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Abstract
We propose to employ a dual-mode framework on the x-
vector self-attention (XSA-LID) model with knowledge distil-
lation (KD) to enhance its language identification (LID) perfor-
mance for both long and short utterances. The dual-mode XSA-
LID model is trained by jointly optimizing both the full and
short modes with their respective inputs being the full-length
speech and its short clip extracted by a specific Boolean mask,
and KD is applied to further boost the performance on short ut-
terances. In addition, we investigate the impact of clip-wise lin-
guistic variability and lexical integrity for LID by analyzing the
variation of LID performance in terms of the lengths and posi-
tions of the mimicked speech clips. We evaluated our approach
on the MLS14 data from the NIST 2017 LRE. With the 3 s
random-location Boolean mask, our proposed method achieved
19.23%, 21.52% and 8.37% relative improvement in average
cost compared with the XSA-LID model on 3 s, 10 s, and 30 s
speech, respectively.

1. Introduction
Spoken language identification (LID) refers to the automatic
process through which the identity of the language spoken in
a speech sample is automatically determined [1]. Conven-
tional LID methods such as the i-vector and time-delay neural
network-based (TDNN) x-vector methods are based on a two-
stage process [2, 3]—language embeddings are first extracted
from the speech using a front-end encoder, and an indepen-
dently trained classifier is then employed back-end to identify
the language using the embeddings. Recently, the widely inves-
tigated end-to-end methods integrate this two-stage process into
a single neural module [4, 5, 6, 7].

Although existing methods have shown promising results
on general LID tasks, achieving LID on short utterances is
still challenging. Recent deep neural network-based approaches
have shown to be more effective than conventional i-vector ap-
proaches for short utterances [5, 8]. For instance, Lozano-
Diez et al. proposed to train a convolution deep neural net-
work (CDNN)-based mechanism on short utterance, i.e., 3 s
speech [9]. A bidirectional long short-term memory (BLSTM)
network has also been proposed to model the temporal depen-
dencies between the past and future frames in short utterances
[10]. In addition, Peng et al. proposed several methods based
on knowledge distillation (KD) or compensation on x-vector
to transfer the knowledge of a pre-trained long-utterance LID

model to a short-utterance LID model [11, 12, 13]. These ap-
proaches, however, focus primarily on short utterances and are
not developed to achieve good performance on long utterances.
Practical applications of the LID system, however, should cater
to speech of varying duration. Moreover, some existing meth-
ods require an additional data preprocessing step such as speech
segmentation and a pre-trained model or additional parameters.
These components are necessary to facilitate the distillation of
the knowledge from the model trained on long utterances to the
target short-utterance LID model [11, 12, 13].

Aside from LID, streaming automatic speech recogni-
tion (ASR) aims to generate each hypothesized word as quickly
and accurately as possible without the availability of future
frames [14, 15]. In [15], a unified dual-mode ASR model has
been proposed to improve the streaming ASR with full-context
modelling, in which the streaming ASR model shares the same
parameters with the full-context ASR model and future infor-
mation is masked in the streaming mode.

Challenges posed by the availability of only a portion of
speech in streaming ASR is similar to that of short-utterance
LID. Inspired by the success of the dual-mode ASR system
in streaming ASR, we propose a dual-mode LID model based
on KD and the x-vector self-attention end-to-end (XSA-E2E)
model to enhance the LID performance on speech of various
duration [16, 17]. Apart from the performance enhancement in
LID, our proposed dual-mode LID approach possesses several
desirable properties. Firstly, the proposed method employs the
KD method without introducing an additional model or param-
eters. Secondly, instead of preprocessing using speech segmen-
tation, a Boolean mask is applied to acquire features more flexi-
bly with lower computational complexity. In addition, different
from the use of mask in dual-mode ASR which aims to remove
the future frames from the streaming mode, the masking opera-
tion in the proposed model mimics short speech clips. Various
types of linguistic information introduced by the mask serves as
data augmentation and leads to higher LID performance. Lastly,
since the Boolean mask is applied to the transformer encoder
layers in the proposed model, our approach can easily be trans-
ferred.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces existing works related to this paper. The XSA-
LID model and our proposed dual-mode LID model are illus-
trated Section 3. The experiment setup is then given in Sec-
tion 4. We present the results and analysis including the evalua-
tion of different systems and the comparison between different
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Boolean masks in Section 5. We propose strategies for our pro-
posed system to achieve high performance on the target data in
terms of duration in Section 6, and conclude our work in Sec-
tion 7.

