Hilal Tayara

Hilal Tayara
  • PhD
  • Jeonbuk National University

About

132
Publications
24,995
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,912
Citations
Current institution
Jeonbuk National University
Additional affiliations
March 2019 - present
Jeonbuk National University
Position
  • PostDoc Position
March 2017 - February 2018
Jeonbuk National University
Position
  • Lecturer
Education
September 2015 - February 2019
Jeonbuk National University
Field of study
  • Information and Electronics Engineering
September 2013 - August 2015
Jeonbuk National University
Field of study
  • Information and Electronics Enginnering
September 2003 - August 2008
University of Aleppo
Field of study
  • Computer Engineering

Publications

Publications (132)
Article
Full-text available
Anomalous DNA methylation has wide-ranging implications, spanning from neurological disorders to cancer and cardiovascular complications. Current methods for single-cell DNA methylation analysis face limitations in coverage, leading to information loss and hampering our understanding of disease associations. The primary goal of this study is the im...
Article
Full-text available
Two‐dimensional (2D) lead halide perovskites (LHPs) have captured a range of interest for the advancement of state‐of‐the‐art optoelectronic devices, highly efficient solar cells, next‐generation energy harvesting technologies owing to their hydrophobic nature, layered configuration, and remarkable chemical/environmental stabilities. These 2D LHPs...
Article
Full-text available
Highway accidents pose serious challenges and safety risks, often resulting in severe injuries and fatalities due to delayed detection and response. Traditional accident management methods heavily rely on manual reporting, which can be sometime inefficient and error-prone resulting in valuable life loss. This paper proposes a novel framework that i...
Article
Full-text available
With the rising incidence of traffic accidents and growing environmental concerns, the demand for advanced systems to ensure traffic and environmental safety has become increasingly urgent. This paper introduces an automated highway safety management framework that integrates computer vision and natural language processing for real-time monitoring,...
Article
Multiple drugs have gained attention for the treatment of complex diseases. However, while numerous drugs offer benefits, they also cause undesirable side effects. Accurate prediction of drug-drug interactions is crucial in drug discovery and safety research. Therefore, an efficient and reliable computational method is necessary for predicting drug...
Article
Full-text available
Antimicrobial peptides (AMPs) are a promising class of antimicrobial drugs due to their broad-spectrum activity against microorganisms. However, their clinical application is limited by their potential to cause hemolysis, the destruction of red blood cells. To address this issue, we propose a deep learning model based on convolutional neural networ...
Article
Due to their safety, high activity, and plentiful sources, antioxidant peptides, particularly those produced from food, are thought to be prospective competitors to synthetic antioxidants in the fight against free radical-mediated illnesses. The lengthy and laborious trial-and-error method for identifying antioxidative peptides (AOP) has raised int...
Article
Full-text available
The flow of potassium ions through cell membranes plays a crucial role in facilitating various cell processes such as hormone secretion, epithelial function, maintenance of electrochemical gradients, and electrical impulse formation. Potassium ion inhibitors are considered promising alternatives in treating cancer, muscle weakness, renal dysfunctio...
Article
Full-text available
Targeting epidermal growth factor receptor (EGFR) mutants is a promising strategy for treating non-small cell lung cancer (NSCLC). This study focused on the computational identification and characterization of potential EGFR mutant-selective inhibitors using pharmacophore design and validation by deep learning, virtual screening, ADMET (Absorption,...
Article
Full-text available
Post-translational modifications (PTMs) are pivotal in modulating protein functions and influencing cellular processes like signaling, localization, and degradation. The complexity of these biological interactions necessitates efficient predictive methodologies. In this work, we introduce PTMGPT2, an interpretable protein language model that utiliz...
Article
The emergence of immune-evasive mutations in the SARS-CoV-2 spike protein is consistently challenging existing vaccines and therapies, making precise prediction of their escape potential a critical imperative. Artificial Intelligence(AI) holds great promise for deciphering the intricate language of protein. Here, we employed a Generative Adversaria...
