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Abstract 46 

Computation of expected values, i.e., probability times magnitude, seems to be a 47 

dynamic integrative process performed by the brain for efficient economic behavior. 48 

However, neural dynamics underlying this computation is largely unknown. Using lottery 49 

tasks in monkeys (Macaca mulatta, male; Macaca fuscata, female), we examined 1) 50 

whether four core reward-related brain regions detect and integrate probability and 51 

magnitude cued by numerical symbols and 2) whether these brain regions have distinct 52 

dynamics in the integrative process. Extraction of the mechanistic structure of neural 53 

population signals demonstrated that expected value signals simultaneously arose in the 54 

central orbitofrontal cortex (cOFC, area 13M) and ventral striatum (VS). Moreover, these 55 

signals were incredibly stable compared to weak and/or fluctuating signals in the dorsal 56 

striatum and medial OFC. Temporal dynamics of these stable expected value signals 57 

were unambiguously distinct: sharp and gradual signal evolutions in the cOFC and VS, 58 

respectively. These intimate dynamics suggest that the cOFC and VS compute the 59 

expected values with unique time constants, as distinct, partially overlapping processes. 60 

 61 

Significance Statement  62 

Our results differ from those of earlier studies suggesting that many reward-related 63 

regions in the bran signal probability and/or magnitudes, and provide a mechanistic 64 

structure for expected value computation employed in multiple neural populations. 65 

Central part of the orbitofrontal cortex (cOFC) and ventral striatum (VS) can 66 

simultaneously detect and integrate probability and magnitude into expected value. Our 67 

empirical study on these neural population dynamics raise a possibility that the cOFC 68 

and VS cooperate on this computation with unique time constants, as distinct, partially 69 

overlapping processes.  70 
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Introduction  71 

Economic behavior requires a reliable perception of the world for maximizing benefit 72 

(Von Neumann and Morgenstern, 1944; Houthakker, 1950; Samuelson, 1950; Savage, 73 

1954). Such maximization is primarily achieved by computing expected values (i.e., 74 

probability multiplied by magnitude) in the brain (Glimcher et al., 2008), which seems to 75 

be a dynamic process for detecting and integrating probability and magnitude to yield 76 

expected value signals. Indeed, humans and animals behave as if they compute the 77 

expected values in the brain (Kahneman and Tversky, 1979; Stephens and Krebs, 1986; 78 

Glimcher et al., 2008). One salient example, discovered over a century ago and 79 

repeatedly measured, is human economic behavior, in which a series of models 80 

originating from the standard theory of economics (Von Neumann and Morgenstern, 81 

1944) has been developed to describe efficient economic behavior. Despite the ubiquity 82 

of this phenomenon, a dynamic integrative process to compute the expected values from 83 

probability and magnitude remains largely unknown. 84 

In the past two decades, substantial research in animals has suggested that various 85 

brain regions process rewards in terms of signaling probability and/or magnitude, mostly 86 

during economic choice behavior (Platt and Glimcher, 1999; Barraclough et al., 2004; 87 

Tobler et al., 2005; Roesch et al., 2009; Ma and Jazayeri, 2014; Rudebeck and Murray, 88 

2014; Eshel et al., 2016; Lopatina et al., 2016; Xie and Padoa-Schioppa, 2016; Yamada 89 

et al., 2018). Among these, expected value computation is assumed to be processed by 90 

neurons in many regions without their neural dynamics, in line with the expected value 91 

theory shared across multiple disciplines (Von Neumann and Morgenstern, 1944; 92 

Stephens and Krebs, 1986; Sutton and Barto, 1998; Glimcher et al., 2008). 93 

Neuroimaging studies in humans and non-human primates also suggest that multiple 94 

brain regions in the reward circuitry (Haber and Knutson, 2010) are involved in this 95 
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computational process (O'Doherty et al., 2004; Tom et al., 2007; Hsu et al., 2009; Levy 96 

and Glimcher, 2012; Howard et al., 2015; Howard and Kahnt, 2017; Papageorgiou et al., 97 

2017; Fouragnan et al., 2019), although the underlying neural mechanism has not been 98 

elucidated because of the limited time resolution of current neuroimaging techniques 99 

(Goense and Logothetis, 2008; Milham et al., 2018). Many brain regions may employ 100 

expected value computation; however, none of these studies could capture and compare 101 

temporal aspects of neural activities regarding expected value computation in the 102 

multiple candidate brain regions. Thus, we tested the hypothesis that neural population 103 

dynamics within subsecond-order time resolutions (Churchland et al., 2012; Mante et al., 104 

2013; Chen and Stuphorn, 2015; Murray et al., 2017; Takei et al., 2017) play a key role 105 

in expected value computation, that is, the detection and integration of probability and 106 

magnitude on multiple neural population ensembles. 107 

We targeted reward-related cortical and subcortical structures of non-human 108 

primates (Haber and Knutson, 2010): the central orbitofrontal cortex (cOFC, area 13M), 109 

medial orbitofrontal cortex (mOFC, area 14O), dorsal striatum (DS, the caudate nucleus), 110 

and ventral striatum (VS), all of which represent neural correlates of probability and/or 111 

magnitude during economic choice behavior. We dissociated the integrative process 112 

computing the expected values from a neural process generating a choice command, 113 

which is employed during economic choices (Chen and Stuphorn, 2015; Rich and Wallis, 114 

2016; Gardner et al., 2019; Yoo and Hayden, 2020) by recording the neural activity in a 115 

non-choice situation; monkeys perceive expected values from a single numerical symbol 116 

composed of probability and magnitude. We then applied a recently developing 117 

mathematical approach, called state space analysis (Churchland et al., 2012; Mante et 118 

al., 2013; Chen and Stuphorn, 2015; Murray et al., 2017), to the multiple neuronal 119 

activities to test how expected value computation is processed within each of the four 120 
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neural population ensembles in the order of 10-2-second time resolution. Our findings 121 

suggest that the cOFC and VS neural populations employ a common integrative 122 

computation of expected values from probability and magnitude as distinct and partially 123 

overlapping processes. 124 

  125 
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Materials and Methods 126 

Subjects and experimental procedures 127 

Two rhesus monkeys were employed for this study (Macaca mulatta, SUN, 7.1 kg, male; 128 

Macaca fuscata, FU, 6.7 kg, female). All experimental procedures were approved by the 129 

Animal Care and Use Committee of the University of Tsukuba (protocol no H30.336) and 130 

performed in compliance with the US Public Health Service’s Guide for the Care and 131 

Use of Laboratory Animals. Each animal was implanted with a head-restraint prosthesis. 132 

Eye movements were measured using a video camera system at 120 Hz. Visual stimuli 133 

were generated by a liquid-crystal display at 60 Hz placed 38 cm from the monkey’s face 134 

when seated. The subjects performed the cued lottery task 5 days a week. The subjects 135 

practiced the cued lottery task for 10 months, after which they became proficient in 136 

choosing lottery options.  137 

 138 

Experimental Design  139 

Behavioral task 140 

Cued lottery tasks. Animals performed one of the two visually cued lottery tasks: single 141 

cue task or choice task. Activity of neurons were recorded only during the single cue task. 142 

Single cue task: At the beginning of each trial, the monkeys had 2 s to align their gaze to 143 

within 3º of a 1º-diameter gray central fixation target. After fixating for 1 s, an 8º pie chart 144 

providing information about the probability and magnitude of rewards was presented for 145 

2.5 s at the same location as the central fixation target. The pie chart was then removed 146 

and 0.2 s later, a 1 kHz and 0.1 kHz tone of 0.15 s duration indicated reward and no-147 

reward outcomes, respectively. The high tone preceded a reward by 0.2 s. The low tone 148 

indicated that no reward was delivered. The animals received a fluid reward, for which 149 
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magnitude and probability were indicated by the green and blue pie charts, respectively; 150 

otherwise, no reward was delivered. An inter-trial interval of 4 to 6 s followed each trial. 151 

Choice task: At the beginning of each trial, the monkeys had 2 s to align their gaze to 152 

within 3º of a 1º-diameter gray central fixation target. After fixating for 1 s, two peripheral 153 

8º pie charts providing information about the probability and magnitude of rewards for 154 

each of the two target options were presented for 2.5 s, at 8º to the left and right of the 155 

central fixation location. Gray 1° choice targets appeared at these same locations. After 156 

a 0.5 s delay, the fixation target disappeared, cueing saccade initiation. The animals 157 

were free to choose for 2 s by shifting their gaze to either target within 3º of the choice 158 

target. A 1 kHz and 0.1 kHz tone of 0.15 s duration indicated reward and no-reward 159 

outcomes, respectively. The animals received a fluid reward indicated by the green pie 160 

chart of the chosen target, with the probability indicated by the blue pie chart; otherwise, 161 

no reward was delivered. An inter-trial interval of 4 to 6 s followed each trial. 162 

 163 

Pay-off and block structure. Green and blue pie charts indicated reward magnitudes from 164 

0.1 to 1.0 mL, in 0.1 mL increments, and reward probabilities from 0.1 to 1.0, in 0.1 165 

increments, respectively. A total of 100 pie charts were used. In the single cue task, 166 

each pie chart was presented once in a random order. In the choice task, two pie charts 167 

were randomly allocated to the two options. During one session of electrophysiological 168 

recording, approximately 30 to 60 trial blocks of the choice task were sometimes 169 

interleaved with 100 to 120 trial blocks of the single cue task.  170 

 171 

Calibration of the reward supply system. The precise amount of liquid reward was 172 

controlled and delivered to the monkeys using a solenoid valve. An 18-gauge tube (0.9 173 

mm inner diameter) was attached to the tip of the delivery tube to reduce the variation 174 