2. Related work
In the dual-mode ASR system [15], the full-context ASR
model applies a Boolean mask to mimic the streaming ASR
model. These models share the same weights and are jointly
trained with connectionist temporal classification (CTC) and
KD losses. In contrast to the dual-mode ASR model which fo-
cuses more on the streaming ASR task, our work aims to im-
prove the LID performance on both long and short utterances.
Therefore, we adapt the dual-mode framework to the LID task
by modifying the mask to flexibly acquire linguistic informa-
tion. In addition, considering the success of KD in both short-
utterance LID and streaming ASR [12, 15], we adopt the KD
method to improve the LID performance on short utterances.

The XSA-E2E model was recently proposed for language
diarization [17]. The model employs an x-vector embedding
module for 200 ms segment-level encoding, and the transformer
encoder module is then applied to learn the global dependencies
of these segment-level embeddings. Since the diarization pro-
cess comprises segmentation and identification, segment-level
LID naturally exists in language diarization. Therefore, we pro-
pose to modify the architecture to adapt the XSA-E2E model to
the LID task. This adapted LID model is denoted as XSA-LID.

3. Methodology
3.1. Adaptation of the XSA-E2E model for LID

With reference to the full mode shown in Fig. 1, we adapt the
XSA-E2E model for LID and denote it as XSA-LID. We define
X = (xt ∈ RK×F |t = 1, ..., T ) as input of the XSA-LID
model, where X comprises features extracted from the input
speech signal partitioned in segments, and T is the number of
segments. Each segment xt comprises K frames [f1, ..., fK ]⊺,
where fk is an F -dimensional frame-level feature vector of the
k-th frame in segment t, and the original speech signal consists
of TK frames.

Similar to the XSA-E2E model [17], the front-end x-vector
embedding module in the XSA-LID model comprises TDNN
layers and a statistic pooling layer followed by a linear layer.
This module captures the local language information in every
segment xt and generates the corresponding segment-level em-
beddings E = (en ∈ RD|n = 1, ..., T ) which are subse-
quently fed into the self-attention encoder module. The self-
attention encoder module consists of the transformer encoder
layers and learns the global dependencies of the segment-level
embeddings. Defining D as the output dimension of the trans-
former encoder layers, the output O = (on ∈ RD|n =
1, ..., T ) is computed as

O = SelfAtten (E,Mask) , (1)

where SelfAtten (·, ·) denotes computations performed within
the self-attention encoder module, and Mask is defined as the
attention mask applied to the attention weight matrix, i.e., the
dot product between the query and key matrices [18]. In our im-
plementation, given a batch of training samples, the utterances
(which are shorter than the longest one) are padded to be of
the equal length so that they can be fed into the model. These
padded components in the matrix corresponding to the “False”

Figure 1: Dual-mode LID system with X-vector-Self-Attention
LID (XSA-LID) model and knowledge distillation.

in Mask are set to a significantly low value (e.g., −109) such
that they do not contribute to the subsequent computations after
the softmax function.

A statistics pooling layer is subsequently employed to gen-
erate an utterance-level representation for the input speech sig-
nal. This is achieved by aggregating the segment-level output
O of the encoder module. The following fully-connected layers
generate class scores Y of the target languages. Finally, during
the training phase, the XSA-LID model is optimized by mini-
mizing the CE loss instead of the joint loss proposed in [17].
Details of the configuration will be described in Section 4.