Preprint
Full-text available
This work introduces AntiCPs-CompML, a novel Machine learning framework for the rapid identification of anti-coronavirus peptides (ACPs). ACPs, acting as viral shields, offer immense potential for COVID-19 therapeutics. However, traditional laboratory methods for ACP discovery are slow and expensive. AntiCPs-CompML addresses this challenge by utili...
Article
Full-text available
Accurate ligand binding site prediction (LBSP) within proteins is essential for drug discovery. We developed ProteinUNetResNetV2.0 (PUResNetV2.0), leveraging sparse representation of protein structures to improve LBSP accuracy. Our training dataset included protein complexes from 4729 protein families. Evaluations on benchmark datasets showed that...
Article
Full-text available
In this study, we present an innovative approach to improve the prediction of protein–protein interactions (PPIs) through the utilization of an ensemble classifier, specifically focusing on distinguishing between native and non-native interactions. Leveraging the strengths of various base models, including random forest, gradient boosting, extreme...
Conference Paper
Full-text available
> Cancer is the second-leading cause of death worldwide, and therapeutic peptides that target and destroy cancer cells have received a great deal of interest in recent years. Traditional wet experiments are expensive and inefficient for identifying novel anticancer peptides; therefore, the development of an effective computational approach is essen...
Article
Full-text available
Cytochrome P450 enzymes are a superfamily of enzymes responsible for the metabolism of a variety of medicines and xenobiotics. Among the Cytochrome P450 family, five isozymes that include 1A2, 2C9, 2C19, 2D6, and 3A4 are most important for the metabolism of xenobiotics. Inhibition of any of these five CYP isozymes causes drug-drug interactions with...
Preprint
Full-text available
Post-translational modifications (PTMs) are pivotal in modulating protein functions, influencing key cellular processes such as signaling, localization, and protein degradation. The complexity of these biological interactions necessitates efficient predictive methodologies. In this work, we introduce PTMGPT2, an interpretable protein language model...
Article
Full-text available
Cruzipain inhibitors are required after medications to treat Chagas disease because of the need for safer, more effective treatments. Trypanosoma cruzi is the source of cruzipain, a crucial cysteine protease that has driven interest in using computational methods to create more effective inhibitors. We employed a 3D-QSAR model, using a dataset of 3...
Article
Full-text available
Remarkable and intelligent perovskite solar cells (PSCs) have attracted substantial attention from researchers and are undergoing rapid advancements in photovoltaic technology. These developments aim to create highly efficient energy devices with fewer dominant recombination losses within the realm of third-generation solar cells. Diverse Machine l...
Article
Full-text available
Computational methods play a pivotal role in the pursuit of efficient drug discovery, enabling the rapid assessment of compound properties before costly and time-consuming laboratory experiments. With the advent of technology and large data availability, machine and deep learning methods have proven efficient in predicting molecular solubility. Hig...
Article
30.0 Rapid and accurate prediction of bandgaps and efficiency of perovskite solar cells is a crucial challenge for various solar cell applications. Existing theoretical and experimental methods often accurately measure these parameters; however, these methods are costly and time‐consuming. Machine learning‐based approaches offer a promising and com...
Article
Background and Objective: Gene promoters play a crucial role in regulating gene transcription by serving as DNA regulatory elements near transcription start sites. Despite numerous approaches, including alignment signal and content-based methods for promoter prediction, accurately identifying promoters remains challenging due to the lack of explici...
Article
Full-text available
Motivation: The origins of replication sites (ORIs) are precise regions inside the DNA sequence where the replication process begins. These locations are critical for preserving the genome's integrity during cell division and guaranteeing the faithful transfer of genetic data from generation to generation. The advent of experimental techniques has...