 

 

9 

 

across trials. The amount of reward in each payoff condition was calibrated by 175 

measuring the weight of water with 0.002 g precision (hence, 2L) on a single trial basis. 176 

This calibration method was the same as previously used (Yamada et al., 2018). 177 

 178 

Electrophysiological recordings 179 

We used conventional techniques for recording the single neuron activity from the DS, 180 

VS, cOFC, and mOFC. Monkeys were implanted with recording chambers (28 × 32 mm) 181 

targeting the OFC and striatum, centered 28 mm anterior to the stereotaxic coordinates. 182 

The locations of the chambers were verified using anatomical magnetic resonance 183 

imaging (MRI). At the beginning of recording sessions in a day, a stainless-steel guide 184 

tube was placed within a 1-mm spacing grid, and a tungsten microelectrode (1-3 M, 185 

FHC) was passed through the guide tube. To record neurons in the mOFC and cOFC, 186 

the electrode was lowered until it approximated the bottom of the brain after passing 187 

through the cingulate cortex, dorsolateral prefrontal cortex, or between them. For 188 

neuronal recording in the DS, the electrode was lowered until low spontaneous activity 189 

was observed after passing through the cortex and white matter. For recording in the VS, 190 

the electrode was lowered further until it passed through the internal capsule. At the end 191 

of VS recording sessions in a day, the electrode was occasionally lowered close to the 192 

bottom of the brain to confirm recording depth relative to the bottom. Electrophysiological 193 

signals were amplified, band-pass filtered, and monitored. Single neuron activity was 194 

isolated based on spike waveforms. We recorded from the four brain regions of a single 195 

hemisphere of each of the two monkeys: 194 DS neurons (98 and 96 from monkeys 196 

SUN and FU, respectively), 144 VS neurons (89, SUN and 55, FU), 190 cOFC neurons 197 

(98, SUN and 92, FU), and 158 mOFC neurons (64, SUN and 94, FU). The activity of all 198 

single neurons was sampled when the activity of an isolated neuron demonstrated a 199 
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good signal-to-noise ratio (>2.5). Blinding was not performed. The sample sizes required 200 

to detect effect sizes (number of recorded neurons, number of recorded trials in a single 201 

neuron, and number of monkeys) were estimated in reference to previous studies 202 

(Yamada et al., 2013b; Chen and Stuphorn, 2015; Yamada et al., 2018). Neural activity 203 

was recorded during 100-120 trials of the single cue task. During choice trials, neural 204 

activity was not recorded. Presumed projection neurons (phasically active neurons, 205 

PANs) (Yamada et al., 2016) were recorded from the DS and VS, while presumed 206 

cholinergic interneurons (tonically active neurons, TANs) (Yamada et al., 2004; Inokawa 207 

et al., 2020) were not recorded. 208 

 209 

Statistical analysis 210 

For statistical analysis, we used the statistical software package R (http://www.r-211 

project.org/). All statistical tests for behavioral and neural analyses were two-tailed.  212 

 213 

Effects of units on statistical analysis. In the present study, we used two variables for 214 

analyses: probability and magnitude. We defined the probability of reward from 0.1 to 1.0, 215 

and the magnitude of reward from 0.1 to 1.0 mL. Under this definition of units, the effects 216 

of probability and magnitude on the data were equivalent. Thus, data were not 217 

standardized in the analyses.  218 

 219 

Behavioral analysis 220 

We examined whether the monkey’s choice behavior depended on the expected values 221 

of the two options located on the left and right sides of the center. We pooled choice 222 

data across all recording sessions (monkey SUN, 884 sessions, 242 days; monkey FU, 223 

571 sessions, 127 days), yielding 44,883 and 19,292 choice trials for monkeys SUN and 224 
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FU, respectively. A percentage of the right target choices was estimated in the pooled 225 

choice data for all combinations of expected values of the left and right target options. 226 

The percentage of right target choices was also estimated in each recording session by 227 

segmenting the choice data as a function of the following seven conditions of difference 228 

in the expected values (right minus left): -1.0 ~ -0.5, -0.5 ~ -0.3, -0.3 ~ -0.1, -0.1 ~ 0.1, 229 

0.1 ~ 0.3, 0.3 ~ 0.5, and 0.5 ~1.0. Reaction times to choose target options after the 230 

appearance of target options were estimated and analyzed with the expected value 231 

differences (right minus left) as -1.0 ~ -0.5, -0.5 ~ -0.3, -0.3 ~ -0.1, -0.1 ~ 0.1, 0.1 ~ 0.3, 232 

0.3 ~ 0.5, and 0.5 ~1.0. 233 

 234 

Model Fitting. The percentage of choosing the right-side option was analyzed in the 235 

pooled data using a general linear model with binominal distribution:  236 

 PchoosesR = 1 / (1 + e-z)   (1) 237 

where the relationship between PchoosesR and Z was given by the logistic function in 238 

each of the following three models: number of pie segments (M1), probability and 239 

magnitude (M2), and expected values (M3).  240 

The first model, M1, assumed that the monkeys chose a target by comparing the 241 

number of pie segments for two targets. 242 

 Z = b0 + b1NpieL + b2NpieR  (2) 243 

where b0 is the intercept and NpieL and NpieR are the number of pie segments contained 244 

in the left and right pie chart stimuli, respectively. Values of b0 to b2 were free parameters 245 

and estimated by maximizing the log likelihood. 246 

The second model, M2, assumed that the monkeys chose a target by comparing the 247 

probability and magnitude of two targets. 248 

 Z = b0 + b1PL + b2PR + b3ML + b4MR (3) 249 
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where b0 is the intercept; PL and PR are the probability of rewards for left and right pie 250 

chart stimuli, respectively, and ML and MR are the magnitude of rewards for left and right 251 

pie chart stimuli, respectively. Values of b0 to b4 were free parameters and estimated by 252 

maximizing the log likelihood. 253 

The third model, M3, assumed that the monkeys chose a target by comparing the 254 

expected values of rewards for two targets. 255 

 Z = b0 + b1EVL + b2EVR   (4) 256 

where b0 is the intercept and EVL and EVR are the expected values of rewards as 257 

probability times magnitude for left and right pie chart stimuli, respectively. Values of b0 258 

to b2 were free parameters and estimated by maximizing the log likelihood. 259 

 260 

Model comparisons. To identify the best structural model to describe the monkeys’ 261 

behavior, we compared the three models described above. In each model, we estimated 262 

a combination of best-fit parameters to explain the monkeys’ choice behavior. We 263 

compared their goodness-of-fits based on Akaike’s information criterion (AIC) and 264 

Bayesian information criterion (BIC) (Burnham and Anderson, 2004), 265 

 AIC (Model) = −2L + 2k   (5) 266 

 BIC (Model) = −2L + k log n  (6) 267 

where L is the maximum log-likelihood of the model, k is the number of free parameters, 268 

and n is the sample size. After estimating the best-fit parameters in each model, we 269 

selected one model that exhibited the smallest AIC and BIC. To evaluate model fits, we 270 

estimated a McFadden’s pseudo r-squared statistic using the following equation:  271 

 Pseudo r-squared = (L0 - LModel) / L0 (7) 272 

where LModel is the maximum log likelihood for the model given the data, and L0 is the log 273 

likelihood under the assumption that all free parameters are zero in the model. 274 
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 275 

Neural analysis  276 

Basic firing properties. Peri-stimulus time histograms (PSTHs) were drawn for each 277 

single neuron activity aligned at visual cue onset. To display a color map histogram, a 278 

peak activity (maximum firing rate in each histogram) was detected for each neuron. The 279 

average activity curves were smoothed using a 50 ms Gaussian kernel (σ = 50 ms) and 280 

normalized by the peak firing rates. A percentage of neurons showing the activity peak 281 

during cue presentation was compared among the four brain regions using a chi-square 282 

test at P < 0.05. Basic firing properties, such as peak firing rates, peak latency, and 283 

duration of peak activity (half peak width), were compared among the four brain regions 284 

using parametric or non-parametric tests, with a statistical significance level of P < 0.05. 285 

Baseline firing rates during 1 s before the appearance of central fixation targets were 286 

also compared with a statistical significance level of P < 0.05. 287 

 288 

Estimation of neural firing rates through task trials. We analyzed neural activity during a 289 

2.7 s time period from the onset of pie chart stimuli to the onset of outcome feedback 290 

during the single cue task. To obtain a time series of neural firing rates through a trial, 291 

we estimated the firing rates of each neuron for every 0.1, 0.05, or 0.02 s time window 292 

(without overlap) during the 2.7 s period. No Gaussian kernel was used.  293 

 294 

Estimation of neural firing rates in a fixed time window. We analyzed neural activity 295 

during a 1 s time window after the onset of pie chart stimuli during the single cue task. 296 

The 1 s activity was used for the conventional analyses below. No Gaussian kernel was 297 

used. 298 

 299 
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Conventional analyses to detect neural modulations in each individual neuron 300 

Linear regression and model selection. For conventional and standard analyses of 301 

neural modulations by the probability and magnitude indicated by pie chart stimuli, we 302 

used linear regression and model selection analyses. As above, we estimated the firing 303 

rate of each neuron during the 1 s period after the onset of pie chart stimulus during the 304 

single cue task. No Gaussian kernel was used. 305 

 306 

Linear regression. Neural discharge rates (F) were fitted by a linear combination of the 307 

following variables: 308 

 F = b0 + bp Probability + bm Magnitude  (8) 309 

where Probability and Magnitude are the probability and magnitude of rewards indicated 310 

by the pie chart, respectively. b0 is the intercept. If bp and bm were not 0 at P < 0.05, 311 

discharge rates were regarded as being significantly modulated by that variable.  312 