3.2. Dual-mode language identification

3.2.1. Dual-mode framework

To enhance the performance of the XSA-LID model, we next
adopt the dual-mode architecture, which was originally pro-
posed for streaming ASR. With reference to Fig. 1, during train-
ing, the full mode corresponds to the XSA-LID model with the
input full-length speech being X. On the other hand, since fea-
tures corresponding to the mimicked short speech clip of the
full-length speech are extracted from X via a Boolean mask
applied in Equation 1, the input of the short mode is also X.
Here, it is equivalently given by XS = (xt ∈ RK×F |t =
s, ..., s + TS − 1), where TS < T is the number of segments
in the speech clip. We jointly optimize these two modes in
our proposed dual-mode LID model. The full mode, therefore,
achieves general LID, while the short mode focuses on the local
information in the speech clips. Hence, the dual-mode method
can achieve good LID performance for both full-length speech
and short speech.

To achieve good system performance for the LID task with-
out the use of additional dataset, one possible choice is to train
the system with the data augmentation using speech clips seg-
mented from the full-length speech. While the model trained
with such augmentation can achieve good performance on short
utterances, having larger number of short clips in the updates
generally results in performance degradation on long utterances.
As opposed to data augmentation using short speech clips, fea-
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Figure 2: Two types of Boolean mask for acquiring linguistic
information. The text bounded by the green dotted box corre-
sponds to the mimicked speech clip.

tures of the mimicked short speech clips in the short mode of our
proposed model are being represented by the full-length speech
in the full mode in the current update. The short mode better
grasps a portion of local information of the full-length speech
and the utterance-level embedding is generated by aggregating
the segment-level statistics in the statistics pooling layer. There-
fore, the enhanced ability to capture local language information
results in further performance improvement on long utterance
compared to short utterances. Consequently, by minimizing the
sum of the losses of these two modes, the proposed model is
able to achieve significant performance improvement on long
utterances with a modest improvement on short utterances.

3.2.2. Knowledge distillation loss

To improve the short-utterance LID performance on the dual-
mode framework, we employ the KD loss that minimizes the
difference between prediction probability distributions of the
full-length speech and the corresponding short clip. The KD
loss possesses two important characteristics for LID. Firstly,
compared to the CE loss in the dual-mode framework, the KD
loss utilizes the output of the full mode which incorporates valu-
able information pertaining to non-target languages, e.g., di-
alects. This allows the short mode to learn rich discriminative
information from the full mode. Secondly, due to the minimiza-
tion of the difference between outputs of the two modes, the
introduction of KD loss to the optimization may reduce the LID
performance for long utterances. However, this performance
degradation for long utterances can be offset by the improve-
ment resulted by the dual-mode framework which is optimized
via CE losses. With the above, the proposed model can achieve
higher performance on speech of varying duration due to the
trade-off between KD loss and CE losses.

It is useful to note that two independent utterances can dif-
fer from each other in terms of language-unrelated identities
such as speaker and lexical information. These identities, how-
ever, affect the LID performance. Our approach applies the KD
loss to the full-length speech and its short clip. Since they share
the same speaker identities and lexical information, the effect
of duration-unrelated information is intrinsically reduced when
computing the KD loss. Thus, the KD loss which focuses on
the difference of time duration is computed via [16]

P (X) = Softmax

(
Y

Temp

)
, (2)

LKD = KL (log (P (X)) , P (XS)) , (3)

where Y denotes the system outputs, Temp is the distillation
temperature, Softmax (·) is the softmax operation, KL (·, ·) de-
notes the KL divergence, and P (·) denotes the output probabil-

Figure 3: The random-location Boolean mask for the self-
attention encoder module. In this figure, the mimicked short
speech clip starts from the second segment to the fourth seg-
ment. The shallow blue circles are filled with significantly small
values before the softmax operation when computing the atten-
tion weight matrix.

