Effect of mulching on soil organic carbon sequestration in forage crops for mitigating climate change

Himangshu Das¹, C. K. Kundu¹, P. K. Bandyopadhyay², P. Bandopadhyay¹, A. Mukherjee³ & S. Sarkar³ ¹Department of Agronomy, ²Department of Agril. Chemistry & Soil Sc., ³Department of Agril. Meteorology & Physics, Bidhan Chandra Krishi Viswavidyalaya, Nadia, West Bengal-741252

Today's changing lifestyle has a huge impact on the environment and also has an effect on climate change.
Agriculture has a dramatic capacity to sequester carbon dioxide and worldwide soil is one of the largest reservoirs, where carbon could be restored.

INTRODUCTION

RESULTS

Fig: Comparison between the carbon present before cultivation and after harvest (mean value) of different forage crops & mulching (error bars indicate standard error)

□ Farming forage crops has a dramatic capacity to sequester CO2 (Sundaram *et al.*, 2012) from atmosphere.

□ Mulching is one of the most sustainable approaches in sequestering C and has potentiality of reducing greenhouse gas emissions from soil by increasing its soil organic matter content (Jordán *et al.*, 2010).

□ Hence, in the present study cultivation of forage crops was assessed for soil C sequestration in different mulching for mitigating climate change.

MATERIALS & METHODS

Location: Central Research Farm, Gayeshpur, BCKV. Soil: Sandy loam soil and neutral in nature. Year of study: Kharif 2010 to summer 2013

Soil o 0 1 0 1		2 -				
Brachiaria Panic brizantha maxin Forage	cum Setaria num anceps crops	No mulo	ch Soil mulch Mulching	Live mulch		
Table 1: Influence of different forage crops and mulching on carbon stock and carbon sequestration rate						
Crops	Mulching					
	No mulching	Soil mulching	Live mulching	, Mean		
Carbon stock (Mg/ha)						
Brachiaria brizantha	21.81	31.99	35.54	29.78		
Panicum maximum	27.22	28.20	32.33	29.25		
Setaria anceps	29.73	32.20	39.81	33.91		
Mean	26.25	30.80	35.89			
	Crops	Mulching	Crop x Mulching			
CD at 5%	3.77	3.82	NS			
Carbon sequestration rate (Mg/ha/year)						
Brachiaria brizantha	1.83	5.22	6.41	4.49		
Panicum maximum	3.63	3.96	5.34	4.31		
Setaria anceps	4.47	5.29	7.83	5.86		
Mean	3.31	4.83	6.52			
	Crops	Mulching	Crop x Mulching			
CD at 5%	1.26	1.27	NS			

Design: Split-plot with three replications. Main plot treatments (Perennial forage crops): P1- *Brachiaria brizantha*, P2- *Panicum maximum* and P3- *Setaria anceps*

Sub plot treatments (Mulching):

M1- no mulch, M2- soil mulch and M3- live mulching with legumes. In live mulch plots rice bean, berseem and cowpea were grown in *Kharif, Rabi* and Summer seasons respectively.

Calculation:

Carbon stock (Mg/ha) = [Area (m²) x SOC (%) x Soil Bulk Density (g/cc) x Soil Sampling Depth (m)]/100. C sequestration rate (Mg/ha/year) = [Final SOC (kg/ha) - Initial SOC (kg/ha)] /Years. Table 2: Variation in SOC content across treatments and cropping systems in Gayeshpur, Nadia, West Bengal (Mandal *et al.*, 2007)

Cropping system	Carbon stock (Mg/ha)		Carbon sequestered (Mg /ha)	
	NPK	NPK+FYM/	NPK	NPK+FYM/
		compost		compost
Rice-Mustard-Sesamum	39.17	40.18	1.88	2.89
Rice-Fallow-Berseem	31.68	36.14	1.23	5.69

CONCLUSIONS

□ Agricultural soils and land studied in the present research has the impending nature to restore carbon and in the study area incorporation of live mulching with legumes in *Setaria anceps* resulted in highest SOC stock which in turn support higher carbon sequestration rate in experimental region.

□ Rates of carbon gain based on crop management practices are expected to provide an accurate basis for carbon sequestration initiatives in climate change mitigation.

References:

Jordán, A., Zavala, L.M. and Gil, J. 2010. Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. Catena. 81: 77-85. Mandal, B., Majumder, B., Bandyopadhyay, P.K., Hazra, G.C., Gangopadhyayw, A., Samantaray, R.N., Mishra, A.K., Chaudhury, J., Saha, M.N. and Kundu, S. 2007. The potential of cropping systems and soil amendments for carbon sequestration in soils under long-term experiments in subtropical India. Global Change Biology. 13: 357–369.

Sundaram, S.M., Sivakumar, T., Sankaran, V.M., Rajkumar, J.S.I. and Nishanth, B. 2012. Farming forage crops for improving soil organic carbon stocks in agricultural lands. International Journal of Research in Biological Sciences. 2: 116-119.

Presented in the "National Symposium on Climate Resilient Forage Production and its Utilization – 2014" CHRD, BCKV, during 13-14 November, 2014