On the basis of the linear regression, activity modulation patterns were categorized 313 

into several types: “Probability” type with a significant bp and without a significant bm; 314 

“Magnitude” type without a significant bp and with a significant bm; “Expected value” type 315 

with significant bp and bm with the same sign (i.e., positive bp and positive bm or negative 316 

bp and negative bm); “Risk-Return” type with significant bp and bm with both having 317 

opposite signs (i.e., negative bp and positive bm or positive bp and negative bm) and “non-318 

modulated” type without significant bp and bm. The Risk-Return types reflect high risk 319 

high return (prefer low probability and large magnitude) or low risk low return (prefer high 320 

probability and low magnitude).  321 

 322 

Model selection. Neural discharge rates (F) were fitted using the following five models: 323 

 M1: F = b0     (9) 324 
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 M2: F = b0 + bp Probability    (10) 325 

 M3: F = b0 + bm Magnitude   (11) 326 

 M4: F = b0 + bp Probability + bm Magnitude  (12) 327 

 M5: F = b0 + bev Expected value   (13) 328 

where Expected value is the expected value estimated from the visual pie chart as 329 

probability multiplied by magnitude. b0 is the intercept. Probability and Magnitude are the 330 

probability and magnitude of reward indicated by the pie chart, respectively. Among the 331 

five models, we selected one model that exhibited the smallest AIC or BIC. 332 

If the selected model was M1, neurons were defined as the “non-modulated” type. If 333 

the selected model was M2, neurons were defined as the “Probability” type. If the 334 

selected model was M3, neurons were defined as the “Magnitude” type. If the selected 335 

model was M4 with the same signs of bp and bm, neurons were defined as the “Expected 336 

value” type. If the selected model was M4 with opposite signs of bp and bm, neurons 337 

were defined as the “Risk-Return” type. If the selected model was M5, neurons were 338 

defined as the “Expected value” type. 339 

 340 

Application of the conventional analyses to neural activity through task trials. We applied 341 

the three conventional analyses above (linear regression, AIC-based model selection, 342 

and BIC-based model selection) for the activity of neurons estimated at every time 343 

window in the four brain regions. As above, we estimated the firing rate of each neuron 344 

for every 0.1, 0.05, or 0.02 s time window (without overlap) during the 2.7 s period. No 345 

Gaussian kernel was used. The activity modulation type was defined in each time 346 

window during the 2.7 s period. The analyses described percentages of neural 347 

modulation types throughout cue presentation.  348 

 349 
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Population dynamics using principal component analysis 350 

Estimation of neuron firing rates through task trials. As above, we estimated the firing 351 

rate in each neuron for every 0.1, 0.05, or 0.02 s time window (without overlap) during 352 

the 2.7 s period. No Gaussian kernel was used. 353 

 354 

Regression subspace. We used linear regression to determine how the probability and 355 

magnitude of rewards affect the activities of each neuron in the four neural populations. 356 

Each neural population was composed of all recorded neurons in each brain region. We 357 

first set the probability and magnitude as 0.1 to 1.0 and 0.1 to 1.0 mL, respectively. We 358 

then described the average firing rates of neuron i at time t as a linear combination of the 359 

probability and magnitude in each neural population: 360 

 F(i,t,k) = b0(i,t) + b1(i,t)Probability(k) + b2(i,t)Magnitude(k) (14) 361 

where F(i,t,k) is the average firing rate of neuron i at time t on trial k, Probability(k) is the 362 

probability of reward cued to the monkey on trial k, and Magnitude(k) is the magnitude of 363 

reward cued to the monkey on trial k. The regression coefficients b0(i,t) to b2(i,t) describe 364 

the degree to which the firing rates of neuron i depend on the mean firing rates (hence, 365 

firing rates independent of task variables), the probability of rewards, and the magnitude 366 

of rewards, respectively, at a given time t during the trials.  367 

We used the regression coefficients described in Eq. 14, to identify how the 368 

dimensions of neural population signals were composed from the probability and 369 

magnitude as aggregated properties of individual neural activity. This step corresponds 370 

to the fundamental conceptual step of viewing the regression coefficients as a temporal 371 

structure of neural modulation by probability and magnitude at the population level. Our 372 

procedures are analogous to the state-space analysis performed by Mante et al. (Mante 373 

et al., 2013), in which the regression coefficients were used to provide an axis (or 374 
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dimension) of the variables of interest in multi-dimensional state space obtained by 375 

principal component analysis (PCA). In the present study, our orthogonalized task 376 

design allowed us to reliably project neural firing rates into the regression subspace. 377 

Note that our analyses were not aimed at describing the population dynamics of neural 378 

signals as a trajectory in the multi-dimensional task space, which is the standard goal of 379 

state space analysis. 380 

 381 

Principal component analysis. We used PCA to identify dimensions of the neural 382 

population signal in the orthogonal spaces composed of the probability and magnitude of 383 

rewards in each of the four neural populations. In each neural population, we first 384 

prepared a two-dimensional data matrix X of size N(neuron)×N (C×T); the regression 385 

coefficient vectors, b1(i,t) and b2(i,t), in Eq. 14, whose rows correspond to the total number 386 

of neurons in each neural population and columns correspond to C, the total number of 387 

conditions (i.e., two: probability and magnitude), and T is the total number of analysis 388 

windows (i.e., 2.7 s divided by the window size). A series of eigenvectors was obtained 389 

by applying PCA once to the data matrix X in each of the four neural populations. The 390 

principal components (PCs) of this data matrix are vectors v(a) of length N(neuron), the total 391 

number of recorded neurons if N (C×T) is > N(neuron); otherwise, the length is N (C×T). PCs 392 

were indexed from the principal components, explaining the most variance to the least 393 

variance. The eigenvectors were obtained using the prcomp () function in R software. It 394 

must be noted that we did not perform de-noising in the PCA (Mante et al., 2013), since 395 

we did not aim to project firing rates into state space. Instead, we intended to use the 396 

PCs to identify the main features of neural modulation signals at the population level 397 

through task trials. 398 

 399 
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Eigenvectors. When we applied PCA to the data matrix X, we could deconstruct the 400 

matrix into eigenvectors and eigenvalues. The eigenvectors and eigenvalues exist as 401 

pairs with every eigenvector having a corresponding eigenvalue. In our analysis, the 402 

eigenvectors at time t represent a vector in the space of probability and magnitude. The 403 

eigenvalues at time t for the probability and magnitude were scalars, indicating the 404 

extent of variance in the data in that vector. Thus, the first PC is the eigenvector with the 405 

highest eigenvalue. We mainly analyzed eigenvectors for the first (PC1) and second PCs 406 

(PC2) in the following analyses. Note that we applied PCA once to each neural 407 

population, and thus, the total variances contained in the data were different among the 408 

four populations. 409 

 410 

Analysis of eigenvectors. We evaluated characteristics of eigenvectors for PC1 and PC2 411 

in each of the four neural populations in terms of the vector angle, size, and deviation in 412 

the space of probability and magnitude. The angle is the vector angle from the horizontal 413 

axis from 0º to 360º. The size is the length of the eigenvector. The deviation is the 414 

difference between vectors. We estimated the deviation from the mean vector in each 415 

neural population. These three characteristics of the eigenvectors were compared 416 

among the four neural populations at P < 0.05, using the Kruskal-Wallis test and 417 

Wilcoxon rank-sum test with Bonferroni correction for multiple comparisons. The vector 418 

during the first 0.1 s was extracted from these analyses. 419 

 420 

Shuffle control for PCA. To examine the significance of population structures described 421 

by PCA, we performed two shuffle controls. When we projected the neural activity into 422 

the regression subspace, data were randomized by shuffling in two ways. In shuffled 423 

condition 1, b1(i,t) and b2(i,t) in Eq. 14 were estimated with the randomly shuffled allocation 424 
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of trial number k to the Probability(k) and Magnitude(k) only once for all time t in each 425 

neuron. This shuffle provided a data matrix X of size N(neuron)×N (C×T), eliminating the 426 

modulation of probability and magnitude observed in condition C, but retaining the 427 

temporal structure of these modulations across time. In shuffled condition 2, b1(i,t) and 428 

b2(i,t) in Eq. 14 were estimated with the randomly shuffled allocation of trial number k to 429 

the Probability(k) and Magnitude(k) at each time t in each neuron. This shuffle provided a 430 

data matrix X of size N(neuron)×N (C×T), eliminating the structure across conditions and 431 

times. In these two shuffle controls, matrix X was estimated 1,000 times. PCA 432 

performance was evaluated by constructing distributions of the explained variances for 433 

PC1 to PC4. The statistical significance of the variances explained by PC1 and PC2 was 434 

estimated based on bootstrap standard errors (i.e., standard deviation of the 435 

reconstructed distribution).  436 

 437 

Bootstrap resampling for onset and peak latencies of neural population signals. To 438 

detect the onset and peak latencies of population signals, we analyzed dynamic 439 

changes in the population structure with the size of eigenvector in each neural 440 

population. We used a time-series of eigenvectors in 0.02 s analysis windows and 441 

estimated the sizes of the time-series of vectors for PC1. To obtain smooth changes in 442 

the vector size, a cubic spline function was applied with a resolution of 0.005 s. Vector 443 

sizes during a 0.3 s baseline period were obtained by applying PCA to the matrix data X 444 

with time t from 0.3 s before cue onset to the onset of feedback (i.e., 3.0 s time period). 445 