Article
Full-text available
Background One of the problems in drug discovery that can be solved by artificial intelligence is toxicity prediction. In drug-induced immune thrombocytopenia, toxicity can arise in patients after five to ten days by significant bleeding caused by drugdependent antibodies. In clinical trials, when this condition occurs, all the drugs consumed by pa...
Article
Absorption is an important area of research in pharmacochemistry and drug development, because the drug has to be absorbed before any drug effects can occur. Furthermore, the ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profile of drugs can be directly and considerably altered by modulating factors affecting absorption. Man...
Article
Enhancers are DNA regions that are responsible for controlling the expression of genes. Enhancers are usually found upstream or downstream of a gene, or even inside a gene’s intron region, but are normally located at a distant location from the genes they control. By integrating experimental and computational approaches, it is possible to uncover e...
Article
Full-text available
Motivation: The investigation of DNA methylation can shed light on the processes underlying human well-being and help determine overall human health. However, insufficient coverage makes it challenging to implement single-stranded DNA methylation sequencing technologies, highlighting the need for an efficient prediction model. Models are required...
Article
MicroRNAs (miRNAs) are small non-coding RNA molecules that play a crucial role in regulating gene expression at the post-transcriptional level by binding to potential target sites of messenger RNAs (mRNAs), facilitated by the Argonaute family of proteins. Selecting the conservative candidate target sites (CTS) is a challenging step, considering tha...
Article
The cytokine interleukin-4 (IL-4) plays an important role in our immune system. IL-4 leads the way in the differentiation of naïve T-helper 0 cells (Th0) to T-helper 2 cells (Th2). The Th2 responses are characterized by the release of IL-4. CD4+ T cells produce the cytokine IL-4 in response to exogenous parasites. IL-4 has a critical role in the gr...
Article
5-methylcytosine (m5C) is indeed a critical post-transcriptional alteration that is widely present in various kinds of RNAs and is crucial to the fundamental biological processes. By correctly identifying the m5C-methylation sites on RNA, clinicians can more clearly comprehend the precise function of these m5C-sites in different biological processe...
Article
Full-text available
Drug metabolism and excretion play crucial roles in determining the efficacy and safety of drug candidates, and predicting these processes is an essential part of drug discovery and development. In recent years, artificial intelligence (AI) has emerged as a powerful tool for predicting drug metabolism and excretion, offering the potential to speed...
Article
Motivation: Viruses have coevolved with their hosts for over millions of years and learned to escape the host's immune system. Although not all genetic changes in viruses are deleterious, some significant mutations lead to the escape of neutralizing antibodies and weaken the immune system, which increases infectivity and transmissibility, thereby...
Article
Full-text available
The sigma (σ) factor of RNA holoenzymes is essential for identifying and binding to promoter regions during gene transcription in prokaryotes. σ54 promoters carried out various ancillary methods and environmentally responsive procedures; therefore, it is crucial to accurately identify σ54 promoter sequences to comprehend the underlying process of g...
Article
Full-text available
Drug distribution is an important process in pharmacokinetics because it has the potential to influence both the amount of medicine reaching the active sites and the effectiveness as well as safety of the drug. The main causes of 90% of drug failures in clinical development are lack of efficacy and uncontrolled toxicity. In recent years, several ad...
Article
Full-text available
Drug discovery (DD) research is aimed at the discovery of new medications. Solubility is an important physicochemical property in drug development. Active pharmaceutical ingredients (APIs) are essential substances for high drug efficacy. During DD research, aqueous solubility (AS) is a key physicochemical attribute required for API characterization...
Article
Full-text available
Organ toxicity caused by chemicals is a serious problem in the creation and usage of chemicals such as medications, insecticides, chemical products, and cosmetics. In recent decades, the initiation and development of chemical-induced organ damage have been related to mitochondrial dysfunction, among several adverse effects. Recently, many drugs, fo...
