About
7
Publications
991
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13
Citations
Introduction
Current institution
Publications
Publications (7)
This work examines the evaporation and condensation phenomena at small scales, focusing on how surface deformations affect mass and heat transfer under temperature-driven and pressure-driven conditions. The rarefaction effects arising at these scales cannot be accurately captured by the classical continuum theories such as Navier–Stokes–Fourier equ...
In this work, we explore the method of fundamental solutions (MFS) for solving the regularized 13-moment (R13) equations for rarefied monatomic gases. While previous applications of the MFS in rarefied gas flows relied on problem-specific fundamental solutions, we propose a generic approach that systematically computes the fundamental solutions for...
The well-known Navier-Stokes-Fourier equations of fluid dynamics are, in general, not adequate for describing rarefied gas flows. Moreover, while the Stokes equations—a simplified version of the Navier-Stokes-Fourier equations—are effective in modeling slow and steady liquid flow past a sphere, they fail to yield a nontrivial solution to the proble...
In the realm of fluid dynamics, a curious and counterintuitive phenomenon is Stokes' paradox. While Stokes equations -- used for modeling slow and steady flows -- lead to a meaningful solution to the problem of slow and steady flow past a sphere, they fail to yield a non-trivial solution to the problem of slow and steady flow past an infinitely lon...
The inability of the Navier-Stokes-Fourier equations to capture rarefaction effects motivates us to adopt the extended hydrodynamic equations. In the present work, a hydrodynamic model, which consists of the conservation laws closed with the recently propounded coupled constitutive relations (CCR), is utilized. This model is referred to as the CCR...
The inability of the Navier-Stokes-Fourier equations to capture rarefaction effects motivates us to adopt the extended hydrodynamic equations. In the present work, a hydrodynamic model comprised of the conservation laws closed with the recently propounded coupled constitutive relations (CCR) -- referred to as the CCR model -- adequate for describin...
Network
Cited