Hilal Lashuel

Hilal Lashuel
  • PhD
  • Managing Director at Swiss Federal Institute of Technology in Lausanne

About

380
Publications
59,116
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
26,099
Citations
Introduction
Current research interest : (1) Elucidating the molecular and cellular determinants underlying protein aggregation and toxicity in Alzheimer’s diseases and Parkinson’s disease and related disorders; (2) Developing innovative chemical approaches and novel tools to monitor and control protein folding/misfolding and self-assembly in vitro and in vivo; (3) Developing novel therapeutic strategies to treat neurodegenerative diseases based on modulation of protein aggregation and clearance.
Current institution
Swiss Federal Institute of Technology in Lausanne
Current position
  • Managing Director
Additional affiliations
October 2004 - present
Swiss Federal Institute of Technology in Lausanne
Position
  • Professor (Associate)
January 2004 - June 2016
Qatar Foundation
Position
  • Managing Director
January 2005 - December 2012
Swiss Federal Institute of Technology in Lausanne
Position
  • Professor (Associate)

Publications

Publications (380)
Preprint
Huntington's disease (HD) is a hereditary neurodegenerative condition caused by a CAG repeat expansion mutation in the gene encoding the huntingtin (Htt) protein. The accumulation of Htt inclusion bodies is a pathological hallmark of HD and a common target for therapeutic strategies. However, the limited efficacy of treatments targeting the Htt pro...
Preprint
Alpha-synuclein (aSyn) post-translational modifications (PTMs), particularly phosphorylation at serine 129 and C-terminal truncations, are highly enriched in Lewy bodies (LBs), Lewy neurites, and other types of aSyn pathological aggregates in the brain of patients with Parkinson's disease (PD) and other synucleinopathies. However, our knowledge abo...
Article
Full-text available
The intricate process of α-synuclein aggregation and fibrillization holds pivotal roles in Parkinson’s disease (PD) and multiple system atrophy (MSA). While mouse α-synuclein can fibrillize in vitro, whether these fibrils commonly used in research to induce this process or form can reproduce structures in the human brain remains unknown. Here, we r...
Article
Posttranslational modifications (PTMs) of proteins play central roles in regulating the protein structure, interactome, and functions. A notable modification site is the aromatic side chain of Tyr, which undergoes modifications such as phosphorylation and nitration. Despite the biological and physiological importance of Tyr-PTMs, our current unders...
Article
Various forms of Parkinson's disease, including its common sporadic form, are characterized by prominent α‐synuclein (αSyn) aggregation in affected brain regions. However, the role of αSyn in the pathogenesis and evolution of the disease remains unclear, despite vast research efforts of more than a quarter century. A better understanding of the rol...
Preprint
Posttranslational modifications (PTMs) of proteins play central roles in regulating protein structure, interactome, and functions. A notable modification site is the aromatic side chain of Tyr, which undergoes modifications, such as phosphorylation and nitration. Despite the biological and physiological importance of Tyr-PTMs, our current understan...
Article
Huntington’s disease is a neurodegenerative disorder caused by an expanded polyglutamine stretch near the N-terminus of the huntingtin (HTT) protein, rendering the protein more prone to aggregate. The first 17 residues in HTT (Nt17) interact with lipid membranes and harbor multiple post-translational modifications (PTMs) that can modulate HTT confo...
Preprint
Full-text available
The intricate process of α-synuclein aggregation and fibrillization hold pivotal roles in Parkinson’s disease (PD) and multiple system atrophy (MSA). While mouse α-synuclein can fibrillize in vitro , whether these fibrils commonly used in research to induce this process or form can reproduce structures in the human brain remains unknown. Here we re...
Article
Full-text available
Amyloid-forming proteins such α-synuclein and tau, which are implicated in Alzheimer’s and Parkinson’s disease, can form different fibril structures or strains with distinct toxic properties, seeding activities and pathology. Understanding the determinants contributing to the formation of different amyloid features could open new avenues for develo...
Article
TAR DNA-binding protein with 43 kD (TDP-43) is a partially disordered protein that misfolds and accumulates in the brains of patients affected by several neurodegenerative diseases. TDP-43 oligomers have been reported to form due to aberrant misfolding or self-assembly of TDP-43 monomers. However, very little is known about the molecular and struct...
