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Abstract: 

Over the past 15 years, artificial neural networks (ANNs) have been used increasingly for 

prediction and forecasting in water resources and environmental engineering.  However, 

despite this high level of research activity, methods for developing ANN models are not yet 

well established.  In this paper, the steps in the development of ANN models are outlined and 

taxonomies of approaches are introduced for each of these steps.  In order to obtain a snapshot 

of current practice, ANN development methods are assessed based on these taxonomies for 

210 journal papers that were published from 1999 to 2007 and focus on the prediction of 

water resources variables in river systems.  The results obtained indicate that the vast majority 

of studies focus on flow prediction, with very few applications to water quality.  Model 

inputs, appropriate data subsets and the best model structure are generally obtained in an ad-

hoc fashion and require further attention.  Although multi layer perceptrons are still the most 

popular model architecture, other model architectures are also used extensively.  In relation to 

model calibration, gradient based methods are used almost exclusively.  In conclusion, despite 

a significant amount of research activity on the use of ANNs for prediction and forecasting of 

water resources variables in river systems, little of this is focused on methodological issues.  

Consequently, there is still a need for the development of robust ANN model development 

approaches. 
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1. Introduction 

 

Over the last 15 years or so, the use of artificial neural networks (ANNs) for the prediction 

and forecasting of water resource variables has become a well-established research area.  In 

the early years (1992 to 1998), ANNs were considered a novel modelling approach and, 

consequently, research efforts were directed primarily towards the application of ANNs to 

different types of problems and case studies in order to assess their utility as an alternative 

modelling approach.  The large amount of research activity in this area led to a number of 

review papers in 2000 and 2001 (Maier and Dandy, 2000; ASCE, 2000; Dawson and Wilby, 

2001), which not only confirmed the potential of ANNs for the prediction and forecasting of 

water resource variables, but also identified a number of challenges that needed to be 

addressed in order to ensure that ANNs become a mature modelling approach that can sit 

comfortably alongside other approaches in the toolkit of hydrological and water resource 

modelers. 

 

In their review, Maier and Dandy (2000) suggested that there needed to be a shift in the focus 

of ANN research from the application of ANNs to various water resources case studies to 

addressing a number of methodological issues.  Attention to good practice in model 

development is vitally important in all modelling efforts (Jakeman et al., 2006; Robson et al., 

2008; Welsh, 2008), but is particularly important in the development of ANN models, as they 

are developed using available data and not based on underlying physical processes explicitly, 

thereby increasing the chances of developing a model that is not very meaningful.  

Consequently, the focus of this review paper is on the methodologies that are used in the 

development of ANN models for the prediction and forecasting of water quantity (e.g. flow, 
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level) and quality variables in river systems.  The steps in the ANN model development 

process are outlined, taxonomies of the methods that are available at each of these steps are 

presented and the methods that have been utilized in 210 papers that have been published in 

well-known international journals from 1999 to 2007 are analysed in relation to these 

taxonomies.  This provides a snapshot of the methods that are used at the various steps of the 

model development process during this time period.  It should be noted that this paper does 

not evaluate the performance of ANN models relative to other water quantity and quality 

models, nor does it critically evaluate the latest advancements in ANN modelling.  These 

should be the subject of other review papers.  Throughout this paper, in-depth descriptions of 

the methodologies are not given, as readers are expected to be familiar with ANN modelling 

and the various methods employed therein. Information on the basic concepts of ANNs are 

given in many papers and textbooks (e.g. Flood and Kartam, 1994; Hassoun, 1995; Maren et 

al., 1990; Masters, 1993; Rojas, 1996; Bishop, 2004). 

 

The remainder of this paper is organized as follows.  In Section 2, details are given of how the 

database of papers was assembled, as well as an overview of the research activity in the use of 

ANNs for the prediction and forecasting of water quality and quantity variables in river 

systems from 1999 to 2007.  This period was chosen as it follows on from the period time 

period covered in the review by Maier and Dandy (2000) (i.e. 1992 to 1998).  In Section 3, a 

brief outline of the steps in the ANN model development process is provided, followed by the 

taxonomies of available options at the various steps in this process, against which the 210 

papers are assessed in terms of the modeling approaches adopted.  The final section provides 

a summary and conclusions of the findings of this paper. 

 

2. Overview 
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The articles reviewed in this paper are taken from the following international refereed journals 

(the numbers in brackets are the journals’ 2008 ISI impact factors): Advances in Water 

Resources (2.235), Civil Engineering and Environmental Systems (0.425), Environmental 

Modelling and Software (2.659), Environmetrics (0.719), Hydrological Processes (2.002), 

Hydrological Sciences Journal (1.216), Hydrology and Earth System Sciences (2.167), 

International Journal of Water Resources Development (0.738), Journal of Environmental 

Engineering (1.085), Journal of Hydroinformatics (0.681), Journal of Hydrologic Engineering 

(1.007), Journal of Hydrology (2.305), Journal of the American Water Resources Association 

(1.208), Journal of Water Resources Planning and Management (1.275), Nordic Hydrology 

(1.194), Stochastic Environmental Research and Risk Assessment (0.951), Water Resources 

Management (1.350), Water Resources Research (2.398), and Water SA (0.721).  These 

journals were chosen because they are widely recognized international journals in the fields of 

hydrology and surface water resources.  A keyword search of the ISI Web of Science was 

then conducted for these journals for the period 1999 to 2007 using the search term “Neural 

Networks”, resulting in 516 articles.  This list was refined manually to exclude papers 

focusing on rainfall, groundwater, lakes and reservoirs, parameter estimation etc., resulting in 

210 selected papers focusing on the prediction and forecasting of water quantity and quality 

variables in river systems. 

Details of the selected papers, including year of publication, authors, study location and 

variable predicted are given in Table 1.    The distribution of papers by year of publication is 

given in Figure 1.  As can be seen, there has been a strongly increasing trend in the number of 

papers published since 2001, with 46 papers published in 2007 alone. 
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Figure 1: Distribution of Papers by Year of Publication 

 

The number of papers in which water quantity and water quality variables were predicted is 

given in Figure 2.  As can be seen, water quantity variables were predicted in more than 90% 

of the papers, of which flow was by far the most popular (see Table 1).  Water quality 

variables were predicted in fewer than 10% of the papers. 
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Figure 2: Number of Times Water Quantity and Water Quality Variables were Predicted 

 

The distribution of time steps considered is given in Figure 3.  As can be seen, a daily time 

step was used in 105 of the 210 papers reviewed, followed by hourly (49 papers) and monthly 

(34 papers) time steps.  It should be noted that a number of different time steps were used in 

some of the papers reviewed 
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Figure 3: Number of Times Various Time Steps Have Been Used 

 

Table 1: Details of Papers Reviewed 

Year Authors River System(s) Variable(s) 
1999 Savic et al. Kirkton River, Scotland Flow 
1999 Maier and Dandy River Murray, Australia Salinity 
1999 Danh et al. Da Nhim & La Nga Rivers, Vietnam Flow 
1999 See and Openshaw Ouse River, England Level 

1999 
Sajikumar and 
Thandaveswara River Lee, UK; & Thuthapuzha River, India Flow 

1999 Zealand et al. Winnipeg River, Canada Flow 
1999 Frakes and Yu Susquehanna River, USA  Flow & Nitrate 
1999 Jain et al. Indravati River, India Flow 
1999 Campolo et al. Tagliamento River, Italy Level 
1999 Campolo et al. Arno River, Italy Level 
1999 Dawson and Wilby River Mole, England Flow 
2000 Coulibaly et al. Eight River Systems, Canada Flow 

2000 Elshorbagy et al. 
Little River & Reed Creek, USA, English 
River, Canada Flow 

2000 Coulibaly et al. Chute-du-Diable River, Canada Flow 
2000 Gautam et al. River Tono, Japan Flow 

2000 
Zhang and 
Govindaraju 

Council Grove, El Dorado and Marion 
Rivers, USA Flow 
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2000 
Tingsanchali and 
Gautam Pasak River & Nan River, Thailand Flow 