ity for language classes given input speech features. During
training, our proposed model is optimized by minimizing the
weighted sum of KD loss and the CE losses of the full-mode
and short-mode. This loss is given by

LDual = αLFull + βLShort + (1− α− β)LKD, (4)

where α and β are parameters to compensate for any trade-off
in performance between short and long utterances. In particular,
to achieve a balanced performance on long and short utterances,
α, β and (1− α− β) are set to be equal. Since the performance
improvement on short utterances is mainly attributed to the KD
loss, higher β and (1− α− β) are adopted in the presence of
frequently occurring short utterances in the target data. Con-
versely, higher α and β will be required to achieve high LID
performance for long utterances.

3.2.3. The Boolean mask for mimicking short speech clips

To mimic the short speech clip and acquire various clip-wise
linguistic information, with reference to Equation 1, we utilize
the Boolean mask, which was originally applied to the trans-
former encoder layers of the XSA-LID model, to handle input
utterances of varying duration. In contrast to the Boolean mask
in the dual-mode ASR which masks future frames, we propose
two types of masking strategies for short-utterance LID: 1) the
fixed-location mask through which features of the first several
seconds speech of the full-length speech are extracted and 2)
the random-location mask through which features of a speci-
fied window duration from a random time step of the full-length
speech are extracted.

To illustrate the above, we consider the utterance “What do
you mean sir” shown in Fig. 2. Since it is more likely that the
random-position masking cuts off the voiced speech compared
to the fixed-position masking, the speech clip “What do you”
mimicked by the fixed-location mask contains more clip-wise
lexical integrity than the clip “do you mean si” mimicked by
the random-location mask. Nonetheless, the random mask can
derive different short clips for each utterance over the training
epochs, while the fixed mask always locates in the first sev-
eral seconds. Therefore, the random mask is expected to in-
troduce richer clip-wise linguistic variability for training, while

250



Algorithm: Pseudocode of the dual-mode language identification
# Load a batch of inputs speech features x and language labels y
for x, y in data loader:

# full-mode: inputs are full-length x
with dual mode model.mode(”full”):

# compute full-length prediction given x and y
full pred = dual mode model.forward(x, y, atten mask)
# compute cross-entropy loss for full-mode
loss full = CE(full pred, y)

# short-mode: inputs are clips of x, one clip for each sample in x
with dual mode model.mode(”short”):

# built a Boolean mask give the length of the speech clip
short mode mask = attention mask(speech clip length)
# compute short-utterance prediction given x, y and the mask
short pred = dual mode model.forward(x, y, short mode mask)
# compute cross-entropy loss for short-mode
loss short = CE(short pred, y)

# compute the KD loss, teacher is the full-mode
loss KD = knowledge-distillation-loss(full pred, short pred)
# compute the dual-mode loss and optimize the model
loss dual mode = α loss full + β loss short + (1− α− β) loss KD
loss.backward()

the fixed mask provides better clip-wise lexical integrity to the
mimicked short clips. In addition, the model with a random-
location mask is expected to achieve higher performance on
short utterances since richer short-duration information is ex-
ploited for the training, while the model trained with better
clip-wise lexical integrity in the fixed-location mask may ex-
hibit higher improvement for long utterances.

We illustrate the random-location Boolean mask in Fig. 3,
where components circled by the green bounding box corre-
spond to the mimicked short clip. Considering that the x-vector
module in the XSA-LID model represents segments as vectors,
no modification was made to the TDNN layers. The Boolean
mask is then employed in the self-attention computation. By
replacing the Mask in Equation 1 in the full mode with this
Boolean mask, segment-level embeddings which are unrelated
to the speech clip are filtered out—the remaining segment-level
embeddings therefore correspond to the mimicked speech clip.
Optimization with the Boolean mask is shown in the pseu-
docode of the dual-mode LID.