Article
Protein post-translational modifications (PTMs) play a crucial role in countless biological processes, profoundly modulating protein properties on both spatial and temporal scales. Protein PTMs have also emerged as reliable biomarkers for several diseases. However, only a handful of techniques are available to accurately measure their levels, captu...
Article
Full-text available
Preventing the misfolding or aggregation of transactive response DNA binding protein with 43 kDa (TDP‐43) is the most actively pursued disease‐modifying strategy to treat amyotrophic lateral sclerosis and other neurodegenerative diseases. In this work, we provide proof of concept that native state stabilization of TDP‐43 is a viable and effective s...
Article
Full-text available
The abnormal aggregation and accumulation of alpha-synuclein (aSyn) in the brain is a defining hallmark of synucleinopathies. Various aSyn conformations and post-translationally modified forms accumulate in pathological inclusions and vary in abundance among these disorders. Relying on antibodies that have not been assessed for their ability to det...
Preprint
Full-text available
Huntington’s disease (HD) is a neurodegenerative disorder caused by an expanded polyglutamine stretch near the N-terminus of the huntingtin (HTT) protein, rendering the protein more prone to aggregate. The first 17 residues in HTT (Nt17) interact with lipid membranes and harbor multiple posttranslational modifications (PTMs) that can modulate HTT c...
Article
Full-text available
Protein misfolding and aggregation play central roles in the pathogenesis of various neurodegenerative diseases (NDDs), including Huntington’s disease, which is caused by a genetic mutation in exon 1 of the Huntingtin protein (Httex1). The fluorescent labels commonly used to visualize and monitor the dynamics of protein expression have been shown t...
Article
Preventing the misfolding or aggregation of transactive response DNA binding protein with 43 kDa (TDP‐43) is the most actively pursued disease‐modifying strategy to treat amyotrophic lateral sclerosis and other neurodegenerative diseases. In this work, we provide proof of concept that native state stabilization of TDP‐43 is a viable and effective s...
Preprint
Protein post-translational modifications (PTMs) play a crucial role in countless biological processes, profoundly modulating protein properties on both the spatial and temporal scales. Protein PTMs have also emerged as reliable biomarkers for several diseases. However, only a handful of techniques are available to accurately measure their levels, c...
Article
Full-text available
Diagnosis of neurodegenerative disorders (NDDs) including Parkinson's disease and Alzheimer's disease is challenging owing to the lack of tools to detect preclinical biomarkers. The misfolding of proteins into oligomeric and fibrillar aggregates plays an important role in the development and progression of NDDs, thus underscoring the need for struc...
Article
Full-text available
Tau protein fibrillization is implicated in the pathogenesis of several neurodegenerative diseases collectively known as Tauopathies. For decades, investigating Tau fibrillization in vitro has required the addition of polyanions or other co-factors to induce its misfolding and aggregation, with heparin being the most commonly used. However, heparin...
Article
Full-text available
Background: Braak's hypothesis states that sporadic Parkinson's disease (PD) follows a specific progression of pathology from the peripheral to the central nervous system, and this progression can be monitored by detecting the accumulation of alpha-Synuclein (α-Syn) protein. Consequently, there is growing interest in understanding how the gut (com...
Article
Full-text available
Despite the strong evidence linking the transactive response DNA-binding protein 43 (TDP-43) aggregation to the pathogenesis of frontotemporal lobar degeneration with TDP-43, amyotrophic lateral sclerosis and several neurodegenerative diseases, our knowledge of the sequence and structural determinants of its aggregation and neurotoxicity remains in...
Preprint
Full-text available
Protein misfolding and aggregation play central roles in the pathogenesis of various neurodegenerative diseases (NDDs), including Huntington's disease, which is caused by a genetic mutation that leads to a polyglutamine repeat length > 35 in exon 1 of the Huntingtin protein (Httex1). Current research on protein aggregation often involves the use of...
Article
Full-text available
Monitoring neuronal activity with simultaneously high spatial and temporal resolution in living cell cultures is crucial to advance understanding of the development and functioning of our brain, and to gain further insights in the origin of brain disorders. While it has been demonstrated that the quantum sensing capabilities of nitrogen-vacancy (NV...
Preprint
Full-text available
Increasing evidence points to post-translational modifications (PTMs) as key regulators of alpha-synuclein (α-Syn) function in health and disease. However, whether these PTMs occur before or after α-Syn pathology formation and their role in regulating α-Syn toxicity remain unclear. In this study, we demonstrate that post-fibrillization nitration of...