2000 Liong et al. River systems in Bangladesh Level 
2000 Imrie et al. Rivers Trent & Dove, UK Flow 

2000 Anmala et al. 
Council Grove, El Dorado and Marion 
Rivers, USA Flow 

2001 Kim and Barros 
Williamsburg, Raystown, Loyalsockville 
and Newport Rivers, USA Flow 

2001 Khalil et al. 
English, Oslinka, Graham, Halfway and 
Nagagami Rivers, Canada Flow 

2001 Hu et al. Hanjiang and Jingsh Rivers, China Flow 
2001 Elshorbagy et al. Little River & Reed Creek, USA Flow 
2001 Coulibaly et al. Chute-du-Diable River, Canada Flow 
2001 Chang and Chen Da-cha River, Taiwan Flow 
2001 Coulibaly et al. Chute-du-Diable River, Canada Flow 
2001 Chang et al. Da-chia River, Taiwan Flow 
2001 Lischeid Lehstenbach, Germany SO4 
2002 Xu and Li Saikawa River, Japan Flow 

2002 Xiong and O'Connor 

11 Rivers in China, Australia, Malaysia, 
Nepal, Bangaladesh, Vietnam, Ireland, & 
Thailand Flow 

2002 Sivakumar et al. Chao Phraya River, Thailand Flow 
2002 Sivakumar et al. Coaracy Nunes/Araguari River, Brazil Flow 
2002 Shim et al. Han River Basin, Korea  Flow 
2002 Rajurkar et al. Narmada River, India Flow 
2002 Ochoa-Rivera et al. Tagus River, Spain Flow 
2002 Hsu et al. Leaf River, USA Flow 
2002 Elshorbagy et al. English River, Canada Flow 
2002 Elshorbagy et al. English River, Canada Flow 
2002 Chang et al. Da-Chia River, Taiwan Flow 
2002 Chang et al. Lanyoung River, Taiwan Flow 

2002 
Cannon and 
Whitfield 21 Rivers, Canada Flow 

2002 Cameron et al. River South Tyne, England Flow / Level 
2002 Dawson et al. River Yangtze, China Flow 
2002 Brath et al. Sieve River, Italy Flow 
2002 Birikundavyi et al. Mistassibi River, Canada Flow 

2002 
Liong and 
Sivapragasam 

Ganga, Jamuna, Brahmputra, Meghna 
Rivers, Bangladesh Level 

2002 Bowden et al. River Murray, Australia Salinity 

2003 
Zhang and 
Govindaraju 

Back Creek and Indian–Kentuck Creek, 
USA Flow 

2003 Wilby et al. Test River, England Flow 
2003 Suen and Eheart Upper Sangamon River, USA Nitrate 
2003 Sudheer et al. Baitarni River, India Flow 
2003 Solomatine and Sieve River, Italy Flow 
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Dulal 

2003 Markus et al. Sangamon River, USA Nitrate 

2003 
Lischeid and 
Uhlenbrook Brugga River, Germany Flow & Silica 

2003 Laio et al. Tanaro River, Italy Flow 

2003 Kim and Valdes Conchos River, Mexico 
Palmer Drought 
Severity Index 

2003 Huynh and Nguyen  Upper Red River, Vietnam Level 

2003 
Deka and 
Chandramouli Brahamputra River, India Flow 

2003 Coulibaly Chute-du-Diable River, Canada Flow 
2003 Cigizoglu Goksu River,Turkey Flow 
2003 Cigizoglu Göksu, Lamas and Ermenek Rivers,Turkey Flow 
2003 Chibanga et al. Kafue River, Zambia   Flow 
2003 Campolo et al. River Arno, Italy Level 
2003 Anctil et al. Serein River, France Flow 
2003 Abebe and Price Sieve River, Italy Flow 

2003 Tayfur et al. 
Laboratory Experiments (data from earlier 
work) Sediment 

2003 Khu and Werner Bukit Timah River, Singapore Flow 
2003 Gaume and Gosset Marne River, France Flow 
2003 Jain and Indurthy Salado Creek, USA Flow 
2003 Phien and Kha Red River, Vietnam Level 
2004 Wenrui et al. Apalachicola River, USA Flow 
2004 Tomasino et al. Po River, Italy Flow 
2004 Sudheer and Jain Narmada River, India Flow 
2004 Shu and Burn 404 Catchments in UK Flow 
2004 Riad et al. Ourika River Morocco Flow 

2004 Rajurkar et al. 

Krishna & Narmada-India; Bird Creek-USA; 
Brosna-Ireland; Garrapatas-Columbia; Kizu-
Japan; Pampanga-Phillipines Flow 

2004 Pan and Wang Wu Tu River, Taiwan Flow 
2004 Nayak et al. Baitarani River, India Flow 
2004 Moradkhani et al. Salt River, USA Flow 
2004 Lin and Chen Fei-Tsui River, Taiwan Flow 
2004 Kumar et al. Hemavathi River, India Flow 
2004 Kisi Tongue River, USA Sediment 
2004 Jain et al. Kentucky River, USA Flow 
2004 Huang et al. Apalachicola River, USA Flow 
2004 Cigizoglu Schuylkill River, USA Sediment 
2004 Chiang et al. Lan-Yang River, Taiwan  Flow 
2004 Chang et al. Da-Chia River, Taiwan Flow 

2004 
Castellano-Mendez 
et al. Xallas River, Spain Flow 

2004 Anctil and Lauzon 
Kavi-Ivory Coast; Leaf & Salt Fork-USA; 
San Juan-Canada; Serein & Volpajola, Flow 
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France 

2004 Anctil et al. Serein River, France Flow 
2004 Anctil et al. Serein River, France and Leaf River, USA Flow 
2004 Kisi Go¨ksudere River, Turkey Flow 
2004 Solomatine and Xue Huai River, China Flow 
2004 Agarwal and Singh Narmada River, India Flow 
2004 Jain and Srinivasulu Kentucky River, USA Flow 

2005 
Teegavarapu and 
Elshorbagy Little River & Reed Creek, USA Flow 

2005 
Sivapragasam and 
Muttil 

Chehalis River, Morse Creek, & Bear 
Branch, USA Flow 

2005 
Sivapragasam and 
Liong Tryggevaelde River, Denmark Flow 

2005 Shrestha et al. Neckar River, Germany Flow 
2005 Pan and Wang Wu-Tu River, Taiwan Flow 
2005 Nayak et al. Kolar River, India Flow 
2005 Kumar et al. Malaprabha River, India Flow 

2005 Kisi 
Quebrada Blanca & Rio Valenciano Stns., 
USA Sediment 

2005 Kingston et al. River Murray, Australia Salinity 
2005 Khalil et al. Sevier River, USA Flow 
2005 Jeong and Kim Geum River, Korea Flow 
2005 Hu et al. Seven Rivers in China Flow 
2005 Goswami et al. Brosna River, Ireland Flow 

2005 
Coulibaly and 
Baldwin 

Saint-Lawrence River, Canada & Nile River, 
Egypt Flow, Volume 

2005 Coulibaly et al. Kipawa & Matawin Rivers, Canada Flow 

2005 Cigizoglu 
Seytan, Hayrabolu, and Ergene Rivers, 
Turkey  Flow 

2005 Cigizoglu Synthetic data Flow 
2005 Cigizoglu and Kisi Filyos River, Turkey Flow 
2005 Chen and Ji Yellow River, China Flow 
2005 Chang et al. Lan-Yang River, Taiwan Flow 

2005 
Chandramouli and 
Deka Bharadhapuza River, India Flow 

2005 Bowden et al. River Murray, Australia Salinity 
2005 Agarwal et al. Vamsadhara River, India Sediment 
2005 Bruen and Yang Citywest & Dargle Rivers, Ireland Flow 
2005 de Vos and Rientjes Geer River, Belgium Flow 
2005 Kingston et al. Boggy Creek, Australia Flow 
2005 Hettiarachchi et al. Six rivers, England Flow 
2005 Anctil and Rat 47 rivers in France & USA Flow 
2005 Chau et al. Yangtze River, China Level 

2005 
Deka and 
Chandramouli Brahmaputra River, India Flow 

2005 Sudheer Narmada River, India Flow 



 13

2005 Wu et al. North Buffalo Creek, USA Flow 

2005 
Schumann and 
Lauener Gornera River, Switzerland Flow 

2005 
Giustolisi and 
Laucelli Luzzi and Liguori Rivers, Italy Flow 

2005 Doan et al. 
Wabash & Mississippi Rivers, USA and 
Rivers in Bangladesh Flow, Level 

2006 Wang et al. Yellow River, China Flow 
2006 Srivastava et al. West Branch Brandywine Creek, USA Flow 

2006 Sahoo et al. Manoa and Palolo Streams, USA 

Flow, Turbidity, 
Specific 
Conductance, 
DO, pH, water 
temp. 