4. Dataset, Experiment, and Model
Configuration

4.1. Dataset and feature extraction

In terms of datasets used for performance evaluation, the
NIST LRE 2017 dataset consists of Fisher corpus, Switchboard
corpora, a narrow-band telephony training dataset (TRN17)
built from previous LRE data with over 2000 hours of au-
dio data, a development dataset (DEV17), and an evaluation
dataset (EVAL17) [19, 20]. The DEV17 and EVAL17 comprise
narrow-band MLS14 data and wide-band VAST data, while the
MLS14 data consist of 3 s, 10 s and 30 s duration levels and the
VAST data consist of segments with speech duration ranging
from 10 s to 600 s. There are fourteen languages in this dataset.

To ensure fair evaluation, we have used the same features
for all systems. We extracted 80-dimensional bottleneck fea-
tures (BNFs) from an ASR-DNN model that is trained on the
Fisher corpus and Switchboard corpora [21, 22]. The input
features of the ASR-DNN model are 13-dimensional Mel fre-
quency cepstral coefficients (MFCCs) extracted from a 25 ms
window with a 10 ms shift. Silent frames are removed using
an energy-based voice activity detector. We trained all sys-

tems on TRN17 and DEV17 and tested them on the MLS14
data in EVAL17 to compare their performance on the speech
of different duration levels. To reduce the length of frame se-
quences for the transformer and conformer encoders, every 20-
frame BNFs are concatenated into a new unit and the 1600-
dimensional BNFs are subsequently fed into these two models
during both training and inference. Feature extraction is per-
formed using the Kaldi toolkit [23].

4.2. Model configuration

In terms of the configuration of systems in Table 1, the x-vector
approach follows that presented in [3] and is trained by modify-
ing the SRE16 recipe in the Kaldi toolkit with a back-end logis-
tic regression classifier. The transformer and conformer models
refer to the encoder blocks presented in [18, 24]. These models
consist of four self-attention encoder layers followed by a statis-
tics pooling layer and three linear layers with ReLU activation
in the first two linear layers.

As shown in Fig. 1, the XSA-LID model comprises an x-
vector embedding module followed by the self-attention en-
coder module, an utterance-level statistic pooling layer and
three linear layers with ReLU activation in the first two lin-
ear layers. The x-vector embedding module consists of three
TDNN layers followed by a statistics pooling layer and a lin-
ear layer. The input dimension F=80 corresponds to the di-
mension of the BNFs. The TDNN layers are conv1d layers
with kernel size (5, 5, 1), dilation (1, 2, 1), and output dimen-
sions (512, 512, 512). These layers generate an embedding for
each segment of duration twenty frames with each segment be-
ing approximately 200 ms. The linear layer projects the 1024-
dimensional output of the segment-level statistics pooling layer
to 64 dimensions. Two transformer encoder layers in the self-
attention encoder module follow [18], where each encoder layer
has eight attention heads with dmodel = 512 and dff = 2048.
The utterance-level statistics pooling layer then generates the
1024-dimensional output which is finally projected by three lin-
ear layers to the number of target languages. The output dimen-
sions of these three linear layers are (512, 512, 14).

Our proposed dual-mode LID model is based on the XSA-
LID model. Variables α = β = 0.33 in Equation 4 were cho-
sen to assign nearly equal importance to the two modes and KD
loss. A 3 s Boolean mask is applied in our work, which cov-
ers 15 segments. The distillation temperature is set to 2. These
NN-based models are all trained for 20 epochs using the Adam
optimizer with an initial learning rate of 10−4 and cosine an-
nealing learning rate decay after 24000 warm-up steps. A batch
size of 32 is use for the transformer, conformer and the XSA-
LID models, and 16 for our proposed dual-mode LID model.