Preprint
Full-text available
The process of amyloid fibril formation remains one of the primary targets for developing diagnostics and treatments for several neurodegenerative diseases (NDDs). Amyloid-forming proteins such α-Synuclein and Tau, which are implicated in the pathogenesis of Alzheimer's and Parkinson's disease, can form different types of fibril structure, or strai...
Article
Full-text available
Cell-to-cell transmission and subsequent amplification of pathological proteins promote neurodegenerative disease progression. Most research on this has focused on pathological protein seeds, but how their normal counterparts, which are converted to pathological forms during transmission, regulate transmission is less understood. Here we show in cu...
Article
Full-text available
Aggregated α-synuclein (α-syn) accumulates in the neuronal Lewy body inclusions in Parkinson's disease and Lewy body dementia. Yet, under non-pathological conditions, monomeric α-syn is hypothesized to exist in an equilibrium between disordered cytosolic- and partially α-helical lipid-bound states: a feature presumably important in synaptic vesicle...
Article
Full-text available
Alpha-synuclein (aSyn) is a pre-synaptic monomeric protein that can form aggregates in neurons in Parkinson’s disease (PD), Parkinson’s disease with dementia (PDD) and dementia with Lewy bodies (DLB), and in oligodendrocytes in multiple system atrophy (MSA). Although aSyn in astrocytes has previously been described in PD, PDD and DLB, the biochemic...
Article
Full-text available
Huntington's disease (HD) is caused by a CAG repeat expansion mutation in the gene encoding the huntingtin (Htt) protein, with mutant Htt protein subsequently forming aggregates within the brain. Mutant Htt is a current target for novel therapeutic strategies for HD, however, the lack of translation from preclinical research to disease-modifying tr...
Article
Full-text available
Antibodies against phosphorylated alpha-synuclein (aSyn) at S129 have emerged as the primary tools to investigate, monitor, and quantify aSyn pathology in the brain and peripheral tissues of patients with Parkinson’s disease and other neurodegenerative diseases. Herein, we demonstrate that the co-occurrence of multiple pathology-associated C-termin...
Article
Full-text available
Parkinson’s disease (PD), the second most common progressive neurodegenerative disease, develops and progresses for 10–15 years before the clinical diagnostic symptoms of the disease are manifested. Furthermore, several aspects of PD pathology overlap with other neurodegenerative diseases (NDDs) linked to alpha-synuclein (aSyn) aggregation, also ca...
Article
Continuous fluidic sampling systems allow collection of brain biomarkers in vivo. Here, we propose a new sequential and intermittent sampling paradigm using droplets, called Droplet on Demand (DoD). It is implemented in a microfabricated neural probe and alternates phases of analyte removal from the tissue and phases of equilibration of the concent...
Preprint
Full-text available
Monitoring neuronal activity with simultaneously high spatial and temporal resolution in living cell cultures is crucial to advance understanding of the development and functioning of our brain, and to gain further insights in the origin of brain disorders. While it has been demonstrated that the quantum sensing capabilities of nitrogen-vacancy (NV...
Preprint
Full-text available
Monitoring neuronal activity with simultaneously high spatial and temporal resolution in living cell cultures is crucial to advance understanding of the development and functioning of our brain, and to gain further insights in the origin of brain disorders. While it has been demonstrated that the quantum sensing capabilities of nitrogen-vacancy (NV...
Article
Aims and methods: Synaptic dysfunction in Parkinson's disease is caused by propagation of pathogenic α-synuclein between neurons. Previously, in multiple system atrophy (MSA), pathologically characterised by ectopic deposition of abnormal α-synuclein predominantly in oligodendrocytes, we demonstrated that the occurrence of memory impairment was as...
Article
The lack of detailed insight into the structure of aggregates formed by the huntingtin protein (HTT) has hampered the efforts to develop therapeutics and diagnostics targeting pathology formation in the brain of patients with Huntington's disease. To address this knowledge gap, we investigated the structural properties of in vitro-generated fibrils...
Preprint
Full-text available
Alpha-synuclein (aSyn) is a pre-synaptic monomeric protein that can form aggregates in neurons in Parkinson's disease (PD), Parkinson's disease with dementia (PDD) and dementia with Lewy bodies (DLB), and in oligodendrocytes in multiple system atrophy (MSA). Although the accumulation of aSyn in astrocytes has previously been described in PD, PDD an...