2006 Sahoo and Ray Waiakeakua and Manoa Streams, USA Flow 

2006 
Pereira and dos 
Santos Tamanduatei River, Brazil Flow, Level 

2006 Panagoulia Acheloos River, Greece Flow 
2006 Nilsson et al. Bulken and Skarsvatn Rivers, Norway Flow 
2006 Melesse and Wang Red River, USA Flow 
2006 Lin et al. Lancang River, China Flow 
2006 Khan and Coulibaly Serpent & Chute-du-Diable Rivers,Canada Flow 
2006 Keskin et al. Dim Stream, Turkey Flow 

2006 
Karunasinghe and 
Liong 

Mississippi & Wabash Rivers, USA and 
Synthetic Data Flow 

2006 Kang et al. Youngsan River, Korea Flow 
2006 Cigizoglu and Kisi Schuylkill River, USA Sediment 
2006 Chetan and Sudheer Kolar River, India Flow 
2006 Chen et al. Choshui River,Taiwan  Flow 
2006 Chau Shing Mun River, Hong Kong Level 
2006 Anctil et al. Loire River, France Flow 
2006 Alvisi et al. Reno River, Italy Level 

2006 
Ahmad and 
Simonovic Red River, Canada Flow 

2006 Antar et al. River Nile, Ethiopia and Sudan Flow 
2006 Lauzon et al. Loire River, France Flow 
2006 Chen and Adams Bei River, China Flow 
2006 Dawson et al. 850 catchments, UK Flow 
2006 Jain and Srinivasulu Kentucky River, USA Flow 
2006 Jia and Culver Buck Mountain Run River, USA Flow 
2006 Lohani et al. Narmada River, India Flow 
2006 Chen and Adams Bei River, China Flow 
2006 Garbrecht Fort Cobb Watershed, USA Flow 
2006 Kim et al. Geum River, Korea Flow 
2006 Raghuwanshi et al. Siwane River, India Flow, Sediment 
2006 Tayfur and Guldal Catchment in Tennessee Basin, USA Sediment 
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2006 Parasuraman et al. English River, Canada Flow 
2007 Toth and Brath River Sieve and River Reno, Italy Flow 

2007 Piotrowski et al. Murray Burn, Scotland 
Concentration 
of tracer 

2007 Chen and Yu Lan-Yan River, Taiwan Level 

2007 Abrahart and See 
Hypothetical - Xianjiang Rainfall-Runoff 
model emulator Flow 

2007 Chau Shing Mun River, Hong Kong Level 
2007 Gopakumar et al. Achencoil River, India Flow 
2007 Alp and Cigizoglu Juniata River, USA Sediment 
2007 Kisi and Cigizoglu Filyos and Ergene Rivers, Turkey  Flow 

2007 Kamp and Savenije Alzette River Basin, Luxembourg 

Runoff, River 
Discharge, 
Salinity and 
Secchi Depth 

2007 Amenu et al. Upper Sangamon River Basin, USA Flow, Nitrate 

2007 Nor et al. 
Sungai Bekok and Sungai Ketil Catchments, 
Malaysia Flow 

2007 
Parasuraman and 
Elshorbagy Little River and Reed Creek, USA Flow 

2007 Ochoa-Rivera et al. Jucar River, Spain Flow 
2007 Ahmed and Sarma Pagladia River, India Flow 

2007 Nayak et al. 
Narmada River, India & Kentucky River, 
USA Flow 

2007 Srivastav et al. Kolar River, India Flow 

2007 Zou et al. 
Synthetic data for the Loch Raven 
Reservoir, USA 

DO, Chl a, total 
phosphorus and 
ammonia 

2007 Shamseldin et al. 

8 catchments from Nepal (1), China (3), 
Ireland (1), Vietnam (1), Malaysia (1) and 
Thailand (1) Flow 

2007 Yu and Liong 
Tryggevaelde  catchment & Mississippi 
River at Vicksburg, USA Flow 

2007 de Vos and Rientjes Greer River Basin, Belgium Flow 
2007 Tayfur et al. upper Tiber, Italy Flow 
2007 Sivapragasam et al. Periyar River, India Flow 

2007 
Pulido-Calvo and 
Portela Tua and Côa Rivers, Portugal Flow 

2007 Pang et al. 8 Watersheds in China Flow 

2007 
Muluye and 
Coulibaly Churchill Falls, Canada Flow 

2007 Mas and Ahlfeld Gates Brook, MA USA Faecal Coliform 
2007 Lohani et al. Narmada River, India Sediment 
2007 Kisi North Platte River, USA Flow 

2007 Iliadis and Maris 70 Mountainous watersheds, Cyprus 
Annual water 
supply 

2007 Hu et al. Darong River, China Flow 
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2007 Han et al. Bird Creek, Oklahoma, USA Flow 

2007 
Goswami and 
O'Connor 

Bronsa, Ireland; Le Guindy à Plouguiel, 
France Flow 

2007 El-Shafie et al. 
Nile River (inflow to Aswan High Dam), 
Egypt Flow 

2007 Elgaali and Garcia Arkansas River, USA 
Water available 
for diversion 

2007 
Diamantopoulou et 
al. Axios & Strymon Rivers, Greece 

6 WQ Params 
for Axios 
(nitrates, 
specific 
conductivity, 
DO, Na, Mg, 
Ca) and 3 for 
Strymon 
(nitrates, spec 
cond, DO) 

2007 
Corzo and 
Solomatine 

Bagmati basin, Nepal; Sieve basin, Italy; 
Brue basin, UK Flow 

2007 Chiang et al. Wu-Tu River, Taiwan Flow 

2007 Chen and Yu Lang-Yang River, Taiwan  
Level (flood 
stage) 

2007 Chang et al. Chen-Eu-Lan River, Taiwan Debris Flow 
2007 Chang et al. Da-Chia River, Taiwan Flow 

2007 Chang et al. 
Upstream sections of both Da-Chia and Kee-
Lung river basins, Taiwan Flow 

2007 Bae et al. 
Songgyang Dam, North Han River, South 
Korea Dam inflow 

2007 Aqil et al. Cilalawi River, Indonesia Flow 
2007 Aqil et al. Cilalawi River, Indonesia Flow 
2007 Alp and Cigizoglu Juniata River, Pennsylvania, USA Sediment 
2007 Abrahart et al. River Ouse, England Flow 

 

3. Methods Used for ANN Model Development 

 

3.1 Introduction 

The main steps in the development of ANN prediction models, as well as the way the data 

flow through, and the outcomes achieved at, different steps, are given in Figure 4.  It should 

be noted that the model development steps covered here represent a subset of the ten steps 

presented by Jakeman et al. (2006), which cover the full scientific process, including 
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formulating a hypothesis, collecting appropriate observations and data and a review of the 

hypothesis. 

 

The first step in the model development process presented here is the choice of appropriate 

model output(s) (i.e. the variable(s) to be predicted) and a set of potential model input 

variables from the available data.  Although ANNs are data-driven models, it is up to the 

modeller to choose which input variables should be considered as part of the model 

development process.  This can be done based on a priori knowledge and/or the availability 

of data.  The resulting data set constitutes the “Selected Data (Unprocessed)” (Figure 4).  It 

should be noted that once the model outputs have been chosen, the number of nodes in the 

output layer has also been determined (Figure 4).  Next, the unprocessed data, which consist 

of measured values of the potential model input variables, as well as the model output 

variable(s), have to be processed (e.g. scaled, lagged) so that they are in a suitable form for 

the subsequent steps of the model development process.  Once the processed database of 

potential model inputs and outputs has been assembled (“Selected Data (Processed)”), the 

actual model can be developed. 
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Figure 4: Steps in ANN Model Development Process 
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All ANN prediction models take the following form: 

 

 ,  Y f X W                                                                                                                (1) 

 

Where: 

Y = Vector of model outputs 

X = Vector of model inputs 

W = Vector of model parameters (connection weights) 

f(•) = Functional relationship between model outputs, inputs and parameters 

 = Vector of model errors 

 

Consequently, in order to develop an ANN model, the vector of model inputs (X), the form of 

the functional relationship (f(•)), which is governed by the network architecture (e.g. multi-

layer perceptron) and geometry (e.g. the number of hidden layers and nodes, type of transfer 

function) and the vector of model parameters (W), which includes the connection and bias 

weights, need to be defined. 

