problem-specific.) Secondly, we review image cytometric and histometric methods, standards, 

calibration and applications. Finally, we touch upon three dimensional confocal image 

processing and analysis, applications of artificial neural networks, and optical disk database 

management for recording and retrieving a large number of digitised high resolution images. 

The development of integrated optical microscope and computer systems is also briefly 

described. 

 

 

INTRODUCTION 

 

Image processing and analysis in pathology is a multidisciplinary area of research and 

development. It is a facet of the technical disciplines of cytometry and histometry. Cytometry 

is the process of effecting independent measurements of morphological, biochemical, and 

physiological attributes of individual cells and cellular components (i.e. structure, content, 

and function) [1]. Histometry is the process of extracting these measurements from tissue 

components. The extracted features from large and representative samples enable us to 

characterise specimens in ways not solely by visual analyses, but also from the measured and 

computed properties of sample constituents. Figure 1 illustrates the major sciences and 

technologies involved in image processing and analysis applicable to quantitative pathology. 

 

The left side of the figure shows core technologies which are applied in image cytometry and 

histometry, while the right side defines supporting technologies which contribute to the 

increasing level of new research and development opportunities in pathology. Many of the 

key and supporting technologies identified in Figure 1 involve optical and visual processes. 

Electronic imaging systems are essential for the detection and precise quantification of these 

processes. It is also significant that many of these technologies rely on the availability of 

computerised instrumentation and engineering techniques for the acquisition, storage, 

retrieval, communication, processing, analysis, and display of data. 
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Optical scientists and engineers are involved in fundamental aspects of optics, and computer 

scientists and mathematicians contribute computing environments and multidimensional 

processing methods. Biomedical engineers are interested in the prospects of using an array of 

powerful new tools and techniques to address complex biological or clinical questions. This 

paper summarises basic image processing and analysis techniques and reviews related work 

in pathology and cytology since 1987 that benefit from biomedical image processing. 
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Figure 1. Multidisciplinary areas involved in image processing and analysis in pathology. 

 

 

1. IMAGE ENHANCEMENT 

 

Image enhancement refers to emphasising or sharpening of image features, such as edges, 

boundaries, or contrast to make a graphic display more useful for visualisation and analysis. 

The enhancement process does not increase the inherent information in the data, but it can 

provide a better match between image data and the human visual system or software analysis 

algorithm. Image enhancement includes gray-level and contrast manipulation, noise 

reduction, edge crispening and sharpening, filtering, interpolation and magnification, and 

psuedocolouring [2-7]. 

 



 

3 

 

1.1 Enhancement in the Spatial Domain 

 

1.1.1 Histogram Equalisation 

 

In histogram equalisation, the goal is to obtain a uniform histogram for the output image. The 

procedure is a mapping (transformation) function of the form: 

    
 Sk = T(k) = Pr(rj)•

j = 1

k

  k = 1, 2, 3, ..., L 

 

i.e. every pixel in the original image having value rk is transformed in intensity to a value Sk. 

The objective of this transformation is to produce a histogram ps(sj) which is more spread out 

than the original histogram. In theory, this histogram should be flat (i.e. uniform). In medical 

diagnostic imaging, a uniform histogram is not necessarily ideal and various different 

non-equalised (nonuniform) techniques are also used. Figures 2 a&b show a MRI scan and its 

histogram equalised image and their associated histograms. The histogram shows the number 

of pixels in the image that has each of the possible 256 gray level values (0 = dark and 255 = 

white.) 

 

 

1.1.2 Local Enhancement 

 

This procedure is to define an n * m rectangular neighbourhood and move the centre of this 

area from pixel to pixel. At each location, the histogram of the n * m points in the 

neighbourhood are computed and a histogram equalisation transformation function is 

obtained. The function is finally used to map the intensity of the pixel centred in the 

neighbourhood. The centre of the n * m region is then moved to an adjacent pixel location 

and the procedure is repeated. Since only one new row or column of the neighbourhood 

changes during a pixel to pixel translation of the region, it is possible to update the histogram 

obtained in the previous  

location with the new data introduced at each motion step. 