Article
Full-text available
Lysine crotonylation (Kcr) is one of the most important post-translational modifications (PTMs) that is widely detected in both histone and non-histone proteins. In fact, Kcr is reported to be involved in various biological processes, such as metabolism and cell differentiation. However, the available experimental methods for Kcr site identificatio...
Article
Full-text available
The increased interest in phages as antibacterial agents has resulted in a rise in the number of sequenced phage genomes, necessitating the development of user-friendly bioinformatics tools for genome annotation. A promoter is a DNA sequence that is used in the annotation of phage genomes. In this study we proposed a two layer model called “iProm-p...
Conference Paper
Full-text available
Viral escape analysis has become significantly important area of research due to an unpredictable nature of frequent gene mutations in viruses. Mutation in genes of virus is posing frequent threats to humanity from time to time as the drug or vaccines developed for virus becomes less effective against the mutated viruses. In this study, we proposed...
Article
Full-text available
The basilar artery, which is the core of the posterior circulation, supplies blood to the brainstem and cerebellum. When basilar artery blood circulation is impaired, several symptoms can occur. In addition, the bending of the basilar artery causes stroke and infarction. Therefore, an image processing method for analyzing the bending degree of the...
Article
Full-text available
Drug discovery, which aids to identify potential novel treatments, entails a broad range of fields of science, including chemistry, pharmacology, and biology. In the early stages of drug development, predicting drug–target affinity is crucial. The proposed model, the prediction of drug–target affinity using a convolution model with self-attention (...
Article
Full-text available
N6-methyladenine (6mA) has been recognized as a key epigenetic alteration that affects a variety of biological activities. Precise prediction of 6mA modification sites is essential for understanding the logical consistency of biological activity. There are various experimental methods for identifying 6mA modification sites, but in silico prediction...
Article
N6-methyladenosine (m6A) is a common post-transcriptional alteration that plays a critical function in a variety of biological processes. Although experimental approaches for identifying m6A sites have been developed and deployed, they are currently expensive for transcriptome-wide m6A identification. Some computational strategies for identifying m...
Article
Full-text available
Protein–protein interactions (PPIs) are responsible for various essential biological processes. This information can help develop a new drug against diseases. Various experimental methods have been employed for this purpose; however, their application is limited by their cost and time consumption. Alternatively, computational methods are considered...
Article
Motivation DNA N6-methyladenine (6mA) has been demonstrated to have an essential function in epigenetic modification in eukaryotic species in recent research. 6mA has been linked to various biological processes. It’s critical to create a new algorithm that can rapidly and reliably detect 6mA sites in genomes to investigate their biological roles. T...
Article
Protein methylation is one of the most prominent posttranslation modifications that essentially regulates several biological processes in eukaryotes. Therefore, identification of the arginine methylation site is crucial in deciphering its characteristics and functions in cell biology, disease mechanisms, and guided drug development. The computation...
Article
Full-text available
Identification of ionic liquids with low toxicity is paramount for applications in various domains. Traditional approaches used for determining the toxicity of ionic liquids are often expensive, and can be labor intensive and time consuming. In order to mitigate these limitations, researchers have resorted to using computational models. This work p...
Article
Full-text available
A promoter is a short DNA sequence near the start codon, responsible for initiating the transcription of a specific gene in the genome. The accurate recognition of promoters is important for achieving a better understanding of transcriptional regulation. Because of their importance in the process of biological transcriptional regulation, there is a...
Article
Full-text available
Respiratory toxicity is a serious public health concern caused by the adverse effects of drugs or chemicals, so the pharmaceutical and chemical industries demand reliable and precise computational tools to assess the respiratory toxicity of compounds. The purpose of this study is to develop quantitative structure-activity relationship models for a...
Article
p>Background: A promoter is a DNA regulatory region typically found upstream of a gene that plays a significant role in gene transcription regulation. Due to their function in transcription initiation, sigma (σ) promoter sequences in bacterial genomes are important. σ70 is among the most notable sigma factors. Therefore, the precise recognition of...