 

The vector of appropriate model inputs is determined during the “Input Selection” step 

(Figure 4).   This can be achieved either by using a model-free approach, which uses 

statistical measures of significance, or a model-based approach, as part of which appropriate 

inputs are selected based on the performance of models with different sets of inputs.  In the 

latter case, steps 5 and 6 in Figure 4 have to be repeated for each set of model inputs tried.  

Once the vector of model inputs has been selected, the number of model inputs, and hence the 

number of nodes in the input layer of the ANN model, are known (Figure 4). 
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The resulting “Model Development Data” are usually divided into calibration and validation 

subsets.  The calibration data are used to estimate the unknown model parameters (connection 

weights) and the validation data are used to validate the performance of the calibrated model 

on an independent data set.  If cross-validation is used as the stopping criterion, the calibration 

data are divided into training and testing subsets (Figure 4). 

 

Next, the functional form of the model, f(•), needs to be selected, which depends on the model 

architecture (e.g. multi layer perceptron, radial basis function), as well as an appropriate 

number of hidden nodes and how they are arranged (e.g. single layer, two layers).  It should 

be noted that while the selection of an appropriate model structure is required for most ANN 

architectures, it is superfluous for some, such as Generalised Regression Neural Networks 

(GRNN), which have a fixed structure. 

 

While the choice of an appropriate model architecture is a function of modeler preference, the 

optimal model structure generally needs to be determined using an iterative process.  This 

involves selecting a network with a certain structure (e.g. number of hidden nodes, transfer 

functions), calibrating (training) the selected ANN model, as part of which an estimate of the 

vector of model parameters (W) is obtained, evaluating its performance and then repeating the 

Calibration and Evaluation steps for different network configurations (Figure 4).  Once the 

network configuration that performs best on the calibration data is identified, the calibrated 

model needs to be validated using an independent data set.  As ANNs are prone to overfitting 

the calibration data, cross-validation is generally used, as part of which the calibration data 

are divided into training and testing subsets, which enables the performance of models with 

different network configurations to be validated during the model calibration phase to ensure 

overfitting of the training data has not occurred. 



 20

 

In the subsequent sections, the input selection, data division, model architecture selection, 

model structure selection, model calibration (training) and model evaluation stages of the 

ANN model development process are considered in more detail.  In each sub-section, the 

purpose and importance of the particular step in the ANN model development process 

considered are introduced, followed by a taxonomy of the main options available to modelers.  

Next, the options selected in the 210 papers considered are reviewed in light of these 

taxonomies, thereby presenting a snapshot of the ANN model development approaches used 

from 1999 to 2007.  It should be noted that this information is presented in terms of the 

number of times a particular method has been used in the papers reviewed.  This is because 

some papers used multiple methods and details about some of the methods addressed were not 

provided in some of the papers.  Consequently, the total number of times a particular method 

has been used in the papers reviewed can be more or fewer than the number of papers 

reviewed (i.e. 210). 

 

3.2 Input Selection 

 

3.2.1 Introduction 

 

 One of the most important steps in the ANN model development process is the determination 

of an appropriate set of inputs (X).  However, this task is generally given little attention in 

ANN modelling and most inputs are determined on an ad-hoc basis or using a priori system 

knowledge (Maier and Dandy, 2000).  This can result in the inclusion of too few or too many 

model inputs, both of which are undesirable. 
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The consequence of excluding one or more significant inputs is that the resulting model is not 

able to develop the best possible input-output relationship, given the available data.  The 

omission of important model inputs is more likely to occur in time series applications, where 

the potential model inputs consist of not only different input variables, but also their lagged 

values (unless recurrent neural network architectures are used).  This increases the number of 

potential model inputs (as distinct from input variables) considerably, and in many previous 

studies, lags have been chosen on an ad-hoc basis (Maier and Dandy, 2000), with the 

associated danger that important system dynamics have not been captured. 

 

The inclusion of too many inputs is usually caused by input redundancy, where some of the 

selected inputs provide significant information, but are related to each other and therefore 

provide redundant information.  This can cause a number of problems.  Firstly, redundant 

inputs increase the likelihood of overfitting (overtraining).  This is because a larger number of 

inputs generally increases network size, and hence the number of connection weights (i.e. 

model parameters) that need to be calibrated.  As the number of training samples is generally 

fixed, the addition of redundant model inputs increases the ratio of the number of connection 

weights to the number of training samples, thus increasing the likelihood of overfitting, while 

not providing any additional information to the model.  Secondly, the inclusion of redundant 

model inputs introduces additional local minima in the error surface in weight space.  For 

example, if two model inputs (x1 and x2) are highly correlated, and thus essentially represent 

the same input information, there are likely to be many combinations of weights that will 

result in identical model performance.  If the underlying relationship is y = x1, then a unique 

relationship exists if either x1 (y = x1) or x2 (y = x2) are included as model inputs.  However, if 

both inputs are included (y = w1x1 + w2x2), the same model output is obtained for a large 

number of combinations of weights (e.g. w1=1 & w2=0, w1=0 & w2=1, w1=0.5 & w2=0.5, 
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w1=0.3 & w2=0.7 etc.).  The presence of local minima in weight space makes it more difficult 

to find an optimal set of weights, as well as resulting in input-output relationships that are not 

unique, making it more difficult to extract physical meaning from calibrated models. 

 

3.2.2 Taxonomy 

A number of techniques are available for assessing the significance of the relationship 

between potential model inputs and output(s), as shown in Figure 5.  The primary distinction 

is between Model Free and Model Based approaches.  Model Based approaches rely on the 

development (structure selection, calibration and evaluation) of a number of ANN models 

with different inputs to determine which of the candidate inputs should be included.  The 

primary disadvantage of this approach is that it is time consuming, as a number of ANNs have 

to be developed.  In addition, it has the potential for masking the effect different model inputs 

have on model performance, as the latter is also a function of network structure (e.g. number 

of hidden nodes), which ideally should be optimized for each input set investigated, and the 

quality of the calibration process, which is a function of a number of user-defined parameters 

(e.g. learning rate and momentum if the back-propagation algorithm is used), which should 

also be optimized for each candidate input set.  Consequently, it is difficult to isolate the 

impact of different model inputs on model performance. 

 

Options for selecting which input combinations to try as part of Model Based approaches 

include an ad-hoc approach, where the model developer selects which combinations of model 

inputs should be tried, a stepwise approach, where inputs are systematically added 

(constructive) or removed (pruning), or a global approach, where a global optimization 

algorithm, such as a genetic algorithm, is used to select the combination of inputs that 

maximizes model performance.  Another approach is to develop an ANN model with a 
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relatively large number of inputs and to use sensitivity analysis to determine which inputs 

should be excluded. 

Input 
Significance

Model Based

Model Free

Ad-Hoc (e.g. available data, 
domain knowledge)

Analytical

Sensitivity Analysis

Non-linear (e.g. mutual 
information)

Linear (e.g. correlation)

Ad-Hoc (e.g. developing models 
with different inputs)

Stepwise (e.g. constructive, 
pruning)

Global (e.g. genetic algorithm, 
particle swarm algorithm)

 

 

Figure 5: Taxonomy of Approaches to Determining Input Significance 

 

In contrast to Model Based approaches, Model Free approaches to input selection do not rely 

on the performance of trained ANN models for the selection of appropriate inputs.  As shown 

in Figure 5, model free approaches can be divided into two categories: ad-hoc and analytical.  

As part of ad-hoc model free approaches, inputs are selected by the model developer on an 

arbitrary basis or based on domain knowledge, for example.  When an analytical model free 

approach to input selection is used, a statistical measure of significance is generally used to 

assess the strength of the relationship between potential model inputs and outputs.  The most 

commonly used measure of statistical dependence for input selection is correlation, which has 
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the disadvantage of only measuring linear dependence between variables.  This is particularly 

relevant in the context of developing ANN models, as ANNs are generally used in preference 

to linear modelling approaches, such as linear regression, in cases where input-output 

relationships are suspected to be highly non-linear, which is often the case in water resources 

problems.  Consequently, the use of non-linear statistical dependence measures, such as 

mutual information, is more appropriate for determining inputs to ANN models. 