4.3. Performance measurement

We evaluated our systems by employing accuracy (Acc.), equal
error rate (EER) and the average cost (Cavg) [25]. Since the
EER and accuracy are widely applied in other areas such as
speaker recognition, we explain how Cavg is computed.

There are two types of errors in the LID task. For instance,
for the LID task of Q languages, each language can be seen as
a target language LT and the other Q − 1 languages are non-
target languages denoted as LN . The first type of error is de-
fined as the miss error and occurs when the model misclassifies
the target language as non-target. The second type of error is
known as false alarm when the model misclassifies an impostor
(non-target language) as the target. Pair-wise recognition per-
formance is computed for all target/non-target language pairs
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Table 1: Results of different models on the MLS14 data in NIST LRE 2017 by employing Accuracy (%), EER (%) and Cavg and
ablation study

Method 3 s 10 s 30 s Overall Avg.
Acc. EER Cavg Acc. EER Cavg Acc. EER Cavg Acc. EER Cavg

X-vector [3] - 11.79 0.1159 - 7.81 0.0748 - 6.84 0.0654 - 8.81 0.0854
Transformer encoder [18] 44.47 19.66 0.1998 69.60 9.00 0.0792 79.58 5.81 0.0487 64.55 11.49 0.1123
Conformer encoder [24] 49.29 16.84 0.1627 73.30 7.76 0.0684 82.57 4.83 0.0393 68.39 9.81 0.0901

XSA-LID [17] 54.18 15.47 0.1685 74.90 7.39 0.0739 84.09 4.46 0.0406 71.06 9.11 0.0943
XSA-Aug 58.28 13.23 0.1308 75.28 7.32 0.0674 81.05 5.29 0.0470 71.53 8.61 0.0817

DualNoKD 55.35 15.94 0.1648 77.17 6.51 0.0641 86.13 3.88 0.0370 72.88 8.78 0.0886
Dual-LID-Fixed 57.00 14.30 0.1420 78.97 6.46 0.0595 87.02 4.00 0.0372 74.33 8.25 0.0796

Dual-LID-Random 58.25 13.82 0.1361 80.08 6.25 0.0580 86.65 4.09 0.0372 74.99 8.05 0.0771

by employing the miss and false alarm (FA) rates such that a
single cost performance is defined as

C (LT , LN ) =Cmiss · PTarget · Pmiss (LT )+

CFA · (1− PTarget) · PFA (LT , LN ) ,
(5)

where Cmiss = CFA = 1 and PTarget = 0.5 are prede-
fined parameters, Pmiss (LT ) denotes the miss rate of LT , and
PFA (LT , LN ) denotes the false alarm rate given LT and LN .
The average cost is finally computed via

Cavg =
1

Q

∑

LT

{
Cmiss · PTarget · Pmiss (LT )+

∑

LN

CFA · (1− PTarget) · PFA (LT , LN )
}
.

(6)

5. Results
5.1. Results of different LID systems and ablation study

5.1.1. Results of different LID systems

Results of different LID systems evaluated on the MLS14 data
in EVAL17 are shown in Table 1 across three different test
speech durations. We have also included an ablation study per-
taining to our proposed dual-mode LID system. Since the num-
ber of test speech across three durations are equal, we average
their results to provide an indication of the overall performance.

Compared to other approaches, the x-vector model ex-
hibits the highest performance on 3 s speech but the lowest
performance on 30 s utterances. It is not surprising that the
transformer encoder, conformer encoder, and XSA-LID mod-
els show higher performance on 30 s test speech against the
TDNN-based x-vector model since the transformer-based mod-
els have been proven to be successful in modeling long-term
dependency. Our proposed XSA-LID model achieves the high-
est performance among these three models. This suggests that
the ability to capture local information provided by the x-vector
embedding module helps improve the LID performance. In ad-
dition, due to the superior performance of the x-vector model
on 3 s speech, although the XSA-LID model achieves higher
performance on 10 s and 30 s test speech, the x-vector model
shows higher overall performance.