Article
Full-text available
Piwi-interacting RNAs (piRNAs) play a pivotal role in maintaining genome integrity by repression of transposable elements, gene stability, and association with various disease progressions. Cost-efficient computational methods for the identification of piRNA disease associations promote the efficacy of disease-specific drug development. In this reg...
Article
Alzheimer's disease (AD) is a neurological disease characterized by complex molecular pathways and neural tissue complexity. Investigation into its molecular structure and mechanisms are ongoing, and no therapeutically useful genetic risk factors have been identified. As a result, brain images such as magnetic resonance imaging (MRI) and cognitive...
Article
Full-text available
Enhancers are short motifs that contain high position variability and free scattering. Identifying these non-coding DNA fragments and their strength is vital because they play an important role in the control of gene regulation. Enhancer identification is more complicated than other genetic factors due to free scattering and their very high amount...
Article
Full-text available
MicroRNAs (miRNAs) are short non-coding RNAs that play important roles in the body and affect various diseases, including cancers. Controlling miRNAs with small molecules is studied herein to provide new drug repurposing perspectives for miRNA-related diseases. Experimental methods are time- and effort-consuming, so computational techniques have be...
Article
Lysine crotonylation (Kcr) is a posttranslational modification widely detected in histone and nonhistone proteins. It plays a vital role in human disease progression and various cellular processes, including cell cycle, cell organization, chromatin remodeling and a key mechanism to increase proteomic diversity. Thus, accurate information on such si...
Article
Full-text available
This study aims to investigate the potential analgesic properties of the crude extract of Monochoria hastata (MH) leaves using in vivo experiments and in silico analysis. The extract, in a dose-dependent manner, exhibited a moderate analgesic property (~54% pain inhibition in acetic acid-induced writhing test), which is significant (** p < 0.001) a...
Article
Full-text available
An important stage in the process of discovering new drugs is when candidate molecules are tested of their efficacy. It is reported that testing drug efficacy empirically costs billions of dollars in the drug discovery pipeline. As a mechanism of expediting this process, researchers have resorted to using computational methods to predict the action...
Article
Full-text available
DNA N4-methylcytosine (4mC) being a significant genetic modification holds a dominant role in controlling different biological functions, i.e., DNA replication, DNA repair, gene regulations and gene expression levels. The identification of 4mC sites is important to get insight information regarding different organics mechanisms. However, getting mo...
Article
Full-text available
Background Predicting protein-ligand binding sites is a fundamental step in understanding the functional characteristics of proteins, which plays a vital role in elucidating different biological functions and is a crucial step in drug discovery. A protein exhibits its true nature after binding to its interacting molecule known as a ligand that bind...
Article
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the main reason for the increasing number of deaths worldwide. Although strict quarantine measures were followed in many countries, the disease situation is still intractable. Thus, it is needed to utilize all possible me...
Article
Full-text available
The most communal post-transcriptional modification, N6-methyladenosine (m6A), is associated with a number of crucial biological processes. The precise detection of m6A sites around the genome is critical for revealing its regulatory function and providing new insights into drug design. Although both experimental and computational models for detect...
Article
Full-text available
Drug-induced liver toxicity is one of the significant safety challenges for the patient’s health and the pharmaceutical industry. It causes termination of drug candidates in clinical trials and also the retractions of approved drugs from the market. Thus, it is essential to identify hepatotoxic compounds in the initial stages of drug development pr...
Article
Full-text available
DNA is subject to epigenetic modification by the molecule N4-methylcytosine (4mC). N4-methylcytosine plays a crucial role in DNA repair and replication, protects host DNA from degradation, and regulates DNA expression. However, though current experimental techniques can identify 4mC sites, such techniques are expensive and laborious. Therefore, com...