 

In order to overcome the problem of redundant inputs discussed earlier, Input Independence 

needs to be considered in addition to Input Significance.  As can be seen in Figure 6, there are 

two main approaches to accounting for input independence, namely dimensionality reduction 

and filtering.  The aim of the former is to reduce the dimensionality of the input space by 

eliminating correlated candidate inputs.  There are two main approaches to achieving this, 

including rotation of the input vectors, as is the case in principal component analysis, or 

clustering of the input space and choosing representative inputs from each cluster for further 

consideration.  Dimensionality reduction generally forms the first part of a two step process, 

the second of which is to select the inputs that have the most significant relationship with the 

model output(s) using one of the methods in Figure 5. 

 

The second approach to account for input independence in the input selection process is 

filtering.  The most prominent example of this is the constructive stepwise model-building 

process, as part of which the candidate input that has the most significant relationship with the 

model output(s) is selected first, followed by the candidate input that has the next biggest 

additional impact and so on.  Classic examples of this are the partial correlation and partial 

mutual information input variable selection algorithms (see May et al., 2008a, 2008b), which 

combine a stepwise partial modelling approach that caters for input independence 
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(redundancy) with an analytical measure of statistical dependence that caters for input 

significance.  The stepwise, constructive model based approach achieves a similar aim, 

although the criteria used to decide when to stop adding candidate inputs are less well 

defined.  Other model based input selection approaches, such as global optimization and 

stepwise pruning approaches cannot be combined with filtering approaches and have to rely 

on dimensionality reduction approaches to cater for input independence (redundancy). 

 

 

 

Figure 6: Taxonomy of Approaches to Accounting for Input Independence 

 

3.2.3 Results 

 

As illustrated in Figure 7, a model free input selection approach was used 146 times, 

compared with 72 occasions on which a model based approach was used.  Of the model free 

approaches, ad-hoc methods were most popular with applications in 79 papers, followed by 

linear analytical approaches, such as correlation, which were used on 60 occasions.  A non-

linear analytical method was only used 7 times, which seems inconsistent with the non-linear 

premise that underpins all ANN models. 
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In 37 of the 72 instances where a model based input selection approach was used, this was 

done in an ad-hoc fashion.  A stepwise model building approach was used 14 times, followed 

by sensitivity analysis of trained models (7 times) and use of a global search procedure (5 

times). 
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Figure 7: Number of Times Various Methods of Determining Input Significance Have Been 

Used 

 

Input independence was only considered in 18 of the 210 papers reviewed (Figure 8).  

Filtering was the most commonly used approach, with 10 applications, followed by clustering 

and rotation, which were applied 6 and 2 times, respectively. 
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Figure 8: Number of Times Various Methods of Determining Input Independence Have Been 

Used 

 

3.2.4 Conclusion 

 

The results of the review reveal that there is a need to pay greater attention to the input 

selection step in the development of ANN models.  The inputs selected can have a significant 

impact on model performance, yet ad hoc approaches to input selection  (either model based 

or model free) were used in the majority of papers surveyed.  While analytical model free 

approaches were also popular, almost all of these used a linear method for determining input 

significance, which is counter to the premise of using a non-linear model, such as an ANN, as 

the actual model.  Consequently, there is a need to make greater use of non-linear analytical 

approaches to input selection. 
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The issue of input independence was ignored in almost all of the papers reviewed, which can 

have significant negative impacts on model performance and the ability to extract any 

meaningful information about underlying physical processes from trained ANN models.  

Consequently, this issue requires increased attention. 

 

 

3.3 Data Division 

 

3.3.1 Introduction 

 

As part of the ANN model development process, the available data are generally divided into 

training, testing and validation subsets. The training set is used to estimate the unknown 

connection weights, the testing set is used to decide when to stop training in order to avoid 

overfitting and/or which network structure is optimal, and the validation set is used to assess 

the generalisation ability of the trained model. As ANNs, like all empirical models, perform 

best when they are not used to extrapolate beyond the range of the training data, all patterns 

that are contained in the available data need to be included in the training set. Similarly, since 

the test set is used to determine when to stop training and/or which network geometry is 

optimal, it needs to be representative of the training set and should therefore also contain all 

of the patterns that are present in the available data. If all of the available patterns are used to 

calibrate the model, then the most challenging evaluation of the generalisation ability of the 

model is if all of the patterns are also part of the validation set. Consequently, the training, 

testing and validation sets should have the same statistical properties in order to develop the 

best possible model, given the available data. 
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3.3.2 Taxonomy 

 

The methods for dividing the available data into appropriate subsets can be divided into 

supervised and unsupervised approaches (Figure 9).  Unsupervised approaches do not take the 

statistical properties of the data subsets into account explicitly and only stratified 

unsupervised approaches attempt to ensure that the statistical properties of the subsets are 

similar.  For example, a self-organising map (SOM) (see Kalteh et al., 2008) can be used to 

cluster the available data and to allocate data samples from each cluster to the training, testing 

and validation subset, thereby ensuring that patterns from different regions of the multivariate 

input-output space are represented in each subset.  In the random unsupervised approach, the 

data are divided into their respective subsets on a random basis.  In the physics based 

approach, the data are divided into various classes based on knowledge about the underlying 

physical processes or domain knowledge.  In the ad-hoc approach, data might be divided such 

that the first XX observations are allocated to the training set, the next YY observations are 

allocated to the testing set and the final ZZ observations are allocated to the validation set. 

However, this does not take any account of the statistical properties of the data subsets, 

making it difficult to know whether the best possible model, given the available data, has been 

developed or whether model performance based on the validation set is representative of 

model performance under a range of conditions.  For example, the patterns in the validation 

set might only be representative of average conditions, thereby inflating model performance 

on the validation data.  Alternatively, the validation data might contain rare events not used 

during training (calibration), thereby diminishing the apparent capability of the model to 

capture the relationship contained in the available data. 
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The explicit goal of supervised data division methods is to ensure that the statistical properties 

of the various subsets are similar.  This can be achieved by using a trial-and-error approach, 

as part of which manual adjustments are made to the composition of the various subsets until 

an arbitrarily satisfactory level of agreement between the statistical properties of the various 

data subsets has been reached, or by using a formal optimization approach to minimize a 

measure of difference between the statistical properties of the data subsets. 

 

Data Division

Supervised

Unsupervised

 Ad-Hoc

Stratified (e.g. self-organising 
map)

 Random

Trial and Error

Physics Based

Optimisation (e.g. genetic 
algorithm)

 

Figure 9: Taxonomy of Approaches to Data Division 

 

3.3.3 Results 

 

In the papers reviewed, unsupervised data division methods were used 177 times (Figure 10).  

Among these, ad-hoc data division was the predominant method used.  Only a small number 

of papers used the more sophisticated stratified and physics based approaches.  An equally 

small number used a random data division approach. 
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Supervised data division methods were only used on 24 occasions, with an approximately 

equal split between trial and error and optimization based approaches for achieving similar 

statistical properties between the various data subsets.  It should be noted that data division 

was not discussed in some of the papers reviewed. 
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Figure 10: Number of Times Various Methods of Data Division Have Been Used 

 

3.3.4 Conclusion 

 

Even though the way the data are divided can have a significant impact on model 

performance, and the validity of the results presented, data division was conducted in an ad-

hoc fashion on almost 150 occasions.  Consequently, there is a need to pay increased attention 

to data division in the ANN model development process.   
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3.4 Model Architecture Selection 

 

3.4.1 Introduction 

 

Model (network) architecture determines the overall structure and information flow in ANN 

models.  Consequently, it has a significant impact on the functional form of the relationship 

between model inputs and output(s), f(•). 

 

3.4.2 Taxonomy 

 

Traditionally, ANN architectures have been divided into feed-forward and recurrent networks 

(Figure 11).  In feed-forward networks, the information propagation is only in one direction 

i.e. from input layer to the output layer.  Multilayer Perceptrons (MLPs) are the most common 

form of feed-forward model architecture.  Other feed-forward network architectures in use 

include Generalised Regression Neural Networks (GRNNs), Radial Basis Function (RBF) 

networks, Neurofuzzy networks and Support Vector Machines (SVMs).  