A standard deviation of vector sizes during the 0.3 s baseline period before cue onset 446 

was obtained for each neural population. The onset latency of the population signal was 447 

defined as the time when the spline curve was >3 s.d. during the baseline period. The 448 
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peak latency of the population signal was defined as the time from cue onset to the time 449 

when the maximum vector size was obtained. 450 

We estimated mean latencies of the onset and peak using a parametric bootstrap 451 

resampling method (Efron and Tibshirani, 1993). In each neural population, the neurons 452 

were randomly re-sampled with a duplicate, and a data matrix X of size N(neuron)×N (C×T) 453 

was obtained. The PCA was applied to the data matrix X. The time-series of 454 

eigenvectors was obtained, and their sizes were estimated. The onset and peak 455 

latencies were estimated as above. This resampling was conducted 1,000 times, and 456 

distributions of the onset and peak latencies were obtained. The statistical significance 457 

of the onset and peak latencies was estimated based on the bootstrap standard errors 458 

(i.e., standard deviation of the reconstructed distribution). 459 

 460 

Neural population structure in the regression subspace with expected value. To include 461 

the expected value (i.e., multiplicative integration) directly into the state space analysis, 462 

we used the following regression model, which described the average firing rates F(i,t,k) of 463 

neuron i at time t as the expected value on trial k in each neural population: 464 

 F(i,t,k) = b0(i,t) + b3(i,t) Expected value(k) (15) 465 

We prepared a two-dimensional data matrix X of size N(neuron)×N (C×T) under three 466 

conditions (probability, magnitude, and expected value); the regression coefficient 467 

vectors, b1(i,t) and b2(i,t), in Eq. 14, and b3(i,t) in Eq. 15. We applied PCA to the data matrix 468 

X in each neural population. Note that Eq. 15 explains some of the same variances as 469 

the neural modulation defined in Eq. 14 for each neuron, but separately used from Eq. 470 

14 to project neural activity into the expected value subspace. 471 

  472 
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Results 473 

Task and behavior in monkeys 474 

Based on the vast literature on human behavioral economics and by harnessing the 475 

well-developed visual and cognitive abilities in non-human primates, we designed a 476 

behavioral task in which monkeys estimated the expected values of rewards from 477 

numerical symbols, mimicking events performed by humans. The task involved a visual 478 

pie chart that included two numerical symbols associated with the probability and 479 

magnitude of fluid rewards with great precision. After monkeys fixated a central gray 480 

target, a visual pie chart comprising green and blue pie segments was presented (Figure 481 

1A). The number of green pie segments indicated the magnitude of fluid rewards in 0.1 482 

mL increments (0.1-1.0 mL). Simultaneously, the number of blue pie segments indicated 483 

the probability of reward in 0.1 increments (0.1-1 where 1 indicates a 100% chance). 484 

After a 2.5 s delay, the visual pie chart disappeared, and a reward outcome was 485 

provided to the monkeys with the indicated amount and probability of reward, unless no 486 

reward was given. Under this experimental condition, the expected values of rewards are 487 

defined as the probability multiplied by the magnitude cued by the numerical symbols. 488 

To examine whether the monkeys accurately perceived the expected values from 489 

the numerical symbols for probability and magnitude, we applied a choice task to the 490 

monkeys (Figure 1B). Analysis of the aggregated choice data indicated that the two 491 

monkeys exhibited near-efficient performance in selecting a larger expected value option 492 

among two alternatives during choice trials (Figure 1C). We examined which of the 493 

following three behavioral models best described the monkey’s behavior: model 1 (M1), 494 

monkeys make choices based on the number of pie segments; model 2 (M2), monkeys 495 

make choices based on the probability and magnitude, and model 3 (M3), monkeys 496 

make choices based on the expected value. Comparisons of the model performances 497 
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based on Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC) 498 

(Burnham and Anderson, 2004) revealed that model 3 best explained the monkey’s 499 

behavior, as indicated by the smallest AIC and BIC values (Monkey SUN, AIC: M1, 500 

27105; M2, 26895; M3, 21539, BIC: M1, 27131; M2, 26939; M3, 21565, Monkey FU, 501 

AIC: M1, 10980; M2, 10889; M3, 9166, BIC: M1, 11003; M2, 10929; M3, 9190). Model 3 502 

consistently showed the highest pseudo r-squared values in each monkey (Figure 1D). 503 

These results indicate that monkeys utilized the expected values estimated from the 504 

numerical symbols for probability and magnitude.  505 

We also evaluated the monkeys’ choice behaviors by analyzing the percent choices 506 

among two lottery options session-by-session. Each monkey showed a certain variance 507 

in the percent choices over sessions (Figure 1E, gray), although choices in each monkey 508 

were clearly dependent on the expected value difference between the two options, 509 

without a clear choice-side bias on average (Figure 1E, black). In contrast, reaction 510 

times to choose the target option showed a choice-side bias without a consistent 511 

dependency on the expected value differences between the two monkeys (Figure 1F). 512 

Monkey SUN showed longer reaction times when the expected values of the left-side 513 

options were larger than those of right-side options, while monkey FU showed longer 514 

reaction times when the expected values of the right-side options were larger (Kruskal-515 

Wallis test, Monkey SUN: n = 44883, P < 0.001, H = 4000, df = 6, Monkey FU: n = 516 

19292, P < 0.001, H = 1710, df = 6). These results indicate that the monkeys’ behavior 517 

depended to a certain extent on the expected value difference. 518 

 519 

Neural population data 520 

We constructed four pseudo-populations of neurons by recording single-neuron activity 521 

during the single cue task (Figure 1A) from the DS (194 neurons), VS (144 neurons), 522 
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cOFC (190 neurons), and mOFC (158 neurons) (Figure 1G). The four constructed neural 523 

populations exhibited changes in their activities at different times in the task trials (Figure 524 

1H). Approximately 40-50% of neurons in the four neural populations demonstrated peak 525 

activity during cue presentation (Figure 1I, Chi-square test, n = 686, P = 0.32, X2 = 3.55, 526 

df = 3), with several basic firing properties (Figure 1J-M). Strong peak activities with 527 

short latency were observed in the cOFC (Kruskal-Wallis test, latency: Figure 1J, n = 528 

314, P = 0.013, H = 10.9, df = 3, peak firing rate: Figure 1K, n = 314, P < 0.001, H = 32.1, 529 

df = 3). Activity changes were slow in the mOFC (Figure 1L, Kruskal-Wallis test, n = 314, 530 

P = 0.003, H = 13.4, df = 3). Baseline firing rates were the highest in the cOFC (Figure 531 

1M, Kruskal-Wallis test, n = 686, P < 0.001, H = 60.3, df = 3). In short, strong activity 532 

with short latency frequently occurred in the cOFC in contrast to the phasic activity at 533 

various latencies in the DS and VS and relatively tonic and gradual activity changes in 534 

the mOFC. 535 

 536 

Conventional analyses for detecting expected value signals 537 

We first applied common conventional analyses (linear regression, AIC-based model 538 

selection, and BIC-based model selection) to the four neural populations to examine 539 

neural modulations by probability, magnitude, and expected value at a single neuron 540 

level (see Methods). During a fixed 1 s time window after cue onset, these analyses 541 

showed that neurons in all four brain regions signal probability, magnitude, and expected 542 

value to some extent (Figure 2). For example, neurons signaling expected value were 543 

found in each brain region (Figures 2A-H). In addition, neurons signaling probability or 544 

magnitude were also observed in each brain region (Figures 2I-L, blue, and green). 545 

Moreover, a subset of neurons in the cOFC and VS signaled high risk high return or low 546 

risk low return (Figure 3). These neurons were characterized by a strong activity, which 547 
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was elicited when the cue indicated low probability and large magnitude (hence, high-548 

risk high-return, Figures 2J and K, brown). Indeed, each neural population was 549 

composed of a mixture of these signals (Figures 2I-L), indicating that signals for the 550 

expected value and its components (i.e., probability and magnitude) appeared in each 551 

neural population during 1 s after cue onset. Note that the classification of neural 552 

modulation types was dependent on the analysis methods; however, the overall 553 

tendency for differences in neural modulations among neural populations was consistent 554 

among all three analyses.  555 

We analyzed these neural modulation patterns through a task trial using these 556 

conventional analyses (Figures 2M-P). We found no significant difference in the 557 

proportions of neural modulation types in the 0.1 s analysis window, except for the VS 558 

(chi-square test: DS, n = 104, df = 75, X2 = 91.4, P = 0.096; VS, n = 104, df = 75, X2 = 559 

98.2, P = 0.037; cOFC, n = 104, df = 75, X2 = 83.2, P = 0.242; mOFC, n = 104, df = 75, 560 

X2 = 79.0, P = 0.353). Using a finer time resolution, a 10-2-second time resolution (0.02s), 561 

the detected neural modulations were proportionally very small because signal-to-noise 562 

ratios generally decrease with the window size. These observations suggested that 563 

conventional analyses provided neural modulation patterns similar to those of previous 564 

studies, but they did not clearly provide evidence of temporal dynamics in the modulation 565 

patterns of neural populations. Thus, we developed an analytic tool to examine how the 566 

detection and integration of probability and magnitude are processed within these neural 567 

population ensembles. 568 

 569 

State space analysis for detecting neural population dynamics 570 

State space analysis can provide temporal dynamics of neural population signal related 571 

to cognitive and motor performances (Churchland et al., 2012; Mante et al., 2013). In our 572 
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lottery task, such population dynamics can describe how expected values evolved within 573 

neural population ensembles. To describe how each neural population detects and 574 

integrates probability and magnitude into the expected value, we represented each 575 

neural population signal as a vector time-series in the space of probability and 576 

magnitude in two steps. First, we used linear regression to project a time series of each 577 

neural activity into a regression subspace composed of the probability and magnitude in 578 

each neural population. This step captures the across-trial variance caused by the 579 

probability and magnitude moment-by-moment at the population level. Second, we 580 

applied PCA to the time series of neural activities in the regression subspace in each 581 

neural population. This step determines the main feature of the neural population signal 582 

moment-by-moment in the space of probability and magnitude. Because activations are 583 

dynamic and change over time, the analysis identified whether and how signal 584 

transformations occurred to convert probability and magnitude into the expected value 585 

as a time-series of eigenvectors (Figure 4A). The directions of these eigenvectors 586 

capture the expected values as an angle moment-by-moment at the population level 587 

