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We present a numerical study for the relativistic effect of hydrogen atom in presence of
a strong magnetic field. In particular we explore the manifestation of the quantum chaos
taking into account the relativistic correction. We observe that as soon as the magnetic
field rises any symmetry will be destroyed and the energy levels will be crossed.

Keywords: Hydrogen atom; Rydberg atom; Strong magnetic fields; Chaos.

1 Introduction

Recently the interaction of atoms or similar systems with electromagnetic fields has
raised a lot of interest [3,10,12–16,23,28,35]. It leads to interesting quantum features such
as soliton propagation [17, 18], entanglement [39], anti-bunching [19], squeezing [31] and
bi stability [1]. The problem of the hydrogen atom in a strong magnetic field constitutes
a general physical problem which has not been completely solved yet. In the strong mag-
netic field, the dynamical symmetry of the hydrogen atom disappears completely [6, 9].
The most difficult region to investigate where the Coulomb and magnetic field forces are
of comparable strength (B ≈ 107 − 1011Gauss) [2, 8, 40]. That part of the spectrum,
where these conditions are met, has been called the “strong field mixing regime” [34]. To
significantly disturb the hydrogen atom in its fundamental state, we must apply gigantic
external magnetic fields of the order of 105 T (a field prevailing at the surface of pulsars),
and that seems to be non experimental feasible [6, 22, 30, 33]. Atomic diamagnetism was
observed for the first time by Jenkins and Segré (1939) in sodium and potassium Rydberg
states [2,9,29, 42]. Modern interest in the diamagnetism of Rydberg states originates from
the experiments of Garton and Tomkins in 1969 [5]. Classically, the motion of an electron
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in the Coulomb field of the proton turns chaotic when a diamagnetic interaction, called
some times the quadratic Zeeman effect, of comparable strength is added [20, 21, 27, 43].

A lot of papers neglect all relativistic terms in the interaction between the electron and
nucleus, that’s why no effect of the spin-orbit interaction is included [45]. In this work,
we study the influence of relativistic terms to level energies. We developed a code (digital
diagonalization with Maple) taking in to account the relativistic term. Our code is validated
by comparing our simulations to Delande ones [6]. We find an agreement. Relativistic
terms is added to see its effect on the diagrams. It is worth to mention that just recently, the
free iterative complement interaction method has given a very high precision for solving
the Schrödinger and Dirac equations of Hydrogen atom in a strong magnetic field [32] .

2 Atom Hydrogen in uniform magnetic field

The Dirac equation in the weakly relativistic domain [38, 41] is:

H = mec
2 + H0 −Wmv + WSO + WD + .... (2.1)

with: mec
2 is the rest-mass energy of the electron, H0 = P 2

2m + V (r) is the non-
relativistic Hamiltonian and the following terms
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P 4

8m3
ec

2
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1
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ec
2

1
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are called fine structure terms.
All the fine structure terms are about 104 times smaller than the non-relativistic Hamil-

tonian [41].
The effect of an external magnetic field

−→
B is taken into account by replacing

−→
P by

(−→p + e
−→
A ) in the Hamiltonian. e is the electron charge and

−→
A is the vector potential of the

field which satisfies
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2 ,we have
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Furthermore, by considering the spin magnetic moment −→µ = − e
me

−→s of an electron

associated with its spin angular momentum s = ~
2 , an extra term e

me

−→
B.
−→
S has to be added

into the hamiltonian. If we take
−→
B along the θ = 0 direction of polar coordinate system

(r, θ, ϕ), then
−→
BΛ−→r = Br sin θ. The third term in equation (2.2) becomes:

e2−→A 2

2me
=

e2B2

8me
r2 sin2(θ) (2.3)

Considering equations (2.2, 2.3) and the spin magnetic moment, we write the Hamil-
tonian of hydrogen atom in a uniform magnetic field as:
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H = mec
2+

p2

2me
+

e2

2me

−→
B.(

−→
L +2

−→
S )+

e2B2

8me
r2 sin2(θ)−Wmv+WSO+WD+.... (2.4)

Hp = e2

2me

−→
B.(

−→
L + 2

−→
S ) and Hd = e2B2

8me
r2 sin2(θ) represent the paramagnetic and

diamagnetic terms respectively.
We are studding in this paper the diamagnetic term effect on highly excited hydrogen

atom (Rydberg atom).
The diamagnetic term Hd ( in atomic units Hd = B2

8 r2 sin2(θ)) [4] is responsible for
the difficult nature of the problem,by which chaos arrives.

In order to make the movement chaotic, the term diamagnetic has to be of the same
Hamiltonian order of value, in the absence of the magnetic field. This could be realized by
using highly excited atoms to which, the Coulombian interaction is weak.

In case of small atomic size (like atom hydrogen) and weak magnetic field, the diamag-
netic part of the Hamiltonian Hd has a much smaller effect on the total energy. However,
since Hd ∼ r2 and r ∼ n2, Hd scales as fourth power of the principal quantum number
n. When an atomic is excited to high Rydberg system states(characterized by principle
quantum number n = 10 − 300), the effect of Hd grows quickly and hence can no longer
be neglected.