 

A MLP uses three or more layers of artificial neurons with linear aggregation functions and 

linear and/or non-linear activation functions.  The input layer neurons simply pass on the 

weighted inputs to the subsequent layer neurons.  The possibility of using non-linear 

activation functions at the hidden and output layers of a MLP provide the capability of 

capturing the complexity and non-linearity inherent in the systems being modeled.  A GRNN 

is capable of approximating any function using input and output data like an MLP but differs 
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in its structure, which consists of four layers, an input layer, a pattern layer, a summation 

layer, and an output layer.  Unlike MLPs, GRNNs do not rely on iterative procedures for their 

training and are based on a standard statistical technique called kernel regression.  RBF 

networks are motivated by locally tuned biological neurons, whose response characteristics 

are bounded in a small range of the input stimuli.  The structure of RBF networks is similar to 

that of the feedforward MLPs and consists of three layers, an input layer, a hidden layer, and 

an output layer.  The major difference is that the hidden layer neurons are specified by radial 

basis functions and the output layer neurons necessarily use linear activation functions.  The 

training of an RBF network is usually a two stage process in which the basis functions are 

established at the hidden layer in the first stage and the weights connecting hidden layer and 

output layer neurons are directly determined in the second stage.  Neurofuzzy networks are 

based on an integration of neural networks and fuzzy logic.  The learning capability of neural 

networks is exploited to design the complex fuzzy system (or generation of IF THEN rules) in 

a Neurofuzzy model.  Neurofuzzy models offer the advantages of both fields and have 

provided more accurate results than a simple ANN model in many hydrological applications.  

Recently, SVMs have attracted the attention of some researchers.  SVMs are machine learning 

algorithms in which the ‘empirical risk’ in terms of prediction error and structural risk 

associated with the model structure are minimized simultaneously.   

 

While feed-forward architectures are the most popular architectures among researchers, 

recurrent neural networks have also received some attention.  In recurrent networks, 

information may propagate not only in the forward direction but also in the backward 

direction through feedback loops.  The output layer neurons may feed back the output to input 

and/or hidden layer neurons.  The existence of a feedback mechanism in recurrent networks 

makes it simpler for a neural network to model highly dynamic systems with time delays.  



 34

 

 

 

Figure 11: Taxonomy of Model Architectures 

 

Environmental and hydrological systems are extremely complex, non-linear, and dynamic in 

nature, involving a wide variety of physical variables that exhibit significant spatio-temporal 

variation and are often inter-related and uncertain in nature, thereby posing major challenges 

to the scientific community involved in modeling such systems.  A single technique may not 

be able to capture the complex nature of environmental and hydrological systems.   

Consequently, a number of hybrid modelling approaches have been developed to exploit the 

advantages of the available modeling paradigms in order to capture the complexities involved 

in such systems (Figure 11). 
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In this paper, hybrid modelling frameworks that include ANN models have been divided into 

the following three classes (Figure 11): 

 

(a) Data Intensive: A data intensive approach is one that attempts to classify the data in 

accordance with different dynamics and separate models are then developed for the separate 

classes.  The data classification can be either soft or hard depending on the methods 

employed.  As part of soft classification, unsupervised learning methods can be used (e.g. 

Kohonen’s self organizing map (SOM)) to identify the input output patters belonging to a 

particular class.  Alternatively, hard approaches, such as domain knowledge about the 

physical system, can be used for data classification.  Once the data have been classified using 

either soft or hard approaches, each category of data can be modeled separately using neural 

networks or process based approaches.  Such a data intensive approach offers the advantage 

of being able to model clustered data generated by different dynamics. 

 

(b) Model Intensive:  A model intensive approach is one that employs different models for 

different sub-components of the overall physical system and then aggregates various 

responses calculated from different models.  On the other hand, it is possible to model the 

same process using two different types of models and then combine the outputs from two or 

more models to obtain the desired output. 

 

(c) Technique Intensive:  A technique intensive approach is the one in which a neural network 

is combined with a different technique (e.g. regression, time series, or conceptual) with the 

objective of developing a hybrid modeling framework that is capable of exploiting the 

advantages offered by different techniques.  For example, a neural network / time series 
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hybrid model offers the advantage of first removing the deterministic trends from the data, 

enabling any nonlinear relationships that remain to be modeled using neural networks.  

Similarly, it is possible to combine conceptual and/or regression techniques with neural 

networks to develop hybrid models in order to achieve superior model performance.  

 

3.4.3 Results 

 

The results obtained indicated that there has been a significant amount of activity on the 

development and evaluation of alternative network architectures in order to improve model 

performance between 1999 and 2007.  While multilayer perceptrons (MLPs), which have 

been used traditionally in applications in hydrology and water resources (Maier and Dandy, 

2000), were still by far the most popular network architecture, MLP performance was 

compared with that of alternative feedforward network architectures, recurrent architectures 

and a variety of hybrid architectures in a large number of studies (Figure 12).  The number of 

studies in which alternative architectures were applied was reasonably uniform, varying 

between 5 and 20, compared with 178 instances where MLPs were used. 
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Figure 12: Number of Times Various Model Architectures Have Been Used 
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3.4.4 Conclusion 

 

Much effort has been directed towards the evaluation of existing ANN architectures and the 

development of and evaluation of new ANN architectures.  The latter has been primarily in 

the form of hybrid ANN architectures that aim to exploit the strengths and eliminate the 

weaknesses of different modelling approaches.  However, given the wide variety of hybrid 

modelling approaches and range of applications to which they have been applied, it is not 

possible to draw any conclusions as to which model architecture should be used in a particular 

circumstance.  This should be the focus of future research efforts. 

 

 

3.5 Model Structure Selection 

 

3.5.1 Introduction 
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Model (network) structure, together with model (network) architecture, defines the functional 

form of the relationship between model inputs and output(s), f(•).  Determination of an 

appropriate network structure involves the selection of a suitable number of hidden nodes, 

how they are arranged (e.g. number of layers, number of nodes per layer) and how they 

process incoming signals (e.g. type of transfer function etc.).  The optimal network structure 

generally strikes a balance between generalisation ability and network complexity (e.g. 

network size and the number of free parameters).  If network complexity is too low or an 

inappropriate functional form is selected, the network might be unable to capture the desired 

relationship.  However, if network complexity is too high, the network might have decreased 

generalisation ability and processing speed, could be more difficult to calibrate and might be 

less transparent. 

 

 

 

3.5.2 Taxonomy 

 

The taxonomy of methods for determining the optimal ANN structure is shown in Figure 13.  

The methods can be classified into three types, global, stepwise, or ad-hoc.  In the first 

method, the structure of an ANN model in terms of hidden layers and/or hidden neurons is 

arrived at using global methods based on competitive evolution found in nature e.g. genetic 

algorithm, particle swarm optimization, simulated annealing, etc.  Using this approach, it is 

possible to simultaneously optimize network parameters (e.g. network weights) and structure 

(e.g. the number of hidden layer nodes).  If used appropriately, global methods are likely to 

result in the best ANN structure and/or parameters; however, they are computationally 

expensive. 
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Alternatively, a stepwise trial and error procedure can be used (Figure 13), in which a basic 

ANN structure is first assumed, which is modified with each trial with the objective of 

achieving a structure that is neither too complex nor too simple.  The stepwise methods can 

further be divided into two categories, one based on pruning algorithms and the second based 

on constructive approaches.  A pruning algorithm starts with a sufficiently complex ANN 

structure that is assumed to be capable of capturing the complexities involved in the physical 

system being modeled.  Then, the connection weights and associated neurons (based on a 

rating system of their magnitude) are successively removed, one at a time, until model 

performance deteriorates significantly.  On the other hand, in a constructive algorithm, one 

starts with the simplest ANN structure, which is successively made more complex by adding 

hidden neurons/layers one at a time and calibrating the resulting model.  This process is 

repeated until there is no significant improvement in model performance. Pruning and 

constructive algorithms can also be computationally intensive, as ANN models with many 

different structures generally need to be trained, and manually examined before arriving at the 

optimal structure. 

 

Other approaches to determining an appropriate network structure, such as using a trial-and-

error approach to determining the optimal number of hidden nodes, rather than a strict 

constructive or pruning approach, or selecting a network structure based on experience and/or 

intuition, have been classified as ad-hoc. 
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Figure 13: Taxonomy of Methods for Optimising Model Structure 

 

3.5.3 Results 

 

As can be seen in Figure 14, an ad-hoc approach to determining the structure of ANN models 

was by far the most popular, with 115 applications.  Of the structured approaches, 

constructive stepwise approaches were used 52 times, whereas pruning and global approaches 

were only used on a small number of occasions (7 and 11, respectively). 