 

Instead of using histogram, pixel intensity can be employed in local enhancement. The 

intensity mean and variance (standard deviation) are frequently used because of their 

relevance to the appearance of an image. The mean is a measure of average brightness and the 

variance is a measure of contrast [2-7]. A typical local transformation based on these 

concepts maps the intensity of an input image f(x,y) into a new image g(x,y) by performing 

the following transformation at each pixel location [2-7]: 

 

     g(x,y) = A(x,y) * [f(x,y) - m(x,y)] + m(x,y) 

where 

 
 A(x,y) = c M

(x,y)
        0<c<1

 

 

 

 

In this formulation m(x,y) and (x,y) are intensity mean and standard deviation computed in a 

neighbourhood of (x,y), M is the global mean of f(x,y), and c is constant in the range 

indicated above. It is important to note that A, m, and  are variable quantities which depend 

on a predefined neighbourhood (x,y). Application of the local gain factor A(x,y) to the 

difference between f(x,y) and the local mean amplifies local variations. Since A(x,y) is 
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inversely proportional to the standard deviation of the intensity, areas with low contrast 

receive larger gain. The mean is added back in the first equation to restore the average 

intensity level of the image in the local region and restrict the variations of A(x,y) between 

two limits (Amin, Amax), in order to balance out larger excursions of intensity in isolated 

regions.(Please see references 2-7 for examples) 

 

a

a

b

 
Figure 2. Histogram equalisation, a) MRI scan and its histogram, b) histogram equalised MRI 

scan and its histogram.. 

 

1.1.3 Smoothing 

 

Smoothing operations are used for reducing noise and other spurious effects that may be 

present in an image as a result of sampling quantisation, transmission, or disturbances in the 

environment during image acquisition. Neighbourhood averaging is a spatial domain 

technique for image smoothing. Given an image f(x,y), the procedure is to generate a 

smoothed image g(x,y) whose intensity at every point (x,y) is obtained by averaging the 

intensity values of the pixels of f(x,y) contained in a predetermined neighbourhood of (x,y). 

 

Here, S is the set of coordinates of points in the neighbourhood of f(x,y), including (x,y) 

itself, and N is the total number of points in the neighbourhood. Smoothing operations are 

usually implemented by using a m * m (i.e. 3 * 3) spatial masks, where the value of each 

pixel in the image is replaced with the weighted average of its 3 * 3 neighbourhood. Filtering 

(ie smoothing) operations are performed on a grayscale image or a psuedocoloured image 

originated from a grayscale image. Figures 3 a&b show the effect of smoothing the MRI scan 

corrupted with random spot noise with a smoothing filter to reduce noise. The 3 * 3 mask 

used in this operation is: 1 1 1 

     1 4 1 

     1 1 1 
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a b

 
Figure 3. Effect of smoothing or low pass filtering, a) original image, b) smoothed image. 

 

 

1.1.4 Median Filters 

 

The principal function of median filtering is to replace the intensity of each pixel by the 

median of the intensities in a predefined neighbourhood of that pixel instead of the average. 

The median M of a set of values is such that half of the values in the set are less than M and 

half of the values are greater than M. In order to perform median filtering in a neighbourhood 

of a pixel we sort the values of the pixel and its neighbours, determine the median, and assign 

this value to the pixel. The median filtering operation makes pixels with very different 

intensities more like their neighbouring pixels. This method is particularly effective when 

noise pattern consists of strong spikelike components and where the characteristic to be 

preserved is edge sharpness. 

Figures 4 a&b show the effect of filtering the MRI scan with a median filter. Please note the 

superior performance of this filtering operation in removing spikelike (salt and pepper) noise. 

 

 
Figure 4. Effect of median filtering, a) original image, b) median filtered image. 