3 Methods of Computation

All computed spectra presented in this paper are obtained by diagonalization of the
Hamiltonian matrix in a suitable basis. The spherical Sturmian basis is used for hydrogen
in a magnetic field.

3.1 Sturmian Spherical Basis

The base’s choice allowing efficient calculations requires considerations of symmetry.
All hydrogenoı̈d states of the same value M are mixed. Therefore, it’s necessary to consider
a dynamic group including the different states. The group SO(2, 2) satisfies the previous
criterion.

The eigenstates bases built thanks to this group are the bases of Sturmien functions en-
suring the global representation of the states’ space (discreet,continuum) with a countable
base at the expense of the loss of orthogonality of base’s vectors.

The Sturmien base is the proper base describing the system of two oscillators equal to
hydrogen atom.

The Schrödinger equation is expressed with a simple algebraic form in function of
generators(

−→
S (α),

−→
T (α)) of dynamic group SO(2, 2).
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The hamiltonian ”oscillator” obtained coincides with his expression in the context of
the classic mechanic.

(
S
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|Ψ〉 = 0 (3.1)

with α = 1√−2E
.We can write a more general equation by taking any value of the ad-

justable parameter α [6,26] (which leads us to adjust the length scale defining the Sturmian
functions, or the frequency 1

α of the oscillator system). We obtain:
[
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From these relationships a simple form for the overlap matrix in the basis of Sturmian
functions of common exponent ζ follows

Enl,n′l′ =
∫ ∞

0

Sζ
nl(r)S

ζ
n′l′(r)dr.

This matrix takes the simple form

Enl,n′l′ =





n
ζ n′ = n l = l′

− 1
2ζ[(n + l + 1)(n− l)]

1
2 n′ = n + 1 l = l′

0 l 6= l′

It is also found that the matrix elements of the quadratic magnetic potential, namely

Qnl,n′l′ =
∫ ∞

0

Sζ
nl(r)r

2Sζ
n′l′(r)dr.

are non-zero only for |n− n′| = 0, 1, 2, 3, |l − l′| = 0, 2, and in these cases take the
following simple forms:
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2nζ−3[5n2 − 3l(l + 1) + 1] n′ = n
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Charles W. Clark and K. T. Taylor [5] have found, that it is usually preferable to choose
higher values of ζ; for instance, in calculations using ζ = 2

n , intended to determine energies
near the ionization limit.

Our numerical simulations consist in diagonalizing the matrix representing the operator
(3.2) in a Sturmien base. The matrix elements of generators are not α dependent.

3.2 Types of simulations realizable:

The four terms involved in the equation (3.2) depend on the parameter α so differently.
By setting 3 of 4 coefficients, we obtain a general problem for eigenvalues of the form :

(M − λN) |Ψ〉 = 0

where M and N matrix are fixed, λ and |Ψ〉 are the eigenvalues and eigenvectors
searched

3.2.1 Simulation at fixed magnetic field:

We opted for α = α0 = Cte and we fix the magnetic field. We obtain an equation in
the generalized eigenvalues with :

M = A(α) − α0 +
γ2α4

0

2
C(α)

N = B(α)

λ = −2Eα2
0

which determines the energy levels.

3.2.2 Simulation at fixed energy:

We opted for α = α0 = Cte and we fix the energy. We obtain an equation in the
generalized eigenvalues with :

M = A(α) − α0 + (−2Eα2
0)B

(α)

N = C(α)

λ =
γ2α4

0

2
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which determines the spectrum of magnetic field values corresponding to the fixed
energy.
Note: The two types of simulations lead strictly to the same results. The choice of one or
the other is dictated slowly by considerations of convenience.

3.2.3 Diagonalization algorithm and convergence criterion:

The matrix elements of generators (
−→
S (α),

−→
T (α)) in a Sturmian basis have rules selec-

tion. The matrix eigenvalue problem generalized to solve are real symmetric matrices in
strips.

To calculate the eigenvalues and eigenvectors we used our technique (digital diagonal-
ization with Maple).

Control parameter α0 :
For each of the two types of simulations possible, have an adjustable parameter α0 to

check convergence. In fact, α0 is related to the natural frequency of the basic oscillator
(Sturmian) chosen. Exact searched values are not dependent on this parameter. At a fixed
base size, the function representing the eigenvalue as a function of α0 has a bearing more
or less marked around the exact eigenvalue. A wide bearing and flat ensures that the result
is converged [6].

3.3 Energy diagrams:

By using the simulation 3.2.1 at fixed magnetic field, we can draw for a large number
of points diagrams Energy = f(γ2) in the fig.1, fig.2, fig.3 and fig.4.

The levels are followed from their zero-field positions through the inter-l and inter-n
diamagnetic mixing regimes.