 42

0

20

40

60

80

100

120

140

Global Pruning (Stepwise) Constructive
(Stepwise)

Ad-Hoc

N
u

m
b

er
 o

f 
P

ap
er

s

 

Figure 14: Number of Times Various Model Structure Determination Methods Have Been 

Used 

 

3.5.4 Conclusion 

 

Despite the important role network structure plays in determining the desired relationship 

between model inputs and outputs, little effort has been directed into this area of the ANN 

model development process, with most studies adopting an ad-hoc approach to determining 

an appropriate network structure.  There has been reasonable adoption of constructive, 

stepwise model building approaches, but the use of global optimization methods has received 

little attention.  In order to ensure that the best possible ANN models are being developed, 

this step in the model development process requires further attention. 
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3.6 Model Calibration 

 

3.6.1 Introduction 

 

The aim of model calibration (ANN training) is to find a set of model parameters (e.g. 

connection weights) that enables a model with a given functional form to best represent the 

desired input / output relationship.  If overfitting is not considered to be a problem and the 

training data are representative of the modelling domain, this is achieved when a suitable error 

measure between actual and predicted training outputs is minimised.  If overfitting is a 

possibility, optimal generalisation ability is achieved when a suitable error measure between 

actual and predicted outputs in the test set is minimised, provided that training and testing 

data are representative of the modelling domain. 

 

Determination of the combination of model parameter values (i.e. weights) that minimises the 

training or testing error is not a simple problem.  As each combination of parameter valuess 

generally results in a different model error, an error surface exists in parameter (i.e. weight) 

space.  This is illustrated for a model with a single parameter in Figure 15, where different 

values of the model parameter generally result in different model errors.  It can be seen that 

the degree of difficulty in finding the parameter value or combination of parameter values that 

results in the smallest model error is affected by the “ruggedness” of the error surface.  

Ruggedness is a measure of the number, spacing and steepness of the craters and valleys in 

the error surface.  As can be seen in Figures 15 (a), if the error surface is smooth, there are 

fewer local minima, and the global optimum can be found more easily.  In contrast, as 

illustrated in Figure 15 (b), if the error surface is more rugged, it generally has more local 
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minima, and the global optimum is more difficult to find.  The degree of ruggedness of an 

error surface is usually problem dependent and is affected by the number of model 

parameters, among other things.  As the number of model parameters increases, so does the 

size of the search space and, generally, the number of local optima.  In addition, a larger 

number of parameters makes if more difficult to interpret the model and increases the risk of 

allowing spurious modes of model behaviour and fitting bad data, such as outliers and other 

anomalies.  Consequently, it is important to find the model with the smallest number of inputs 

and parameters that is able to describe the underlying relationship in the data, as discussed 

previously. 

 

 

Error 

Parameter 1

Error

Parameter 1 

Global optimum

Local optimum
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Figure 15:  Error Surface with Different Degrees of Ruggedness for a Model with One 

Parameter 
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3.6.2 Taxonomy 

 

Due to the difficulty of the ANN calibration problem outlined above, ANN calibration is 

generally conducted using a suitable optimization algorithm.  The vast majority of these 

approaches are deterministic, in the sense that they attempt to identify a single parameter 

vector that minimizes an error measure between predicted model outputs and their 

corresponding measured values for the training set.  These methods generally belong to either 

local or global optimization approaches (Figure 16).  Local methods usually work on gradient 

information, and are therefore prone to becoming trapped in local optima if the error surface 

is reasonably rugged.  However, these methods are generally computationally efficient.  

Gradient methods can be further sub-divided into first-order methods (e.g. back-propagation) 

or second-order methods (e.g. Newton’s method).  Global optimization methods, such as 

genetic algorithms, have an increased ability to find global optima in the error surface, 

although this is generally at the expense of computational efficiency. 

 

In order to account for parameter uncertainty during the calibration process, stochastic 

calibration methods can be used.  These approaches can be used to obtain distributions of the 

model parameters, rather than finding a single parameter vector.  This has the advantage that 

prediction limits can be obtained.  In order to achieve this, Bayesian methods are commonly 

used.  
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Figure 16: Taxonomy of Calibration (Training) Methods 

 

3.6.3 Results 

 

The results in Figure 17 illustrate that deterministic calibration methods were used 

predominantly (193 times), although there were 17 studies that embraced Bayesian and other 

stochastic approaches in order to account for parameter uncertainty. Of the deterministic 

calibration methods, first-order approaches, such as the backpropagation algorithm, were used 

most frequently, with 103 applications.  However, second order methods, such as the 

Levenberg Marquardt algorithm, were been used extensively, with 64 applications.  Use of 

other local and global optimization algorithms was limited. 
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Figure 17: Number of Times Various Calibration Methods Have Been Used 

 

3.6.4 Conclusion 

 

In the majority of studies, first-order local search procedures, such as the backpropagation 

algorithm, were used, although second order methods were also used extensively in order to 

improve the computational efficiency of ANN calibration.  However, there was little work on 

investigating the potential benefits of using global optimization techniques in terms of 

improving the predictive ability of ANN models, which is an area worthy of further 

exploration.  In addition, although some work was done on the incorporation of parameter 

uncertainty into ANN model calibration, this also presents an area of future research. 
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3.7 Model Evaluation 

 

3.7.1 Introduction 

 

In order to determine which network structure is optimal, the performance of a calibrated 

model is evaluated against one or more criteria.  This also applies to determining the optimal 

set of model inputs, if a model based input selection approach is used.  As discussed 

previously, if overfitting is not considered to be a problem, model performance is assessed 

using the training data, whereas the test data are used for this purpose if overfitting is a 

concern. 

 

3.7.2 Taxonomy 

 

ANN model performance is usually assessed using a quantitative error metric.  A taxonomy of 

the commonly used metrics is given in  Figure 18.  Squared errors are based on the squares of 

the differences between actual and modeled output values.  Commonly employed metrics 

belonging to this category include the sum of squared errors (SSE), root mean square error 

(RMSE) and the Nash Sutcliffe efficiency (E).  A feature of squared error metrics is that they 

tend to be dominated by errors with high magnitudes.  Alternatively, absolute errors can be 

used, which are based on the absolute differences between actual and modeled outputs and 

include measures such as the total sum of absolute deviations (TSAD) and the mean sum of 

absolute deviations (MSAD).  While absolute errors provide information on the magnitude of 

the error, they do not provide information on the performance of the model in terms of overall 

under- or over-prediction.  This problem can be overcome by considering the total or mean 
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sum of the differences without taking absolute values, resulting in total bias (TBIAS) and  

mean bias (MBIAS) statistics.  In order to allow the performance of models with outputs of 

different magnitudes to be compared more easily, relative error metrics, such as the average 

absolute relative error (AARE), the normalized root mean square error (NRMSE) and the 

normalized mean bias error (NMBE) can be used.  Finally, a measure of the empirical error 

between actual and modeled outputs can be obtained by using product difference moment 

error statistics, of which the Pearson correlation coefficient is the most well-known. 

 

Information criteria, such as the Akaike information criterion (AIC) and Bayesian information 

criterion (BIC) consider model complexity in addition to model error.  Consequently, they 

have the potential to result in more parsimonious models. 

 

In addition to the metrics mentioned above, there are a number of other statistics than can be 

used in order to evaluate model performance.  An example of this are threshold statistics (TS), 

which are capable of providing the distribution of the number of data points predicted from an 

ANN model having various levels of absolute relative error (ARE).  In addition, the 

performance of ANN models can also be based on the accuracy of  predicting particular time 

series (e.g. hydrograph) characteristics, such as errors in estimating peak flow, timing of the 

peak and total volume. 
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Figure 18: Taxonomy of Performance Evaluation 

 

3.6.3 Results 

The results obtained indicate that a range of performance criteria were used in most studies 

(Figure 19).  This is considered good practice, as different criteria capture different 

performance characteristics, as discussed previously.  While squared error metrics were most 

widely used (170 times), measures based on absolute and relative errors, as well as 

correlation, were also used extensively.  As can be seen from Figure 19, “other” non-standard, 

problem specific evaluation criteria were used relatively frequently.  However, the use of 

information criteria was restricted to a small number of studies. 
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Figure 19: Number of Times Various Performance Evaluation Criteria Have Been Used 

 

3.6.4 Conclusion 

 

Review of the 210 papers has indicated that a range of performance criteria were used in most 

of the studies.  This increases confidence in the evaluation of the performance of the models 

developed, as different performance criteria generally emphasize different aspects of 

predictive performance.  However, increased use of information criteria, such as the AIC and 

BIC, could be beneficial in an effort to balance predictive performance with model 

parsimony. 
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4. Summary and Conclusions 

 

Since the period 1992 to 1998, which is the subject of the review paper by Maier and Dandy 

(2000), research activity in the field of forecasting and prediction and water quantity and 

quality variables in rivers using ANNs has increased dramatically.  From 1992 to 1998, the 

average number of journal papers published was 6.1 per year.  This has increased to an 

average of 23.3 papers per year for the period of this review paper (1999 to 2007).  This is 

despite the fact that a restricted journal list was considered for this paper and that the review 

was restricted to prediction in rivers, meaning that prediction of a number of water resource 

variables, such as rainfall, was excluded.  Even within the period covered by this paper, there 

has been a marked increase in the number of papers published in the later years, with an 

average of 38 papers per year from 2005 to 2007. 