Article
With the rapidly growing importance of biological research, non-coding RNAs (ncRNA) attract more attention in biology and bioinformatics. They play vital roles in biological processes such as transcription and translation. Classification of ncRNAs is essential to our understanding of disease mechanisms and treatment design. Many approaches to ncRNA...
Article
DNA N⁴-methylcytosine (4mC) is an essential epigenetic modification and performs crucial roles in restriction-modification systems. The 4mC involves many essential cellular processes, namely: correcting DNA replication and controlling DNA replication errors in the prokaryotic organism. In order to understand their biological functional mechanisms,...
Article
Full-text available
The promoter is a regulatory region of the DNA typically located upstream of a gene and plays a key role in regulating gene transcription. Accurate prediction of promoters is crucial for the analysis of gene expression patterns and for the development and understanding of genetic regulatory networks. Genomes of several species have been sequenced,...
Article
Epigenetic modifications have a vital role in gene expression and are linked to cellular processes such as differentiation, development, and tumorigenesis. Thus, the availability of reliable and accurate methods for identifying and defining these changes facilitates greater insights into the regulatory mechanisms that rely on epigenetic modications...
Article
Full-text available
Protein ubiquitylation is an essential post-translational modification process that performs a critical role in a wide range of biological functions, even a degenerative role in certain diseases, and is consequently used as a promising target for the treatment of various diseases. Owing to the significant role of protein ubiquitylation, these sites...
Article
Enhancers are short DNA regions bound with activators to increase gene transcription over long distances. Hence, they play a crucial role in regulating eukaryotic gene expression. Because enhancers are present in unique genomic regions and have dynamic natures, they are challenging to identify or characterize. Existing experimental methods are time...
Article
Full-text available
DNA N4-methylcytosine (4mC), an epigenetic modification found in prokaryotic and eukaryotic species, is involved in numerous biological functions, including host defense, transcription regulation, gene expression, and DNA replication. To identify 4mC sites, previous computational studies mostly focused on finding hand-crafted features. This area of...
Article
Full-text available
Among DNA modifications, N4-methylcytosine (4mC) is one of the most significant ones, and it is linked to the development of cell proliferation and gene expression. To know different its biological functions, the accurate detection of 4mC sites is required. Although we have several techniques for the prediction of 4mC sites in different genomes bas...
Article
Full-text available
An important role is played by N6-methyladenosine (m6A) in RNA methylation modification. The modification information is crucially required for development in the field of medicine. Biochemical experiments for m6A identification have demonstrated high-quality results. However, this process is not a feasible solution due to its cost and time constra...
Article
RNA-binding proteins (RBPs) have a central role in different biological processes like gene regulation, containing transcription and alternative splicing, and provide necessary useful information for patient care. Therefore, identifying binding sites of the RBPs on RNA is the main research direction to understand the procedure of several biological...
Article
Full-text available
Protein kinases are receiving wide research interest, from drug perspective, due to their important roles in human body. Available kinase-inhibitor data, including crystallized structures, revealed many details about the mechanism of inhibition and binding modes. The understanding and analysis of these binding modes are expected to support the disc...
Article
Full-text available
N4-methylcytosine is a biochemical alteration of DNA that affects the genetic operations without modifying the DNA nucleotides such as gene expression, genomic imprinting, chromosome stability, and the development of the cell. In the proposed work, a computational model, 4mCNLP-Deep, used the word embedding approach as a vector formulation by explo...
Article
Full-text available
It is becoming increasingly clear that RNA 5-hydroxymethylcytosine (5hmC), which plays an important role in several biological processes, is one of the most important objects of study in the field of RNA epigenetics. Biochemical experiments using various sequencing-based technologies are capable of achieving high-throughput identification of 5hmC,...
Article
Full-text available
S-Nitrosylation modification is one of the most important post-translational modifications; it plays a critical role in a vast variety of biological processes and is related to various diseases. Identification of S-Nitrosylation sites in proteins is crucial for understanding and controlling basic biological processes. The conventional experimental...

Network

Cited By