(Figure 4B). 588 

We evaluated eigenvectors properties for the first and second principal components 589 

(PC1 and PC2) in each neural population in terms of vector angle, size, and deviation 590 

(Figure 4C). A stable population signal is described as a small variation in eigenvector 591 

properties throughout a trial, whereas an unstable population signal is described as a 592 

large variation in eigenvector properties. It must be noted that our procedure is a variant 593 

of the state space analysis in line with the use of linear regression to identify dimensions 594 

of a neural population signal (Mante et al., 2013; Chen and Stuphorn, 2015), However, it 595 

was not aimed at projecting the population activity as trajectories in multidimensional 596 

space. 597 
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 598 

Stable and unstable neural population signals 599 

The eigenvector analyses yielded clear differences in neural population signals among 600 

the four populations (Figures 5A-D). We first confirmed adequate performance of the 601 

state space analysis indicated by the percentages of variance explained in each 602 

population (Figure 5A). The VS population exhibited the highest performance among the 603 

four neural populations, followed by the cOFC and DS populations, with the lowest 604 

performance exhibited by the mOFC population. Thus, the performance to process 605 

probability and magnitude information was distinct among the four neural populations. 606 

To characterize the whole structure of each neural population signal, we analyzed 607 

the aggregated properties of the eigenvectors without their temporal order through a task 608 

trial. We first examined eigenvector properties for PC1. The aggregated eigenvectors 609 

revealed both stable and unstable neural population signals during cue presentation 610 

(Figure 5B, green). The VS population exhibited the highest performance (37%) with 611 

eigenvectors for PC1 being stable throughout cue presentation, and directions close to 612 

45°, that is, the expected value (Figure 5B, VS, vector angle, PC1, mean ± SEM, 37.5° ± 613 

0.98, 7.5° difference from 45°). The cOFC population also exhibited a stable expected 614 

value signal with the second-best performance (31%), but they deviated more from the 615 

ideal expected value signal (Figure 5B, cOFC, vector angle, PC1, mean ± SEM, 59.4° ± 616 

1.16, 14.4° difference from 45°, Wilcoxon rank-sum test, n = 52, W = 122, P < 0.001). 617 

Vector stability was the best in the VS and cOFC, as indicated by the smallest deviation 618 

from its mean vector among the four neural populations (Figure 5C, left, PC1). Thus, VS 619 

and cOFC populations signaled expected values in a stable manner. 620 

In contrast, unstable population signals were observed in the DS and mOFC (Figure 621 

5B, green). The DS population showed considerable variability in its eigenvectors 622 
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(Figure 5C, left, PC1) compared to those in the VS and cOFC neural populations. The 623 

signal carried by the DS neural population was close to 0º, that is, the probability (Figure 624 

5B, DS, vector angle, PC1, mean ± SEM, DS, 11.4º ± 1.72) with a performance closer to 625 

that of the cOFC (29%). The mOFC population exhibited a large variability in the 626 

eigenvectors (Figure 5B, mOFC, PC1, vector angle, mean ± SEM, 38.1° ± 5.80, Figure 627 

5C, left, PC1) due to the poorest performance of PCA (14%), indicating a weak and 628 

fluctuating population signal. Thus, neural populations in the DS and mOFC did not 629 

signal expected value through cue presentation due to the dynamic changes and 630 

weakness of the signals, respectively.  631 

Second, we examined eigenvector properties for PC2. The eigenvectors for PC2 632 

revealed another feature of neural population signal, which reflected risk-return in the VS 633 

and cOFC (Figure 5B, blue, vector angle, PC2, mean ± SEM, VS, 306.7° ± 1.07, 8.3° 634 

difference from 315º, cOFC, 322.4º ± 1.94, 7.4º difference from 315º). The deviations 635 

from the ideal risk-return signal were not significantly different between the VS and 636 

cOFC populations (Wilcoxon rank-sum test, n = 52, W = 319, P = 0.737). These signals 637 

were equally stable in the VS and cOFC (Figure 5C, right, PC2). In clear contrast, DS 638 

and mOFC signals were unstable and fluctuated more (Figure 5C, right, vector angle, 639 

PC2, mean ± SEM, DS, 64.8 ± 19.0, mOFC, 320.2 ± 8.77), similar to those observed for 640 

PC1 (Figure 5C, left, PC1). Thus, the VS and cOFC were key brain regions to signal 641 

risk-return as well as expected value within their neural population ensembles, 642 

suggesting that integrated information of the probability and magnitude could be 643 

signaled in these neural populations. 644 

To further examine the significance of these findings, we used a shuffle control 645 

procedure in two ways (see Methods). First, we randomly shuffled the allocation of 646 

probability and magnitude conditions to neural activity in each trial for each neuron 647 



 

 

28 

 

(shuffled condition 1). When we shuffled the linear projection of neural activity into the 648 

regression subspace in this way, the neural population structure disappeared in all four 649 

brain regions (Figure 5F). PCA performances for PC1 and PC2 were all below 20% 650 

(Figure 5E) and significantly reduced from the observed data in all four brain regions, 651 

even in the mOFC (Figure 6A, explained variance, P < 0.001 for all populations in PC1 652 

and PC2). In addition, due to the shuffle, vector angles for PC1 and PC2 were changed 653 

compared to those from the original data (Fig. 5B and F). Eigenvector deviations under 654 

the shuffle control increased in most cases for PC1 (Figure 5G, Wilcoxon rank-sum test, 655 

n = 52, PC1, DS, W = 237, P = 0.027, VS, W = 191, P = 0.002, cOFC, W = 132, P < 656 

0.001, mOFC, W = 262, P = 0.078, PC2, DS, W = 352, P = 0.837, VS, W = 104, P < 657 

0.001, cOFC, W = 331, P = 0.571, mOFC, W = 189, P = 0.002), with significant 658 

differences among the four neural populations (Figure 5G, Kruskal-Wallis test, PC1, n = 659 

104, df = 3, H = 16.4, P < 0.001, PC2, n = 104, df = 3, H = 21.4, P < 0.001). This might 660 

have occurred because the temporal structure of neural modulation was maintained 661 

through a trial in this shuffled condition 1. 662 

We also tested another shuffle control, in which the trial conditions were shuffled in 663 

each analysis window throughout a trial (shuffled condition 2). Under this full-shuffle 664 

control, PCA performances decreased further, albeit slightly (Figures 5I and 6B), without 665 

significant differences among the four populations (Figures 5J-K, Deviation, Kruskal-666 

Wallis test, PC1, n = 104, df = 3, H = 1.38, P = 0.71, PC2, n = 104, df = 3, H = 0.53, P = 667 

0.91). Vector deviations in this full-shuffle control were clearly larger than those in the 668 

original data without shuffle (Wilcoxon rank-sum test, n = 52, PC1, DS, W = 205, P = 669 

0.005, VS, W = 112, P < 0.001, cOFC, W = 65, P < 0.001, mOFC, W = 177, P < 0.001, 670 

PC2, DS, W = 310, P = 0.353, VS, W = 117, P < 0.001, cOFC, W = 135, P < 0.001, 671 

mOFC, W = 238, P = 0.028). In this full-shuffle control, eigenvectors were directed in 672 
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various directions compared to those in the shuffled condition 1 (Fig. 5F and J). Thus, 673 

these shuffle procedures appropriately evaluated the significance of our population 674 

findings. 675 

Next, we examined whether eigenvector size differed among the four neural 676 

populations, which represents the extent of neural modulation due to probability and 677 

magnitude in each neural population as an arbitrary unit. The eigenvector size was not 678 

significantly different (Figure 5D, left, PC1, Kruskal-Wallis test, n = 104, df = 3, H = 2.62, 679 

P = 0.45, right, PC2, n = 104, df = 3, H = 4.76, P = 0.19), but it strongly depended on the 680 

temporal resolution (Figure 7). The eigenvector size decreased with the analysis window 681 

size (Figures 7B, E, and F), although all the results and conclusions described above 682 

were maintained across the window sizes (Figures 7A-D). The decrease in the 683 

eigenvector size could be because signal-to-noise ratios generally decrease when the 684 

window size decreases. These effects were observed as a decrease in PCA 685 

performance (Figure 7A) and percentages of neural modulations in the conventional 686 

analyses (Figure 2M-P). Note that we did not find any significant difference in the vector 687 

size compared to shuffle controls in each neural population (Fig. 5D, H, L, P > 0.05 for 688 

all cases). 689 

Collectively, these observations suggest a possibility that the probability and 690 

magnitude of rewards could be detected and integrated within the activity of the cOFC 691 

and VS neural populations as the expected value and risk-return signals in a stable state, 692 

at least considering the four brain regions that have been thought as key components of 693 

the brain’s reward system. 694 

 695 

Temporal structure of neural population signals 696 
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Although stable signals were observed in the cOFC and VS neural populations above, 697 

the extent of neural modulations changed throughout a trial (Figure 8). To characterize 698 

temporal aspects of the VS and cOFC neural populations that yield expected value 699 

signals, we first compared temporal dynamics of all four neural population signals at the 700 

finest time resolution. Specifically, we compared the temporal patterns of vector changes 701 

exhibited by each neural population (Figure 9). At the time point after cue onset when 702 

monkeys initiated the expected value computation, all four neural populations developed 703 

eigenvectors (Figure 9A). The eigenvector size increased and then decreased within a 704 

second; however, the temporal patterns of this size change were different among the 705 

four neural populations. The onset latencies, detected by comparing to the vector size 706 

during the baseline period, seemed to be coincident for the cOFC, VS, and DS 707 

populations, followed by a late noisy signal in the mOFC (Figure 9B). In contrast, the 708 

detected peak of vector size for each neural population seemed to appear at different 709 

times. To statistically examine these temporal dynamics at the population level, we used 710 

a bootstrap resampling technique (see Methods).  711 

The analysis revealed no significant difference in onset latencies among the cOFC, 712 