 

 

1.2 Enhancement in the Frequency Domain 

 

The frequency domain enhancement method is based on the convolution theorem. 

Convolution in the spatial domain corresponds to multiplication in the frequency domain. 

Therefore, image enhancement problems can be expressed as: 

 

G(u,v) = H(u,v) F(u,v) 
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where G(u,v), H(u,v), and F(u,v) are two dimensional Fourier transforms of g(x,y) [the 

enhanced or filtered image], h(x,y) [impulse response of the enhancing operation or filter - a 

position invariant mask], and f(x,y) [the original image], respectively. 

In a typical image enhancement application, the original image f(x,y) is given and the 

objective, after computation of F(u,v), is to design H(u,v) so that the enhanced image, g(x,y) 

= inverse Fourier transform of [H(u,v) F(u,v)], highlights the desired features of the original 

image. Figure 5 a&b show the effects of sharpening the MRI scan with a sharpening filter to 

increase contrast and accentuate detail. (The image is sharpened by finding the 2-D Fourier 

transform of a 3 x 3 sharpening mask, i.e.  

     -1 -1 -1 

     -1 -9 -1 

     -1 -1 -1 

 

i.e. H(u,v) and multiplying it by the 2-D Fourier transform of the MRI scan i.e. F(u,v) and 

finally finding the inverse 2-D Fourier transform of the product H(u,v) F(u,v). 

 

 

 

 

 

 

 

 

 

 
Figure 5. Image sharpening or high pass filtering, a) original image, b) sharpened image. 

 

 

2. IMAGE PROCESSING AND ANALYSIS 

 

In this section we briefly mention specimen preparation and review the main areas of image 

processing and analysis which are of particular interest in pathology. These areas are: image 

segmentation, morphometry, and image analysis. 

 

 

2.1 Specimen Preparation 

 

The basic requirements of a monolayer preparation are summarised by Shwarz et al. [8] as 

follows: 

  - regular and isolated cell deposits in an optimal cellular density 

  - location of cells in the same optical plane 
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- sufficient contrast between nucleus and cytoplasm as well as between cytoplasm 

and background 

  - appearance of cells according to their cytological classification with good  

  reproducibility 

  - reproducibility of cellular staining 

  - clear background 

  - clear boundaries around the area of deposits 

 

An overview of the different techniques for the preparation of specimens is given by 

Rosenthal and Manjikian [9]. 

 

 

 

 

 

 

 

2.2 Image Segmentation 

 

Segmentation is the process that subdivides an image into its constituent parts or objects. 

Segmentation algorithms generally are based on one of the two basic properties of gray-level 

values: discontinuity and similarity [4]. In the first category, partitioning an image is based on 

abrupt changes in gray-level. The principal areas of interest within this category are the 

detection of isolated points and the detection of lines and edges in an image. The principal 

approaches in the second category are based on thresholding, region growing, and region 

splitting and merging [2-7]. 

 

 

2.2.1 Edge Detection 

 

The edge detection methods are principally based upon the first and second partial derivatives 

at any point in the image and they can be performed by using the gradient operators or the 

Laplacian operators. In gradient operators the gradient vector magnitude and direction are 

given by : 

 

     

G[f(x,y)] = 
Gx

Gy
 = 

f
dx

f
dy       

    magnitude [G] = G[f(x,y)] = [Gx
2 + Gy

2]
1

2 

 

     phase [G] = 
(x,y) = tan -1 [

Gy

Gx
]
 

 

where Gx is the horizontal gradient and Gy is the vertical gradient. There are a variety of 

methods for performing gradient computations and there are a large number of spatial masks 

designed for this purpose [5]. 