Preprint
Full-text available
The abnormal aggregation and accumulation of alpha-synuclein (aSyn) in the brain is a defining hallmark of synucleinopathies. An increasing number of studies show that aSyn in pathological aggregates exists as a complex mixture of various post-translationally modified forms and conformations. The distribution of these different species changes duri...
Preprint
Full-text available
Huntington disease (HD) is caused by a CAG repeat expansion mutation in the gene encoding the huntingtin (Htt) protein, with mutant Htt protein subsequently forming aggregates within the brain. Mutant Htt is a current target for novel therapeutic strategies for HD, however, the lack of translation from preclinical research to disease-modifying trea...
Article
Full-text available
Background The development of therapeutics for Parkinson’s disease (PD) requires the establishment of biomarker assays to enable stratifying patients, monitoring disease progression, and assessing target engagement. Attempts to develop diagnostic assays based on detecting levels of the α-synuclein (αSYN) protein, a central player in the pathogenesi...
Article
Full-text available
The alpha-synuclein mutation E83Q, the first in the NAC domain of the protein, was recently identified in a patient with dementia with Lewy bodies. We investigated the effects of this mutation on the aggregation of aSyn mono-mers and the structure, morphology, dynamic, and seeding activity of the aSyn fibrils in neurons. We found that it markedly a...
Preprint
Full-text available
Continuous fluidic sampling systems allow collection of brain biomarkers in vivo . Here, we propose a new sampling paradigm, Droplet on Demand (DoD), implemented in a microfabricated neural probe. It allows sampling droplets loaded with molecules from the brain extracellular fluid punctually, without the long transient equilibration periods typical...
Preprint
Full-text available
Alpha-synuclein (aSyn) within Lewy bodies, Lewy neurites, and other pathological hallmarks of Parkinson's disease and synucleinopathies have consistently been shown to accumulate in aggregated and phosphorylated forms of the protein, predominantly at Serine 129 (S129). Antibodies against phosphorylated S129 (pS129) have emerged as the primary tools...
Preprint
Full-text available
Background: The development of therapeutics for Parkinson’s disease (PD) requires the establishment of biomarker assays to enable stratifying patients, monitoring disease progression and assessing target engagement. Objective: To determine whether the three commercial kits that have been extensively used for total αSYN quantification in human biol...
Preprint
Full-text available
Parkinson's disease (PD), the second most common progressive neurodegenerative disease, develops and progresses for 10-15 years before the clinical diagnostic symptoms of the disease are manifested. Furthermore, several aspects of PD pathology overlap with other neurodegenerative diseases (NDDs) linked to alpha-synuclein aggregation, also called sy...
Article
Full-text available
Aggregated alpha-synuclein (α-synuclein) is the main component of Lewy bodies (LBs), Lewy neurites (LNs), and glial cytoplasmic inclusions (GCIs), which are pathological hallmarks of idiopathic Parkinson’s disease (IPD) and multiple system atrophy (MSA). Initiating factors that culminate in forming LBs/LNs/GCIs remain elusive. Several species of α-...
Preprint
Full-text available
Aggregated alpha-synuclein (α-synuclein) is the main component of Lewy bodies (LBs), Lewy neurites (LNs), and glial cytoplasmic inclusions (GCIs), which are pathological hallmarks of idiopathic Parkinson′s disease (IPD) and multiple system atrophy (MSA), respectively. Initiating factors that culminate in forming LBs/LNs/GCIs remain elusive. Several...
Preprint
Full-text available
Aggregated alpha-synuclein (-synuclein) is the main component of Lewy bodies (LBs), Lewy neurites (LNs), and glial cytoplasmic inclusions (GCIs), which are pathological hallmarks of idiopathic Parkinson’s disease (IPD) and multiple system atrophy (MSA), respectively. Initiating factors that culminate in forming LBs/LNs/GCIs remain elusive. Several...
Article
Full-text available
Converging evidence continues to point towards Tau aggregation and pathology formation as central events in the pathogenesis of Alzheimer's disease and other Tauopathies. Despite significant advances in understanding the morphological and structural properties of Tau fibrils, many fundamental questions remain about what causes Tau to aggregate in t...
Article
Full-text available
Background There is increasing evidence that Parkinson’s disease (PD) might start in the gut, thus involving and compromising also the enteric nervous system (ENS). At the clinical onset of the disease the majority of dopaminergic neurons in the midbrain is already destroyed, so that the lack of early biomarkers for the disease represents a major c...