VS, and DS populations (Figure 9C, bootstrap re-sampling, onset latency, mean ± s.d., 713 

cOFC, 107.1 ± 26.0 ms, VS, 138,7 ± 61.3 ms, DS, 155.0 ± 52.4 ms), while these signals 714 

were followed by a late noisy signal in the mOFC (mOFC, 287 ± 98.8 ms). In contrast, 715 

when we compared peak latencies (Figure 9D), the cOFC exhibited the earliest peak 716 

(292 ± 37.5 ms), followed by the DS (371 ± 43.0 ms), the mOFC (444 ± 113.5 ms), and 717 

the VS (508 ± 76.7 ms), which exhibited the latest peak. Thus, the expected value signal 718 

sharply developed in the cOFC in contrast to the gradual development in the VS. mOFC 719 

signals were very noisy, as indicated by the large variation in the vector size during the 720 

baseline period (Figure 9B, bottom, see horizontal line). 721 
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We examined temporal changes in vector angles, which indicate how fast the stable 722 

expected value signals were evoked in the cOFC and VS (Figure 9E). As observed in 723 

the time series of vector angles after detected onsets, signals carried by the VS and 724 

cOFC neural populations during the early time period were almost 45º (i.e., expected 725 

value), indicating that these two neural populations integrate probability and magnitude 726 

information into expected value just after the appearance of the numerical symbol (see 727 

intercepts of regression lines). Moreover, these two expected value signals were not the 728 

same, but rather idiosyncratic in each neural population: a gradual and slight shift of the 729 

vector angle directed to 90º (i.e., magnitude, cOFC, Figure 9E, regression coefficient, r = 730 

5.31, n = 129, t = 6.04, df = 126, P < 0.001) or 0º (i.e., probability, Figure 9E, VS, r = -731 

3.91, n = 127, t = -4.16, df = 124, P < 0.001) was observed toward the end of cue 732 

presentation. Similar to the VS population, the DS population showed the same 733 

tendency as the angle shift (Figure 9E, DS, r = -5.38, n = 127, t = -3.31, df = 124, P = 734 

0.001). In contrast, a significant shift in vector angle was not observed in the mOFC 735 

population (r = -4.30, n = 120, t = -0.94, df = 117, P = 0.351). The signals observed in 736 

the DS and mOFC populations immediately after cue presentation were relatively close 737 

to expected value; however, they quickly disappeared (Figure 9E). These results 738 

suggest that the neural populations in both the VS and cOFC integrate probability and 739 

magnitude information into expected value immediately after cue presentation, despite 740 

their temporal dynamics being idiosyncratic for each of the two stable population signals. 741 

 742 

Neural population structure with multiplicative integration of probability and 743 

magnitude 744 

We detected the expected value signals in the VS and cOFC as a particular vector angle 745 

defined as a linear combination of probability and magnitude in their regression 746 
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subspace above. This original state space analysis could not differentiate whether neural 747 

populations employ linear or multiplicative integration, although the expected values 748 

assume a multiplicative combination of probability and magnitude, mathematically. Lastly, 749 

we examined whether these neural populations employ multiplicative integration by 750 

performing an additional state space analysis, which determines whether the original 751 

neural population structure, represented as a linear combination of probability and 752 

magnitude, is unaffected by the existence of multiplicative integration (see Methods). 753 

Performance of the additional state space analysis in each population was similar to that 754 

in the original analysis (Figure 10A and 5A). Slight increases in explained variance were 755 

observed for PC1 and PC2 (<10% in the cOFC and DS), suggesting that the neural 756 

populations in the VS and cOFC may be similarly explained by linear and multiplicative 757 

integration. 758 

The neural population structure represented as eigenvectors was consistently 759 

observed in the VS (Figure 10B, left). PC1 and PC2 signaled expected value (left, green) 760 

and risk-return (left, blue), as observed in the original analysis (Figures. 5B). Eigenvector 761 

directions for PC2 were flipped compared to the original ones, possibly because 762 

changes in coordinate transformation by including the expected value subspace can 763 

affect polarity determination in the component plane. Note that eigenvectors evolved 764 

after cue presentation (Figure 10B, labeled with s) and developed toward the end of cue 765 

presentation (Figure 10B, labeled with e) consistent with those in the original analysis 766 

(Figure 9A). In contrast, the predominant eigenvectors were changed in the cOFC 767 

(Figure 10B, right). Eigenvectors for both PC1 and PC2 were directed to the expected 768 

value by complimenting with each other (i.e., 45° and 225°), while the risk-return signal 769 

decreased from PC2 to PC3. This may be because a considerable degree of variance 770 

unexplained in the original analysis was added by including the expected value into the 771 
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regression subspace in the cOFC. These results suggest that using linear or 772 

multiplicative integration resulted in somewhat different stable neural population 773 

structures in the cOFC. 774 

  775 
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Discussion 776 

Extraction of neural population dynamics is a recently developing approach for 777 

understanding computational processes implemented in the domain of cognitive and 778 

motor processing (Churchland et al., 2012; Mante et al., 2013; Chen and Stuphorn, 779 

2015; Murray et al., 2017; Takei et al., 2017). This approach provides a mechanistic 780 

structure of neural population signals regarding temporal aspects, such as oscillatory 781 

activities during reaching (Churchland et al., 2012), co-activation patterns of spinal 782 

neurons and muscles (Takei et al., 2017), and dynamic unfolding of task-related activity 783 

during perceptual decisions (Mante et al., 2013). Here, we found that the VS and cOFC 784 

neural populations maintain the stable expected value signals at the population level 785 

(Figure 5). This is the first mechanistic demonstration of expected value signals 786 

embedded in multiple neural populations when monkeys computed expected values 787 

from numerical symbols cueing the probability and magnitude of rewards. The temporal 788 

dynamics of these two stable neural populations are unique in the aspect of time 789 

constants (Figure 9B-D) and gradual shifts of their structures (Figure 9E). These results 790 

suggest that cOFC and VS compute expected values as distinct, partially overlapping 791 

processes. If monkeys are required to make an economic choice, these expected value 792 

computations must be followed by comparison and choice processes employed by the 793 

same or downstream brain regions (Raghuraman and Padoa-Schioppa, 2014; Chen and 794 

Stuphorn, 2015; Zhou et al., 2019; Yoo and Hayden, 2020). 795 

 796 

Two idiosyncratic expected value signals in the cOFC and VS  797 

State space analysis can detect both stable (Murray et al., 2017) and flexible (Mante et 798 

al., 2013) neural signals at the population level. In the present study, the expected value 799 

signals observed in the VS and cOFC were similarly stable in terms of vector angle 800 
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fluctuation but significantly different in temporal aspects (Figure 9). These signal 801 

properties indicate that information processing in these two brain regions was not the 802 

same. For example, the fast cOFC signal may reflect the calculation of expected values 803 

from the probability and magnitude symbols, such as mental arithmetic, while the slow 804 

VS signal may reflect secondary process to maintain the calculated expected value 805 

information. It is also possible that the fast cOFC signal may have reflected expected 806 

value signals integrated elsewhere (e.g., the amygdala). It is known that the fronto-807 

striatal projection plays a large role in a variety of cognitive functions anatomically 808 

(Alexander et al., 1986; Haber and Knutson, 2010). Since the cOFC projects to the VS, 809 

these two processes must act cooperatively through the cortico-basal ganglia loop. 810 

Indeed, both population signals were similar in terms of the heterogeneous signals 811 

carried by each individual neuron (Figure 2J and K) throughout the task trial (Figures 2N 812 

and O). However, these two expected value signals were unambiguously distinctive in 813 

terms of their time course (Figure 9B-D) and gradual shift (Figure 9E). Therefore, the 814 

cOFC and VS may compute expected values within each cortical and striatal local 815 

circuits in a co-operative manner. 816 

Our results are consistent with those of human imaging studies, in which the activity 817 

in the VS and cOFC represented value-related signals (O'Doherty et al., 2004; Yan et al., 818 

2016; Noonan et al., 2017), but not with the evidence that value signals exist in the 819 

human ventromedial prefrontal cortex (vmPFC) (Tom et al., 2007; Levy and Glimcher, 820 