 

The Laplacian operator is a second derivative operator and is given by: 

 

     
L[f(x,y)] = 

f
2

x
2

 + 
f

2

y
2
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The Laplacian responds to transitions in intensity and is seldom used by itself for edge 

detection. Since it calculates the second derivative it is too sensitive to noise. Figure 6 a&b 

show the effect of edge detection in the MRI scan. This operation produces a binary image (6 

b) with a white background and black outlines representing edges in the original image. In 

this operation the following masks have been used to find the horizontal and vertical 

gradients: 

 

   -1  0  1     1  1  1 

   -1  0  1  and   0  0  0 

   -1  0  1    -1 -1 -1 

 

ba

 
Figure 6. Edge detection, a) original image, b) edge detected image. 

 

2.2.2 Thresholding 

 

A simple approach for segmenting an image is to divide the gray scale into bands and to use 

thresholds to determine regions or to obtain boundary points. Threshold selection is an 

important step in this method. Some commonly used approaches are as follows [2-7]: 

 

 * The histogram of the image is examined for locating peaks and valleys. If it is multimodal 

 then the valleys can be used for selecting thresholds. 

 

 * A threshold (T) is selected so that a predetermined fraction of the total number of samples 

 are below T. 

 

 * Adaptive thresholding is performed by examining local neighbourhood histograms. 

 

 * Selective thresholding is performed by examining histograms only of those points that 

 satisfy a chosen criterion. 

 

 * If a probabilistic model of different segmentation classes is known, the threshold is 

 determined to minimise the probability of error or some other quantity. 

 

 

   

B2

dark

B1

light
T  

Figure 7. Histogram of an image. 
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The histogram in Figure 7 is characteristic of images consisting of objects superimposed on a 

dark background. To outline the boundary between objects and the background, the histogram 

is divided into two bands separated by a threshold T. The goal is to select T so that band B1 

contains, as closely as possible, the levels associated with the background while band B2 

contains the levels of the objects. As the image is scanned, a change in grey level from one 

band to the other denotes the presence of a boundary. In order to select boundaries in both the 

horizontal and the vertical directions, two passes through f(x,y) are required. Once B1 and B2 

are selected, the procedure is as follows [3]: 

Pass 1: 

For each row in f(x,y) (i.e. x = 0, 1, ..., N-1), create a corresponding row in an intermediate 

image g1(x,y) using the following relation for y = 1, 2, ..., N-1: 

       

    

g1(x,y) = 

Le if the levels of f(x,y) and f(x, y-1) 
 are in different bands of gray scale

Lb  otherwise  
 

where Le and Lb are specified edge and background levels, respectively. 

Pass 2: 

For each column in f(x,y) (i.e., y = 0, 1, ..., N-1) create a corresponding column in an 

intermediate image g2(x,y) using the following relation for x = 1, 2, ..., N-1: 

 

    

g2(x,y) = 

Le if the levels of f(x,y) and f(x -1, y) 
 are in different bands of gray scale

Lb  otherwise  
 

The desired image consisting of the points on the boundary of objects, different (as defined by 

T) from the background is obtained by using the following relation for x, y = 0, 1, ..., N-1: 

 

    

g(x,y) = 

Le if either g1(x,y) or g2(x,y) is equal to Le

Lb  otherwise  
 

In cytology, once objects of potential interest have been located, the analysis is focussed on 

the area around each cell deemed suitable for inspection. The aim is to identify the nuclear 

and cytoplasmic regions in the scene and then extract the necessary features that characterise 

each region. 

 

To identify the constituent parts in each region the segmentation procedure performs two 

tasks: one to find the nucleus, the other to find the cytoplasm [10]. The resolution of the 

image and the quality of photometric properties such as gray-level value, colour or texture 

play an important role since they can affect the overall accuracy of the feature extraction 

procedure and classification results. 

 

Image processing techniques such as smoothing, gradient operators, and iterative histogram 

modification are normally used to clarify the boundaries between background and cytoplasm 

and between cytoplasm and nucleus. Thresholding methods are based on optical density, local 

gradients, and histograms of different spectra. Density and gradient thresholding are the 

simplest and fastest segmentation techniques. 
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Liedke et al. have compiled an excellent reference source which reviews different methods of 

automated segmentation of cell images [11]. The techniques discussed include edge detection 

by thresholding, "blob" detection using the split-merge algorithm, global thresholding using 

gray-level histograms, hierarchical thresholding using colour information, global thresholding 

using two dimensional histograms and segmentation by "blob" labelling. 