Article
Full-text available
With the advent of the genetic era in Parkinson’s disease (PD) research in 1997, α-synuclein was identified as an important player in a complex neurodegenerative disease that affects >10 million people worldwide. PD has been estimated to have an economic impact of $51.9 billion in the US alone. Since the initial association with PD, hundreds of res...
Article
Full-text available
The pathological growth of amyloid fibrils in neurons underlies the progression of neurodegenerative diseases including Alzheimer’s and Parkinson’s disease. Fibrils form when soluble monomers oligomerise in the cytoplasm. Their subsequent growth occurs via nucleated polymerization mechanisms involving the free ends of the fibrils augmented by secon...
Article
Full-text available
Despite the strong evidence linking the aggregation of the Huntingtin protein (Htt) to the pathogenesis of Huntington’s disease (HD), the mechanisms underlying Htt aggregation and neurodegeneration remain poorly understood. Herein, we investigated the ultrastructural properties and protein composition of Htt cytoplasmic and nuclear inclusions in ma...
Preprint
Full-text available
The pathological growth of amyloid fibrils in neurons underlies the progression of neurodegenerative diseases including Alzheimer’s and Parkinson’s disease. Fibrils form when soluble monomers oligomerise in the cytoplasm. Their subsequent growth occurs via nucleated polymerization mechanisms involving the free ends of the fibrils augmented by secon...
Article
The accumulation of hyperphosphorylated fibrillar Tau aggregates in the brain is one of the defining hallmarks of Alzheimer’s disease (AD) and other Tauopathies. However, the primary events or molecules responsible for triggering Tau aggregation and pathology formation remain unknown. The discovery of heparin as an effective inducer of Tau aggregat...
Preprint
Full-text available
The lack of detailed insight into the structure of aggregates formed by the huntingtin protein has hampered efforts to develop therapeutics and diagnostics targeting pathology formation in the brain of patients with Huntington's disease. To address this knowledge gap, we investigated the structural properties of in vitro generated fibrils from exon...
Article
Full-text available
Huntington’s disease (HD) is caused by a CAG trinucleotide repeat expansion in the first exon of the huntingtin ( HTT ) gene coding for the huntingtin (HTT) protein. The misfolding and consequential aggregation of CAG-expanded mutant HTT (mHTT) underpin HD pathology. Our interest in the life cycle of HTT led us to consider the development of high-a...
Article
Converging evidence points to the N-terminal domain comprising the first 17 amino acids of the Huntingtin protein (Nt17) as a key regulator of its aggregation, cellular properties and toxicity. In this study, we further investigated the interplay between Nt17 and the polyQ domain repeat length in regulating the aggregation and inclusion formation o...
Article
Full-text available
Post-translational modifications (PTMs) within the first 17 amino acids (Nt17) of the Huntingtin protein (Htt) have been shown to inhibit the aggregation and attenuate the toxicity of mutant Htt proteins in vitro and in various models of Huntington’s disease. Here, we expand on these studies by investigating the effect of methionine eight oxidation...
Article
Alpha-synuclein aggregation and mitochondrial dysfunction are main pathological hallmarks of Parkinson's disease (PD) and several other neurodegenerative diseases, collectively known as synucleinopathies. However, increasing evidence suggests that they may not be sufficient to cause PD. Here we propose the role of hypoxia as a missing link that con...
Article
Huntington's disease is a neurodegenerative disorder caused by the expansion of a polyglutamine repeat (>36Q) in the N-terminal domain of the huntingtin protein (Htt), which renders the protein or fragments thereof more prone to aggregate and form inclusions. Although several Htt N-terminal fragments of different lengths have been identified within...
Article
More than a century has passed since pathological protein aggregates were first identified in the brains of patients with neurodegenerative diseases (NDDs). Yet, we still do not have effective therapies to treat or slow the progression of these devastating diseases or diagnostics for early detection and monitoring disease progression. Herein, I ref...
Article
Lewy bodies (LBs), one of the neuropathological defining hallmarks of Parkinson's disease (PD), are composed of a complex mixture of alpha-synuclein (aSyn) filaments and hundreds of proteins, lipids, and membranous organelles. However, these proteins' role in aSyn aggregation and the biogenesis of LBs remains poorly understood. Previous studies hav...