 

As was the case from 1992 to 1998, the primary application area has been flow forecasting 

and prediction.  Very few papers have focused on other water quantity variables and even 

fewer have considered water quality.  If anything, the emphasis on flow modelling has 

increased in recent years, rather than diminished.  Consequently, there is a need to broaden 

the application area of ANN models to focus on other predictive variables, especially those 

concerned with water quality.  Given the universal function approximation capability of 

ANNs, they would seem to be ideally suited to modelling the complex relationships that are a 

feature of water quality processes.  However, one factor limiting the application of ANNs in 

the water quality modelling arena might be the lack of good quality, long term data. 

 

The adoption of appropriate input determination approaches was an area identified as 

deficient by Maier and Dandy (2000) and based on the findings of this study, not much has 
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changed in the subsequent 9 years.  In the vast majority of studies reviewed in this paper, 

inputs were determined using an ad-hoc approach, either model based or model free.  While it 

is pleasing to see that analytical, model free approaches were used 67 times, non-linear 

approaches were only used in 7 of these.  Using a linear approach to identify which of the 

potential input variables have a significant relationship with the model output is not 

appropriate for the development of ANN models, as ANN models are generally used because 

of their ability to represent non-linear relationships between input and output data.  

Consequently, there is a need to adopt non-linear model input selection approaches (e.g. May 

et al., 2008a, 2008b). 

 

Another aspect of input selection that has received even less attention is the issue of input 

independence.  While models with redundant inputs might perform well from the perspective 

of being able to obtain a good match to the calibration data, they increase model complexity 

and parameter uncertainty.  As a result, this issue needs to receive increased attention in order 

to reduce the uncertainty surrounding ANN model outputs and to enable research into 

knowledge extraction from ANNs to proceed with increased confidence. 

 

Maier and Dandy (2000) concluded that data division was not carried out adequately in most 

of the 43 papers reviewed in their study.  Unfortunately, the same still applies today.  In the 

210 papers that were the subject of this review, attempts to ensure that the statistics of the 

various data subsets were similar were only made on 24 occasions, whereas ad-hoc data 

division methods were used 148 times.  This can cast serious doubts on the quality and 

repeatability of the results obtained, as different data splits are likely to result in different 

calibrated models and different model performance on the validation data.  Consequently, 

there is a need to consider well established data sampling approaches for the division of the 
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available data into the requisite model development and evaluation subsets (e.g. May et al., 

2010). 

 

In relation to model architecture, there was a significant amount of research activity in the 

nine years covered by this review.  Maier and Dandy (2000) found that feedforward networks 

were used almost exclusively from 1992 to 1998, most of which were MLPs.  While MLPs 

were still found to be the dominant ANN architecture in this paper, they were used as a 

benchmark against which to compare alternative architectures in many of the papers 

reviewed.  There was a significant amount of experimentation with other types of feedforward 

architectures, such as generalized regression neural networks, radial basis function networks, 

neurofuzzy models and support vector machines, recurrent networks and, most importantly, 

different types of hybrid network architectures.  The development of hybrid ANN model 

architectures is an important advance, as it emphasizes that ANNs have a role to play not only 

as an alternative to traditional modelling approaches, but as a complementary modelling tool 

that can be used to improve the performance of existing approaches.  The acknowledgement 

that ANNs should be used in circumstances that exploit their strengths, rather than as a 

panacea for the shortcomings of more traditional modelling approaches, is part of the 

evolution of ANNs towards a mature modelling approach that can sit comfortably alongside 

more traditional approaches in the toolkit of hydrological modelers. 

 

The way in which optimal model structures are obtained is an area that has received little 

attention in the papers that form part of this review.  As was the case in the findings of Maier 

and Dandy (2000), optimal network geometries were generally obtained using ad-hoc 

approaches, primarily using trial and error.  While there was some increase in the use of 

systematic approaches to determining the optimal number of hidden nodes during this review 
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period compared with the previous one, the development and application of methods for 

determining the optimal model structure remains an area of ongoing work. 

 

 

There was also little activity in relation to model calibration during the time period considered 

for this paper.  As was the case from 1992 to 1998, first order local optimization methods 

were by far the most common, although an increasing number of second order local methods 

were used in the papers published between 1999 to 2007.  However, surprisingly, there was 

little adoption of global optimization methods, which have been found to outperform more 

traditional methods when used in conjunction with other water resource modelling approaches 

in recent years.  It was good to see that some effort was devoted towards the development of 

Bayesian and other stochastic approaches to model calibration in order to enable parameter 

uncertainty to be taken into account and to enable confidence limits on predictions to be 

obtained, but there is a need to expand this work into the future. 

 

In the majority of papers reviewed, different methods were used to evaluate model 

performance, which is considered good practice.  However, there is scope for improving the 

way models are evaluated by applying the various measures in a consistent and informed 

manner (see Dawson et al., 2007).  In addition, in order to enable better comparison of ANN 

development methods across studies, the use of open access data sets should be encouraged. 

 

5. Recommendations for Future Research 
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Based on the review of 210 papers on the prediction and forecasting of water quantity and 

quality variables in rivers conducted in this paper, the following recommendations for future 

work are made: 

 

1. More work needs to be undertaken on the prediction of water quality variables (e.g. 

May and Sivakumar, 2009, Dellana and West, 2009) in order to further test the utility 

of ANN models as a predictive tool in hydrology and water resources.  Even though 

there are fewer water quality data than rainfall-runoff data, there are still sufficient 

water quality data available to develop ANN models.  The fact that ANNs are data-

driven, and are thus able to make best use of existing data, should give them an 

advantage over process-driven water quality models, which require data on all 

variables, which are often more difficult to obtain. 

 

2. Work should continue on the development and evaluation of hybrid model 

architectures that attempt to draw on the strengths of alternative modelling approaches 

(e.g. Lin et al., 2008).  Given the amount of work that has already been done in this 

area, a review of this emerging field of research would seem timely. 

 

3. Greater attention should be paid to the input variable selection and data division steps 

of the ANN model development process.  Currently adopted ad-hoc methods in both 

of these areas have the potential to significantly degrade model performance and 

therefore need to be replaced with state-of-the art approaches.  In relation to input 

variable selection, non-linear approaches that are able to account for input 

independence should be used (e.g. May et al., 2008a, 2008b; Fernando et al., 2009; 

May et al., 2009).  As far as data division is concerned, appropriate sampling 
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techniques should be used to ensure that the data in all subsets are representative of 

each other (see May et al., 2009; May et al., 2010). 

 

4. There has been increasing adoption of second order local methods for model 

calibration, but the use of global optimization methods is still limited.  Consequently, 

there is scope for comparative studies investigating the relative performance of various 

global and local optimization algorithms in the context of ANN model calibration 

(training). 

 

5. Research into the best way to incorporate uncertainty into ANN models should be 

continued.  Current work on the incorporation of parameter uncertainty via Bayesian 

and other stochastic calibration methods should be extended to include other types of 

uncertainty (e.g. Kingston et al., 2005a). 

 

6. Appropriate methods for determining the optimal ANN model structure remain 

elusive.  Although some work has been done on this recently (e.g. Kingston et al., 

2008), this is an area that requires further research.  Increased utilization of ANN 

architectures that have a fixed structure, such as generalized regression neural 

networks, might also be worthy of consideration. 
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