Figure 3.1: The energy spectrum of hydrogen atom highly excited n = 33 in strong magnetic
field. [1]
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Fig. 3.1 shows the diagram E(Hartree) = f(γ2) for Rydberg states n = 33 in the
system with rather low field (B < 3T ). Diamagnetism breaks the zero-field l-degeneracy
of hydrogen.

In very weak field (l-system inter-mixing), the diamagnetic term completely removes
the degeneracy of the levels proportional to γ2. This is known as the l-mixing regime.

We see the rovibrationnelle structure:

(a) the vibrational levels below the diamagnetic multiplet

(b) the rotational levels up the diamagnetic multiplet

(c) and to the transition between the two: the effect of the conventional separation char-
acterized by a tightening levels.

Figure 3.2: Level scheme of the hydrogen atom(corresponding to principal quantum numbers n =

30− 32) in the energy [Hartree] as a function of the square of the magnetic field strength. [1]

Fig. 3.2 shows the behavior of the energy levels of the hydrogen atom originating from
multiplets with principal quantum numbers between 30 and 32 in the magnetic field range
1− 3T . In this regime where the classical movement is regular, the energy levels intersect.

Fig. 3.3 represents the diagram E = f(γ2) for Rydberg states n = 30−32 in the regime
of intermediate field where the Coulomb and diamagnetic interactions are of comparable
strength. A new phenomenon occurs: classically chaotic dynamics appears, it is precisely
the classical movement near the separation between rotational and vibrational states which
becomes chaotic for the weakest fields. In fact, these states do not possess a well defined
symmetry [24]. The vibrational symmetry is destroyed.

Finally, in a strong field, higher than β =
γ2

(−2E)3
> 60, Fig. 3.4 shows that the

rotational symmetry is destroyed, the classical dynamic is totally chaotic and quantum
spectrum includes only large anticrossing [37].
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Figure 3.3: Diagram of energy levels of the hydrogen atom in strong magnetic field. Regime of
intermediate magnetic field (β = γ2

(−2E)3
' 2). [1]

Figure 3.4: Diagram of energy levels of atomic hydrogen in strong magnetic field. Intense regime
field (B > 18 T ).

3.4 The effect of relativistic terms 4El =
α2

2n3l(l + 1)
on the diagrams.

The relativistic effects and the spin of the electron contribute to the splitting of the
atomic levels. For the hydrogen atom, the relativistic effects are not great and can be taken
into account within the limits of the perturbation theory. However, for heavy atoms the
relativistic effects are significant. The levels shift [5] due to this effect can be written as

4El =
α2

2n3l(l + 1)
,

where α =
1
~c

' 1
137

is the fine structure constant which defines the scale of the
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splitting.

We have realized the simulation at fixed energy for n = 31 by varying l from 20 to 30.

We have obtained in the Fig. 3.5 the diagram of the magnetic field square γ2 in function of
orbital angular momentum l which illustrates the presence of an extremely negligible fact.

Figure 3.5: Plot of the magnetic field square as a function of l ∈ {20, 22, 24, 26, 28} for energy
E(Hartree): E20=-0.00052029136103, E22=-0.00052029136139, E24=-0.00052029136167, E26=-
0.00052029136188, E28=-0.00052029136206.

Table 3.1: digital γ2 values respectively for l = 0 and l = 25.

l = 0 l = 25
8112. 48887151932428052036789625 8112. 48887151932428052038597198
10. 5497442621773535663292557818 10. 5497442621773535663284177593
3. 02914395117583018951410518181 3. 02914395117583018951390427913
1. 61221133342516959894728897195 1. 61221133342516959894718913517
1. 03831258540381408533201380784 1. 03831258540381408533195280131
. 738537746730232564534039579702 . 738537746730232564533997817243
. 559685417472607242089800213308 . 559685417472607242089769303825
. 442492199317050804030807541345 . 442492199317050804030783761362
. 358420161980715210789558271207 . 358420161980715210789541396220
. 145329892956338988582252985358 . 145329892956338988582248351595
. 291177146019978828877059598414 . 291177146019978828877052263475
. 171378671744125914435791750787 . 171378671744125914435786579823
. 239974276777479248254893091822 . 239974276777479248254887245569

We worked with Maple, with 30 digits. We found a difference between the values, for
l = 0 and l = 25 start to deviate after the 20th digit.
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4 Conclusion

Our work is based on the study of the hydrogen atom which is excited by a magnetic
field. We have numerically calculated the spectrum and the eigenstates using the diagonal-
ization calculus developing an effective code ”Digital diagonalization with Maple”. The
choice of state basis(sturmian basis) adopted to dynamic symmetries is essential in order
not to fulfill the computer memory. We explored some quantum characteristics. More
precisely, in a weak field the diamagnetic term removes the degeneracy of energy levels.
As soon as the magnetic field rises any symmetry will be destroyed, the different states
will integrate and the energy levels will be strengthly crossed. This effect is known as the
quantum chaos. Furthermore, we studied the energy difference taking into account the rel-
ativistic effect (spin-orbit interaction). We show that the effect of spin-orbit is very low (20
order of magnitude lower) compared to non-relativistic Hamiltonian and can be neglected.
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