Article
Full-text available
Huntington’s disease (HD) is a late onset, inherited neurodegenerative disorder for which early pathogenic events remain poorly understood. Here we show that mutant exon 1 HTT proteins are recruited to a subset of cytoplasmic aggregates in the cell bodies of neurons in brain sections from presymptomatic HD, but not wild-type, mice. This occurred in...
Preprint
Full-text available
Huntington’s disease is a neurodegenerative disorder caused by the expansion of a polyglutamine (poly Q) repeat (>36Q) in the N-terminal domain of the huntingtin protein (Htt), which renders the protein or fragments thereof more prone to aggregate and form inclusions. Although several Htt N-terminal fragments of different lengths have been identifi...
Article
Full-text available
Alpha‐synuclein oligomerization is one of the early events on the pathway to Lewy body formation. Therefore, interfering with this process holds tremendous potential for developing therapies that block α‐Syn pathology formation and toxicity. The development of robust and reliable cellular models of alpha‐synuclein oligomerization is one important s...
Preprint
Full-text available
Huntington's disease (HD) is a late onset, inherited neurodegenerative disorder for which early pathogenic events remain poorly understood. Here we show that mutant exon 1 HTT proteins are recruited to a subset of cytoplasmic aggregates in the cell bodies of neurons in brain sections from presymptomatic HD, but not wild-type, mice. This occurred in...
Article
A Correction to this paper has been published: https://doi.org/10.1038/s41583-021-00447-7.
Article
Several lines of research point to a key role of low oxygen supply (hypoxia) in Parkinson's disease pathogenesis. Although severe hypoxia is detrimental for the brain, physiological adaptations to mild hypoxia are neuroprotective. Herein we discuss, how neuroprotective effects can be induced by hypoxia conditioning and how related approaches have t...
Preprint
Full-text available
Post-translational modifications (PTMs) within the first 17 amino acids (Nt17) of the Huntingtin protein (Htt) have been shown to inhibit the aggregation and attenuate the toxicity of mutant Htt proteins in vitro and in various models of Huntington’s disease. Our group’s previous studies suggested that the Nt17 PTM code is a combinatorial code that...
Preprint
Full-text available
Converging evidence points to the N-terminal domain comprising the first 17 amino acids of the Huntingtin protein (Nt17) as a key regulator of its aggregation, cellular properties and toxicity. In this study, we further investigated the interplay between Nt17 and the polyQ domain repeat length in regulating the aggregation and inclusion formation o...
Article
Alteration to endoplasmic reticulum (ER) proteostasis is observed on a variety of neurodegenerative diseases associated with abnormal protein aggregation. Activation of the unfolded protein response (UPR) enables an adaptive reaction to recover ER proteostasis and cell function. The UPR is initiated by specialized stress sensors that engage gene ex...
Article
Lewy bodies (LBs) are α-synuclein (α-syn)-rich intracellular inclusions that are an important pathological hallmark of Parkinson disease and several other neurodegenerative diseases. Increasing evidence suggests that the aggregation of α-syn has a central role in LB formation and is one of the key processes that drive neurodegeneration and patholog...
Preprint
Full-text available
Since Braak’s hypothesis stating that sporadic Parkinson’s disease follows a specific progression of the pathology from the peripheral to the central nervous system and can be monitored by detecting accumulation of the alpha-Synuclein protein. There is growing interest in understanding how the gut (commensal) microbiome can regulate alpha-Synuclein...
Preprint
Alteration to endoplasmic reticulum (ER) proteostasis is observed on a variety of neurodegenerative diseases associated with abnormal protein aggregation. Activation of the unfolded protein response (UPR) enables an adaptive reaction to recover ER proteostasis and cell function. The UPR is initiated by specialized stress sensors that engage gene ex...
Article
Full-text available
Bimolecular fluorescence complementation (BiFC) was introduced a decade ago as a method to monitor alpha‐synuclein (α‐syn) oligomerization in intact cells. Since then, several α‐syn BiFC cellular assays and animal models have been developed based on the assumption that an increase in the fluorescent signal correlates with increased α‐syn oligomeriz...
Article
Full-text available
Post‐translational modifications (PTMs) within the first 17 amino acids (Nt17) of exon 1 of the Huntingtin protein (Httex1) play important roles in modulating its cellular properties and functions in health and disease. In particular, phosphorylation of threonine and serine residues (T3, S13, and/or S16) has been shown to inhibit Htt aggregation in...