 

 

2.3 Morphometry 

 

Morphometry is the quantitative description of a shape. In general, the term is more freely 

used with regard to the quantitative description of a structure. Morphometry could imply any 

type of quantitative analysis. In practice, the term is used to denote a particular area of 

quantitative pathology. It is restricted to the use of simple equipment for interactive 

quantitative image analysis of geometric features. Researchers use the full pattern recognition 

and diagnostic capabilities of morphometry in their analysis and measurement procedures. 

 

Typical examples of quantitative analysis are mitotic counts and differential counts of 

leukocytes in a blood smear [12]. Being one of the oldest quantitative methods, the daily 

worldwide use of these analyses clearly indicates the versatility of such techniques in 

interactive morphometry. Other useful readings on morphometry are compiled in references 

[13,14]. 

 

 

2.4 Digital Image Analysis 

 

In principle, digital image analysis should enable us to analyse architectural features of tissues 

and cells at high speed. Developments in this area are increasing at a rapid rate. Fully 

automated TV-image analysis has been used to establish cell cycle parameters based on 

autoradiographs of histological sections [15]. In oncological pathology and diagnostic cancer 

cytology, nuclear chromatin patterns represent the most important discriminating features 

between cells of a malignant neoplastic line from their benign counterparts. Therefore, 

methods for quantifying the chromatin distribution in cell nuclei are of greatest interest. 

Attempts to recognise dyskaryotic cells based on features such as nuclear heterogeneity, 

granularity, clumping and margination of chromatin have reached a high level [14,16]. 

 

 

3. BIOMEDICAL APPLICATIONS 

 

The following part of this paper has three sections. The first section (3.1) reviews image 

cytometric and histometric methods as well as standards and calibration. Biomedical 

applications of image cytometry and histometry are included in this section. The second 

section (3.2) describes 3-dimensional confocal image processing and analysis. The third 

section (3.3) deals with computerised system development. This last section includes a very 

brief review of development of computer software and hardware, special purpose optical disk 

database management, and artificial neural networks. 

 

 

3.1 Image Cytometry and Histometry: Methods, Standards and Calibration 

 

Smeulders and Kate [17] have studied the accuracy of optical density measurement of cells 

and have analysed the factors which influence the accuracy and precision of this method. 
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They applied their research method to the measurement of DNA (deoxyribonucleic acid) 

content of Feulgen-stained cells using video microscopy. They have discussed many factors 

influencing the accuracy of density measurements such as staining, glare, diffraction, image 

sampling distribution, sampling density, noise and computational accuracy. They have 

reviewed these factors and have pointed out potential remedies. 

 

 

The measurement of DNA in cells plays a key role in the detection and diagnosis of cancer 

[18]. Cancerous cells normally contain unusual and variable quantities of DNA. Since the 

fundamental discovery that normal cells could be distinguished from cancerous cells on the 

basis of their DNA content, measurement of nuclear DNA has proven to be a useful technique 

in detection and diagnosis of neoplasia. Cellular DNA content also can be of value in the 

classification of tumour types and in predicting biological behaviour. 

 

Continuous motion imaging provides a method for the rapid quantitative analysis of slice 

mounted cell preparations [18]. The continuous motion imaging system is a new instrument 

which can in principle measure morphological, densitometric, and texture features of cells 

and other microscopic objects. Tucker et al. have described the continuous motion imaging 

system principles and techniques used to achieve densitometric measurements in the 

performance of the system in their paper. It is to be expected that continuous motion imaging 

systems will find increasing applications in the field of quantitative pathology, particularly in 

those tasks requiring rare event detection of small subpopulations of interesting cells hidden 

in much larger populations of uninteresting cells. 