2012), which includes the mOFC. The reasons for why the mOFC showed very weak 821 

signals related to all aspects of expected value (Figures 2L and 5B) is unclear. One 822 

possibility for this inconsistency may be interspecific differences between human and 823 

non-human primates in the orbitofrontal network (Wallis, 2011). The mOFC is a part of 824 

the vmPFC, but the comparison between human and macaque monkeys remains elusive. 825 
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Another possibility is that the vmPFC is not involved in simple information processing, 826 

such as the association between cues and outcomes, but is involved in more 827 

complicated behavioral contexts for making economic decisions (Yamada et al., 2018) 828 

and setting of mood (Ongur and Price, 2000).  829 

 830 

Fluctuating signals in the DS and mOFC 831 

Fluctuating signals were observed in the DS and mOFC because of the instability or 832 

weakness of the signals (Figure 5). The mOFC signal would not be completely 833 

meaningless, since the PCA performance in the mOFC population was better than in 834 

shuffle controls (Figure 6). However, the signal carried by the mOFC population was 835 

weak (Figure 2L), indicating that the eigenvector fluctuation in the mOFC population 836 

reflects weak signal modulations by probability and magnitude. In contrast, PCA 837 

performance in the fluctuating DS population was equivalent to that in the cOFC 838 

population (Figure 5A), where a stable expected value signal appeared. Moreover, 839 

considerable modulation of DS neural activity was observed in conventional analyses 840 

(Figure 2I and M). Thus, the fluctuating DS signal must reflect a functional role employed 841 

by the DS neural population in detecting and integrating probability and magnitude, 842 

related to some controls of actions (Balleine et al., 2007). The DS signal fluctuated with a 843 

significant shift directing probability, but the initial signal was relatively close to expected 844 

values (Figure 9E, top), similar to the instantaneous expected value signals observed in 845 

the mOFC (Figure 9E, bottom). These observations imply that the expected value 846 

computations might be distributed in the reward circuitry. The consistent direction of the 847 

shift between VS and DS populations implies that striatal neural populations may prefer 848 

probabilistic phenomena (Pouget et al., 2013; Ma and Jazayeri, 2014), whereas the 849 

cOFC neural population may prefer magnitude, which is a continuous variable. 850 
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 851 

Expected value signals and economic choices 852 

Economic choices seem to be composed of a series of processes, such as expected 853 

value computation, followed by value comparison, and then choice among options. 854 

Recent findings suggest that these computations may or may not be discrete/continuous 855 

and could overlap (Chen and Stuphorn, 2015; Yoo and Hayden, 2020). Because we 856 

used a single cue task, the observed signals solely reflect the integration of probability 857 

and magnitude. In the last two decades, neural correlates of probability and/or 858 

magnitude have been extensively reported in a diverse set of brain regions (O'Doherty, 859 

2014), mostly during economic choice tasks without reflecting on their underlying 860 

dynamics. These distributed signals may support the possibility that expected value 861 

computation occurs in wider brain regions as a network, although they are likely to reflect 862 

an array of alternative non-value related processes (O'Doherty, 2014), such as motor 863 

responses and choice processes. Although signals in the DS and mOFC fluctuated 864 

(Figure 5B), they were relatively close to expected values at the beginning of cue 865 

presentation (Figure 9A and E), suggesting that widespread evolution of expected value 866 

signals might occur through a reward circuitry at the beginning when monkeys process 867 

the integration. 868 

 869 

Significance of population signals revealed by our state space analysis 870 

State space analysis reveals temporal structures of neural populations in multi-871 

dimensional space for both cognitive (Murray et al., 2017) and motor tasks (Churchland 872 

et al., 2012; Takei et al., 2017). However, interpretation of the extracted population 873 

structure depends on the method used (Elsayed and Cunningham, 2017). In the present 874 

study, we did not seek to determine the population structure as a trajectory in neural 875 
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state space, as performed in previous studies. Instead, we aimed to detect the main 876 

features underscoring the population structure in the space of probability and magnitude 877 

that compose expected value. For this purpose, stability of the regression subspace is 878 

critical. We elaborately projected neural firing rates into the regression subspace by 879 

preparing a completely orthogonal data matrix in our task design. Moreover, two shuffled 880 

controls revealed the significance of our state space analysis. In the full-shuffled control, 881 

eigenvectors directed all dictions, because neural modulation structures were entirely 882 

destroyed (Fig. 5J). In the partially-shuffled control (condition 1), maintained temporal 883 

structure occasionally yields some subtle modulation structures through a trial because 884 

of the random allocation of neural activity to probability and magnitude (Fig. 5F). Thus, 885 

our state space analysis is informative on whether and how expected value signals are 886 

composed of the probability and magnitude moment-by-moment as a series of 887 

eigenvectors. 888 

 889 

Conclusions 890 

A dynamic integrative process of probability and magnitude is the basis for the 891 

computation of expected values in particular brain regions, i.e., the cOFC and VS. The 892 

existence of neural population signals for expected values is consistent with the 893 

expected value theory, whereas the co-existence of risk signals, which has been shown 894 

(O'Neill and Schultz, 2010), with returns (Fig. 3 and 5B) may reflect a behavioral bias for 895 

risk-preferences, a phenomenon observed across species (Stephens and Krebs, 1986; 896 

Yamada et al., 2013a). The sharp and slow evolution of expected value signals in the 897 

cOFC and VS, respectively, suggest that each brain region has a unique time constant in 898 

the expected value computation. When monkeys perceive probability and magnitude 899 

from numerical symbols, learned expected values may be computed and recalled 900 
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through the OFC-striatum circuit (Hirokawa et al., 2019), along with other networks that 901 

may also instantaneously process this computation. Our results indicate that the 902 

expected value signals observed in population ensemble activities are compatible with 903 

the framework of dynamic systems (Churchland et al., 2012; Mante et al., 2013). 904 

  905 
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Figure legends 1041 

Figure 1. Task, behavior, and basic firing properties of neurons. 1042 

(A) Sequence of events during the single cue task. A single visual pie chart having green 1043 

and blue pie segments was presented to the monkeys. (B) Choice task. Two visually 1044 

displayed pie charts were presented to the monkeys at left and right sides of the center. 1045 

After visual fixation of the re-appeared central target, the central fixation target 1046 

disappeared, and monkeys chose either of the targets by fixating on it. A block of the 1047 

choice trials was sometimes interleaved between the single cue trial blocks. During the 1048 

choice trials, neural activity was not recorded. (C) Percentages of right target choice 1049 

during the choice task plotted against the expected values (EVs) of the left and right 1050 

target options. Aggregated choice data was used. (D) Pseudo r-squared estimated in the 1051 

three behavioral models. M1: number of pie segments. M2: probability and magnitude. 1052 

M3: expected values. (E) Percentage of right target choices estimated in each recording 1053 

session (gray lines) plotted against the difference in expected values (right minus left). 1054 

The choice data were segmented by seven conditions of the difference in the expected 1055 

values: -1.0 ~ -0.5, -0.5 ~ -0.3, -0.3 ~ -0.1, -0.1 ~ 0.1, 0.1 ~ 0.3, 0.3 ~ 0.5, and 0.5 ~1.0. 1056 

Black plots indicate mean. (F) Reaction time to choose a target option plotted against the 1057 

difference in expected values (right minus left) as -1.0 ~ -0.5, -0.5 ~ -0.3, -0.3 ~ -0.1, -0.1 1058 

~ 0.1, 0.1 ~ 0.3, 0.3 ~ 0.5, and 0.5 ~1.0. (G) An illustration of neural recording areas 1059 

based on sagittal MR images. Neurons were recorded from the medial (mOFC, 14O, 1060 

orbital part of area 14) and central parts of the orbitofrontal cortex (cOFC, 13M, medial 1061 

part of area 13) at the A31-A34 anterior-posterior (A-P) level. Neurons were also 1062 

recorded from the dorsal and ventral striatum (DS and VS, respectively) at the A21-A27 1063 

level. The white scale bar indicates 5 mm. (H) Color map histograms of neuronal 1064 

activities recorded from the four brain regions. Each horizontal line indicates neural 1065 
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activity aligned to cue onset averaged for all lottery conditions. Neuronal firing rates were 1066 

normalized to the peak activity. (I) Percentages of neurons showing an activity peak 1067 

during cue presentation. (J) Box plots of peak activity latency after cue presentation. (K) 1068 

Firing rates of peak activity observed during cue presentation. (L) Box plots of half-peak 1069 

width, indicating the phasic nature of activity changes. (M) Box plots of baseline firing 1070 

rates during the 1 second time period before the onset of the central fixation target. In J-1071 

M, asterisks indicate statistical significance among two neural populations using 1072 

Wilcoxon rank-sum test with Bonferroni correction for multiple comparisons (**, *, and § 1073 

indicate statistical significance at P < 0.01, P < 0.05, and 0.05 < P < 0.06 (close to 1074 

significance), respectively). 1075 

 1076 

Figure 2. Expected value signals detected by conventional analyses. 1077 

(A) Example activity histogram of a DS neuron modulated by expected value during the 1078 

single cue task. The activity aligned to the cue onset is represented for three different 1079 

levels of probability (0.1-0.3, 0.4-0.7, 0.8-1.0) and magnitude (0.1-0.3 mL, 0.4-0.7 mL, 1080 

0.8-1.0 mL) of rewards. Gray hatched time windows indicate the 1 s time window used to 1081 

estimate the neural firing rates shown in B. The neural modulation pattern was defined 1082 

as the Expected value type based on all three analyses (linear regression, AIC-based 1083 

model selection, and BIC-based model selection). Regression coefficients for probability 1084 

and magnitude were 6.17 (P < 0.001) and 2.54 (P = 0.007), respectively. (B) An activity 1085 

plot of the DS neuron during the 1 s time window shown in A against the probability and 1086 

magnitude of rewards. (C-D) Same as A-B, but for a VS neuron defined as the Expected 1087 

value type based on all three analyses. Regression coefficients for probability and 1088 

magnitude were 7.14 (P < 0.001) and 6.71 (P < 0.001), respectively. (E-F) Same as A-B, 1089 

but for a cOFC neuron defined as the Expected value type based on all three analyses. 1090 