Preprint
Full-text available
Background: There is increasing evidence that Parkinson’s disease (PD) might start in the gut, thus involving and compromising also the enteric nervous system (ENS). At the clinical onset of the disease the majority of dopaminergic neurons in the midbrain is already destroyed, so that the lack of early biomarkers for the disease represents a major...
Article
Full-text available
Increasing evidence suggests that alpha-synuclein (α-syn) oligomers are obligate intermediates in the pathway involved in α-syn fibrillization and Lewy body (LB) formation, and may also accumulate within LBs in Parkinson's disease (PD) and other synucleinopathies. Therefore, the development of tools and methods to detect and quantify α-syn oligomer...
Article
Full-text available
Phosphorylation of the N‐terminal domain of the huntingtin (HTT ) protein has emerged as an important regulator of its localization, structure, aggregation, clearance and toxicity. However, validation of the effect of bona fide phosphorylation in vivo and assessing the therapeutic potential of targeting phosphorylation for the treatment of Huntingt...
Preprint
Full-text available
Despite the strong evidence linking the aggregation of the Huntingtin protein (Htt) to the pathogenesis of Huntington’s disease (HD), the mechanisms underlying Htt aggregation and neurodegeneration remain poorly understood. Herein, we investigated the ultrastructural properties and protein composition of Htt inclusions in cells overexpressing mutan...
Preprint
Full-text available
Posttranslational modifications (PTMs) within the first 17 amino acids (Nt17) of exon1 of the Huntingtin protein (Httex1) play important roles in modulating its cellular properties and functions in health and disease. In particular, phosphorylation of threonine and serine residues (T3, S13, and/or S16) has been shown to inhibit Htt aggregation in v...
Preprint
Full-text available
Increasing evidence suggests that alpha-synuclein (α-syn) oligomers are obligate intermediates in the pathway involved in α-syn fibrillization and Lewy body (LB) formation, and may also accumulate within LBs in Parkinson's disease (PD) and other synucleinopathies. Therefore, the development of tools and methods to detect and quantify α-syn oligomer...
Article
Full-text available
Amyloid diseases are global epidemics with profound health, social and economic implications and yet remain without a cure. This dire situation calls for research into the origin and pathological manifestations of amyloidosis to stimulate continued development of new therapeutics. In basic science and engineering, the cross-β architecture has been...
Preprint
Parkinson's disease (PD) usually has a late clinical onset. The lack of early biomarkers for the disease represents a major challenge for developing timely treatment interventions. Here, we use an alpha-synuclein-overexpressing transgenic (Th-1-SNCA-A30P) mouse model of PD to identify appropriate candidate markers in the gut for early stages of PD...
Article
Full-text available
As an intrinsically disordered protein, monomeric alpha-synuclein (aSyn) occupies a large conformational space. Certain conformations lead to aggregation prone and non-aggregation prone intermediates, but identifying these within the dynamic ensemble of monomeric conformations is difficult. Herein, we used the biologically relevant calcium ion to i...
Article
Full-text available
Increasing evidence suggests that cross talk between α-synuclein pathology formation and mitochondrial dysfunction plays a central role in the pathogenesis of Parkinson's disease (PD) and related synucleinopathies. While mitochondrial dysfunction is a well-studied phenomenon in the substantia nigra, which is selectively vulnerable in PD and some mo...
Preprint
Full-text available
Bimolecular fluorescence complementation (BiFC) was introduced a decade ago as a method to monitor alpha-synuclein (α-syn) oligomerization in intact cells. Since then, several α-syn BiFC cellular assays and animal models have been developed based on the assumption that an increase in the fluorescent signal correlates with increased α-syn oligomeriz...
Article
Full-text available
The microtubule-associated protein Tau is implicated in the pathogenesis of several neurodegenerative disorders, including Alzheimer’s disease. Increasing evidence suggests that post-translational modifications play critical roles in regulating Tau’s normal functions and its pathogenic properties in tauopathies. Very little is known about how phosp...
Article
Full-text available
Several lines of evidence from neuropathological studies, human genetics, in vitro aggregation studies and cellular and animal models support the hypothesis that aSyn plays a central role in the formation of Lewy pathologies. These are cytoplasmic proteinaceous and lipid-rich inclusions that represent key pathological hallmarks of Parkinson's disea...

Network

Cited By