 

Histopathological and clinical differential diagnosis of melanoma and benign pigmented 

moles at early stages can be difficult. Abmayr et al. have used electron microscopy (EM) and 

light microscopy (LM) with high resolution TV-scanning and multivariate analysis methods 

to compare benign pigmented mole cells and malignant melanoma cells [19]. Comparative 

studies on EM and LM are useful to look for the reliability of light microscopic features for 

the recognition of malignant melanoma cells since the LM technique is more practical in 

routine work. Both EM and LM techniques can scan identical cells of benign pigmented 

moles and malignant melanoma. In electron microscopy, nuclei of melanoma cells appear 

usually more heterochromatic, whereas in light microscopy they appear more euchromatic. 

Using multivariate analysis methods Ambayr et al. found distinguishing features in EM 

images and transferred them to LM images. The correlation of EM and LM features were 

emphasised and helped to demonstrate that classification in LM is sufficiently good using 

texture features only, even though chromatin structure in the LM image appears out of focus. 

 

A previous investigation of pigmented cells in electron microscopy showed that a specimen 

classification using only karyometric features was fairly reliable [20]. In their investigation 

Stotz et al. found that the features of chromatin texture were more discriminating than 

karyometric features when training sets of randomly selected individual cells were classified. 

Multivariate analysis improved the results of differentiation between individual malignant 

melanoma and benign pigmented moles. The nuclear area was not important for the 

classification of pigmented cells compared to chromatin features. The combination of 

euchromatin and heterochromatin features improved the results in both EM and LM. 

 

Malignant change in human tissues is accompanied by deviations in the DNA content of the 

nuclei. A number of studies have been performed to elucidate the relationship between the 

clinical behaviour of these malignant lesions and the amount of DNA in the nucleus [21]. In 

their study Oud et al. showed that DNA histogram or DNA index analysis using image 



 

12 

cytometry in nuclei from paraffin-embedded tissue appeared to be a valuable method to 

characterise malignant processes. Image cytometry offers the advantage that in addition to 

DNA content, other DNA derived features such as nuclear size, shape and chromatin texture 

(DNA distribution in the nucleus) can be obtained. The DNA index can be computed and is 

comparable with that obtained from flow cytometry. In their paper, the authors also mention 

the clinical application of DNA index in dysgeminomas of the ovary and small-cell lung 

cancer. 

 

Based on computer techniques, Melder and Koss at the Albert Einstein College of Medicine 

in New York have developed an image analysis system for diagnosis of bladder cancer [22]. 

The system converts optical images of cells into arbitrary numerical values based on light 

absorption and transmission. The digitised image is processed by a computer system that is 

capable of feature extraction and analysis. A broad variety of measurements of cells and their 

components can also be obtained resulting in a highly detailed study of individual cells or 

families of cells.  

 

The identity of the cells can be controlled by visual examination, the cells can be rescanned to 

test the accuracy of the system, and the digitised images can be stored for future analytical 

study when machine generated data require a comparison with clinical findings. 

 

Bronchocarcinoma has been one of the big killer cancers in the past years. Research has 

shown squamous cell carcinoma type to be the most readily detectable through the use of 

sputum cytology. Cytological screening of sputum specimens can be identified before they 

are evident through radiological screening [23]. This technique involves the microscopic 

screening of Papanicolaou prepared sputum specimens from the affected bronchus. Swank et 

al. have used high resolution image analysis techniques to detect and classify bronchial 

epithelial atypias from sputum. Different studies by Bartels and his colleagues has 

demonstrated the feasibility of this method in identifying premalignant atypias of the uterine 

cervix [24,25,26]. 

 

 

3.2 3-D Confocal Image Processing and Analysis 

 

Confocal microscopy provides the ability to capture 3-D images of microscopic structures. 