 

 

47 

 

Regression coefficients for probability and magnitude were 8.55 (P < 0.001) and 11.1 (P 1091 

< 0.001), respectively. (G-H) Same as A-B, but for a mOFC neuron. The neural 1092 

modulation pattern was defined as the Expected value type based on the AIC-based 1093 

model selection, as the Probability type based on the linear regression, and as the non-1094 

modulated type based on the BIC-based model selection. Regression coefficients for 1095 

probability and magnitude were 1.76 (P = 0.032) and 0.50 (P = 0.54), respectively. (I-L) 1096 

Plots of regression coefficients for the probability and magnitude of rewards estimated 1097 

for all neurons in the DS (I), VS (J), cOFC (K), and mOFC (L). Filled colors indicate the 1098 

neural modulation pattern classified by the BIC-based model selection. P: Probability 1099 

type, M: Magnitude type, EV: Expected value type, and R-R: Risk-Return type. The non-1100 

modulated type is indicated by the small open circle. (M-P) Percentages of neural 1101 

modulation types based on BIC-based model selection through cue presentation in the 1102 

DS (M), VS (N), cOFC (O), and mOFC (P). The analysis window size is 0.1 s (left), 0.05 1103 

s (middle), and 0.02 s (right), respectively.  1104 

 1105 

Figure 3. Risk-return signals detected by conventional analyses. 1106 

(A) Example activity histogram of a VS neuron modulated by both probability and 1107 

magnitude of rewards with opposite signs (i.e., negative bp and positive bm). The activity 1108 

aligned to cue onset is represented for three different levels of probability (0.1-0.3, 0.4-1109 

0.7, 0.8-1.0) and magnitude (0.1-0.3 mL, 0.4-0.7 mL, 0.8-1.0 mL) of rewards. Gray 1110 

hatched areas indicate a 1 s time window to estimate the neural firing rates shown in B. 1111 

The neural modulation pattern was defined as the Risk-Return type based on the linear 1112 

regression and AIC-based model selection, and as the Magnitude type based on the 1113 

BIC-based model selection. Regression coefficients were -2.44 (P = 0.039) and 4.86 (P 1114 

< 0.001) for probability and magnitude, respectively. (B) Activity plots of the VS neuron 1115 
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during the 1 s time window shown in A against the probability and magnitude of rewards.  1116 

(C-D) Same as A-B, but for a cOFC neuron. The neural modulation type was defined as 1117 

the Risk-Return type based on all three analyses. Regression coefficients for probability 1118 

and magnitude were -6.65 (P < 0.001) and 3.82 (P < 0.001), respectively. 1119 

 1120 

Figure 4. Schematic depictions for the analysis of neural population dynamics 1121 

using PCA. 1122 

(A) Time series of a neural population activity projected into a regression subspace 1123 

composed of probability and magnitude. A series of eigenvectors was obtained by 1124 

applying PCA once to each of the four neural populations. PC1 and PC2 indicate the first 1125 

and second principal components, respectively. The number of eigenvectors obtained by 1126 

PCA was 2.7 s divided by the analysis window size for the probability and magnitude; 27, 1127 

54, and 135 eigenvectors in 0.1, 0.05, or 0.02 s time window, respectively. (B) Examples 1128 

of eigenvectors at time of i th analysis window for probability and magnitude, whose 1129 

direction indicates a signal characteristic at the time represented on the population 1130 

ensemble activity. EV: expected value (45º, 225º), M: magnitude (90º, 270º), P: probability 1131 

(0º,180º), R-R: risk-return (135º, 315º). (C) Characteristics of the eigenvectors evaluated 1132 

quantitatively; Angle: vector angle from horizontal axis taken from 0º to 360º. Size: 1133 

eigenvector length. Deviation: difference between vectors. 1134 

 1135 

Figure 5. Neural populations provide stable expected value signals in the VS and 1136 

cOFC. 1137 

(A) Cumulative variance explained by PCA in the four neural populations. Dashed line 1138 

indicates percentages of variances explained by PC1 and PC2 in each neural population. 1139 

(B) Overlay plots of series of eigenvectors for PC1 and PC2 in the four neural 1140 
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populations. a.u. indicates arbitrary unit. (C) Box plots of vector deviation from the mean 1141 

vector estimated in each neural population for PC1 (left) and PC2 (right). (D) Box plots of 1142 

vector size estimated in each neural population for PC1 (left) and PC2 (right). (E-H) 1143 

Same as A-D, but for the PCA under the shuffled condition 1. See Methods for details. 1144 

(I-L) Same as A-D, but for the PCA under the shuffled condition 2. In C-D, G-H, and K-L, 1145 

asterisks indicate statistical significance between two populations using Wilcoxon rank-1146 

sum test with Bonferroni correction for multiple comparisons (**, *, and § indicates 1147 

statistical significance at P < 0.01, P < 0.05, and 0.05 < P < 0.06 (close to significance), 1148 

respectively). The results are shown by using 0.1 s analysis window. 1149 

 1150 

Figure 6. Probability density of explained variances by PCA in shuffled controls. 1151 

(A) Probability density of variances explained by PCA for PC1 to PC4 under the shuffled 1152 

condition 1 (see Methods for details). The probability density was estimated with 1,000 1153 

repeats of the shuffle in each neural population. (B) Probability density of variance 1154 

explained by PCA for PC1 to PC4 under the shuffled condition 2 (see Methods for 1155 

details). The probability density was estimated with 1,000 repeats of the shuffle in each 1156 

neural population. In A and B, dashed lines indicate the variances explained by PCA in 1157 

each of the four neural populations without the shuffle. The results are shown by using 1158 

0.1 s analysis window. 1159 

 1160 

Figure 7. Effects of the analysis window size on the PCA. 1161 

(A) Cumulative variances explained by PCA in the four neural populations. Dashed lines 1162 

indicate the percentages of variance explained by PC1 and PC2 in each neural 1163 

population. The size of the analysis window is 0.1, 0.05, and 0.02 s, respectively. (B) 1164 
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Overlay plots of series of eigenvectors in the four neural populations. Eigenvectors for 1165 

PC1 and PC2 are shown. The analysis window size is 0.1, 0.05, and 0.02 s, respectively. 1166 

a.u. indicates arbitrary units. (C) Box plots of vector deviation from the mean vector 1167 

estimated in each neural population are shown for the PC1. (D) Same as (C), but for the 1168 

PC2. (E) Box plots of vector size estimated in each neural population are shown for the 1169 

PC1. (F) Same as (E), but for the PC2. In C-F, asterisks indicate statistical significance 1170 

between two neural populations using Wilcoxon rank-sum test with Bonferroni correction 1171 

for multiple comparisons (**, *, and § indicate statistical significance at P < 0.01, P < 0.05, 1172 

and 0.05 < P < 0.06 (close to significance), respectively). 1173 

 1174 

Figure 8. Neural modulation patterns as regression coefficients in four neural 1175 

populations 1176 

Plots of regression coefficients for the probability and magnitude of rewards estimated 1177 

for all neurons in the DS, VS, cOFC, and mOFC. Regression coefficients when using a 1178 

0.1 s analysis window are shown every 0.5 s (0-0.1 s, 0.5-0.6 s, 1.0-1.1 s, 1.5-1.6 s, 2.0-1179 

2.1 s, and 2.5-2.6 s). 1180 

 1181 

Figure 9. Gradual and sharp evolutions of neural population signals in the VS and 1182 

cOFC. 1183 

(A) Plots of eigenvector time series for PC1 in 0.02 s analysis windows shown in a 1184 

sequential order during 1 s after cue onset. Horizontal and vertical scale bars indicate 1185 

the eigenvectors for probability and magnitude in arbitrary units, respectively. (B) Plots of 1186 

the time series of vector size during 1 s after cue onset. Horizontal dashed lines indicate 1187 
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three standard deviations of the mean vector size during the baseline period, a 0.3 s 1188 

time period before cue onset. Solid colored lines indicate interpolated lines using a cubic 1189 

spline function to provide a resolution of 0.005 s. Vertical dashed lines indicate the onset 1190 

(left) and peak (right) latencies for changes in vector sizes. (C) Probability densities of 1191 

onset latencies for the four neural population signals. Probability densities were 1192 

estimated using bootstrap re-samplings. Vertical dashed lines indicate means. Horizontal 1193 

solid lines indicate bootstrap standard errors. (D) Same as C, but for peak latencies of 1194 

the four neural population signals. (E) Plots of time series of vector angle from the 1195 

detected onset to the onset of outcome feedback. Solid black lines indicate regression 1196 

slopes. In C and D, asterisks indicate statistical significance estimated using bootstrap 1197 

re-samplings (*** and * indicate statistical significance at P < 0.001 and P < 0.05, 1198 

respectively). In E, triple asterisks indicate a statistical significance of the regression 1199 

slope at P < 0.001. Data for PC2 is not shown. 1200 

 1201 

Figure 10. Neural population structures of the VS and cOFC with multiplicative 1202 

integration of probability and magnitude 1203 

(A) Cumulative variance explained by PCA in the four neural populations when the state 1204 

space analysis was performed with the expected value into the regression matrix. 1205 

Dashed line indicates the percentage of variances explained by PC1 and PC2 in each 1206 

neural population. (B) Plots of time series of eigenvectors connected with lines for PC1 1207 

to PC3 in the VS and cOFC. Eigenvectors during cue presentation were presented from 1208 

the beginning to the end using a 0.1 s analysis window. Plots at the beginning and end 1209 

are filled in black and labeled as start (s) and end (e), respectively. a.u. indicates 1210 

arbitrary unit. 1211 






