But as the complexity of the tissues increases, direct viewing in 3-D becomes more difficult 

and confused due to the large number of structures involved [27]. One good solution to 

effectively study complex tissues is the numerical description of tissue organisation (e.g. 

position, size and orientation of each structure). An attempt at data reduction by means of 

manual tracing in 3-D has been made in the study of sea urchin embryo [27]. However, apart 

from being labour intensive, this 3-D digitisation technique suffers from the inaccuracies of 

manual 3-D tracing related to the depth of perception of the operator. To overcome the 

disadvantages of manual tracing, Samarabandn and his group have developed a number of 

image analysis algorithms. They also have designed a system to visualise and extract 

morphometric parameters from the data generated by confocal microscopy. 

 

A confocal imaging system encodes structural information of the object into a digitised array. 

During the image generation procedure noise and artefacts are introduced. To reduce noise 

and artifacts image enhancement is needed to emphasise the biological structures of interest 

in the image. Three dimensional median filtering could be used to reduce spurious noise and 

difference of Gaussian (DOG) filtering could be utilised to enhance edges. 
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The presence of boundary concavities and hollow regions is a major source of problems in the 

segmentation of confocal images. To reduce these irregularities the authors used an approach 

based on multilevel neural networks to further enhance the images [27]. The network used 

consisted of three levels of n*m computational elements where each layer receives activities 

from the level below it. They also applied region segmentation and boundary refinement in 

their research. The segmented image was used to extract morphometric parameters of 

microscopic structures such as surface area, volume, centre of gravity, eccentricity and 

skeleton. The complete procedure is illustrated in Figure 8. 

 

Morgan et al. have reconstructed glial cells in the mouse central nervous system in three 

dimensions using confocal microscopy [28]. In their work, they labelled specific cells of 

intact tissue by immunostaining, optically sectioned the tissue, computationally reconstructed 

a three dimensional image data set from digitised confocal optical sections, and finally used 

surface rendering techniques to define boundaries of cells and to display individual cells. 

 

Using confocal fluorescent microscopy Montag et al. have made a 3-D reconstruction of 

chromatin structures with a ray-tracing algorithm [29]. They recorded up to 32 optical 

sections in 500 nm steps in the z-axis. To achieve enhanced contrast and an outline of the 

unclear boundary image, filtering techniques were employed. 

 

With the development of computer techniques and confocal microscopy, multi-dimensional 

representation has become possible. Kriete and Wagner have used computer-assisted confocal 

microscopy to study spatio-temporal changes of synaptic morphology in cultured fish retinas. 

 

 

preprocessing

enhancement edge detection

boundary extraction

concavity extraction

edge detection concavity correction

overlap detector

edge detection overlap correction

volume filter

elongation filter

volumecentre of gravity surface area

statistical tools  
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Figure 8. Segmentation procedure. 

 

In their work [30], they used a specific volume rendering technique. Data volume acquired 

sequentially in time were reconstructed three dimensionally. The animated display of 

reconstructed views required large memory capacity to store and handle the enormous amount 

of data. In this study, their interest was only in visualisation of very subtle morphogenetic 

changes, so only the intensity information was stored by the volumetric elements. The time 

dependent intensity variation was added to the basic volumetric elements. 

 

3.3 Computer System Development in Pathology 

 

 

3.3.1 Workstations 
 

Bacus et al. have developed a new fully integrated optical microscope and computer 

workstation system for the pathology laboratory [31]. Their system allows for acquisition and 

storage of digitised microscopic images, measurement of a standard set of cell features 

calibrated for accurate densitometry, and a comprehensive statistical analyses and display 

procedures. Their statistics programs  emphasise the ability to discriminate between cells and 

cell population. Their system is used by practising pathologists in diagnostic and prognostic 

visual microscopic evaluations, i.e. to examine specimens from patients with cancer, 

infectious diseases, blood diseases, and genetic or constitutional abnormalities. 

 

 

3.3.2 PC systems 
 

A personal computer-based microphotometry system has been designed by Dytch et al. [32]. 

The system provides objective measurements of important diagnostic properties of histologic 

sections. The diagnostic features include detailed microscale measurements of individual 

nuclei such as total integrated nuclear optical density (DNA content), nuclear area, shapes, 

and texture. The microscale features may be measured in an individual nuclei. Additional 

diagnostic information, such as measurements of mitotic density, nuclear  crowding,  and  

relative  nuclear orientation may be examined in the context provided by other nuclei and the 

structure of the histologic section as a whole. 

 

The system hardware is of low cost, widespread availability and easy serviceability. The 

major hardware components are a microscope, a video camera and control unit, a video 

digitiser, a frame buffer, a display monitor, and a personal computer. 

 

 

3.3.3 Optical Disks 
 

In recent years, a new advancement in histopathology and analytical cytology has been 

possible due to the ability to record and retrieve a large number of digitised high resolution 

images of stained cells. This has resulted in the development of image cytometry database 

systems. Such systems employ an optical memory disk recorder for storage of an image 

database, a microcomputer for storage of a relational database containing descriptive features 

and graphics overlap parameters. Such systems can be used for varied purposes such as 

recording images of fixed and stained cells or tissue on a microscope slide, observing the 

behaviour of live cells growing in tissue culture, research and clinical applications. Clinical 

applications include storage of individual cases for presentation and consultation, 
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development of teaching techniques in cytology and pathology, time-lapse cinematography of 

live cells, and storage of an image database which is used to test various segmentation 

techniques. 

 

 

3.3.4 Expert Systems 
 

Knowledge engineering methods can be used to design machine vision systems for the 

histopathology laboratory which use computer resources efficiently and in an adaptive 

fashion. These methods offer the potential of giving the machine vision system a very good 

level of diagnostic judgement and they provide histopathologists with expert guidance in the 

handling, analysis, and interpretation of multivariate data. 

 

 

 

 

An intelligent knowledge-based system in quantitative histopathology has been developed by 

Dytch et al. [28]. The system allows for real-time image data driven dynamic reconfiguration 

of the computer architecture, which is based on prior knowledge of the histopathologic 

sections to be processed. The system functions include an expert controlled scene 

segmentation, processing task scheduling, diagnostic expert system module, and validation 

procedures. 

 

Scene segmentation in complex imagery is very difficult. Human observers preprocess 

imagery using prior knowledge. In examining histopathologic images, pathologists apply a 

large number of heuristic rules. These rules lend themselves ideally as a knowledge base to 

guide the scene segmentation process by a rule-based production system. This diagnostic 

expert system module allows the pathologists to enter the diagnostic categories and the clues, 

establish quantitative grading for the clues, and assign certainty factors. Several applications 

are described in Bartels et al. [33]. 

 

 

3.3.5 Neural Networks 
 

Dytch and his colleagues have also developed an expert diagnostic system for the analysis of 

stratified epithelial tissues using objective histometric techniques [34]. A hierarchical design 

method with embedded expert systems directed by higher level meta-systems has been 

employed to evaluate specific diagnostic features. According to the authors, one approach is 

to directly use raw data derived from the digitised images of tissue sections as inputs to a 

neural network, bypassing the scene segmentation and feature extraction steps of the 

diagnostic process. The other approach is to use a neural network as a preprocessor to extract 

diagnostic clues which are difficult to define and relate to mathematical features, i.e. 

chromatin clumping and other pixel level textural features. The authors used neural networks 

as pattern recognisors, employed feature vectors extracted from histologic image data as input 

to the network, and derived diagnostic categorisation of image data as outputs from the 

network. 

 

 

CONCLUSIONS 

 



 

16 

Quantitative pathology and cytology will benefit a great deal from the new advances in image 

processing and analysis technologies. The new research and development opportunities in 

pathology would rely heavily on the interdisciplinary interactions of a myriad of core and 

supporting technologies. Electronic imaging systems, computerised instrumentation, 

engineering techniques, advanced computing environments and sophisticated mathematical 

algorithms would play a fundamental role in the development of powerful new tools and 

techniques to address complex cytological and pathological morphometric questions. 
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