With regards to our proposed Dual-mode LID method, we
denote the model with 3 s speech clips mimicked by random-
location and fixed-location masks as Dual-LID-Random and
Dual-LID-Fixed, respectively. The Dual-LID-Random model
achieves 19.23%, 21.52%, and 8.37% relative improvement in
Cavg on 3 s, 10 s, and 30 s speech, respectively, compared with

the XSA-LID model, and the best overall performance among
all systems in terms of metrics under consideration.

5.1.2. Ablation study

To analyze the effects of the short clips, dual-mode structure
and KD loss, we performed ablation studies using the results
of XSA-Aug and DualNoKD systems. The XSA-Aug is the
XSA-LID model which is trained with data augmentation by
the first 3 s speech clips of utterances in TRN17 and DEV17.
Therefore, XSA-Aug utilizes the same data as the Dual-LID-
Fixed without the dual-mode framework nor the KD loss. We
note from Table 1 that XSA-Aug exhibits higher performance
on 3 s and 10 s speech than the XSA-LID model. However,
although the XSA-Aug system achieves higher performance on
3 s speech performance than the Dual-LID-Fixed, its perfor-
mance on longer speech, especially for 30 s speech, is lower.
This indicates that the augmentation by short speech clips, when
enhancing the performance on 3 s and 10 s utterances, degrades
the performance on 30 s speech. In addition, these results show
that the improvement of LID performance is not attributed only
to the data but also by our proposed dual-mode LID method.

We next verify the importance of the dual-mode framework
and KD loss using the DualNoKD model—the same model as
the Dual-LID-Random model without KD loss. Compared to
the XSA-LID model, the DualNoKD system achieves 2.2%,
13.26% and 8.87% relative improvement in Cavg on 3 s, 10 s
and 30 s test data, respectively. This is consistent with our as-
sumption described in Section 3.2 that the dual-mode frame-
work can achieve higher performance improvement on long ut-
terances than short utterances.

We also note from the above results that, after applying
the KD loss to the DualNoKD system—the Dual-LID-Random
model achieves 17.42%, 9.52% relative improvement in Cavg

on the 3 s and 10 s speech utterances, respectively, albeit suffer-
ing from modest performance degradation on 30 s test speech
compared to the DualNoKD model. This accords with our sup-
posed characteristics of the KD loss being applied to the dual-
mode framework.

5.2. Results of the LID models with different Boolean
masks

5.2.1. Results and analysis of the mask lengths

We next investigate how short speech clips extracted by dif-
ferent Boolean masks influence the performance of our pro-
posed method via experiments conducted on the MLS14 data
in EVAL17. We first evaluate the dual-mode LID models with
random-location Boolean masks of different lengths. From Ta-
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Table 2: Comparison of the performance of dual-mode LID systems with different Boolean masks by employing Accuracy (%),
EER (%) and Cavg

Mask 3s 10s 30s
Location Length Acc. EER Cavg Acc. EER Cavg Acc. EER Cavg

Random

1s 56.89 14.36 0.1399 79.17 6.51 0.0601 86.77 4.24 0.0394
2s 57.10 14.13 0.1409 78.63 6.43 0.0596 86.14 4.34 0.0402
3s 58.25 13.82 0.1361 80.08 6.25 0.0580 86.65 4.09 0.0372
4s 57.46 14.17 0.1376 79.25 6.38 0.0573 87.22 4.34 0.0369
5s 57.95 14.20 0.1422 80.11 6.28 0.0575 87.24 4.24 0.0362
6s 57.84 14.15 0.1391 79.51 6.25 0.0557 87.03 4.19 0.0376

Fixed 3s 57.00 14.30 0.1420 78.97 6.46 0.0595 87.02 4.00 0.0372

ble 2, it is not surprising that the model with the 3 s mask
achieves the highest performance on 3 s test speech utterances,
and the model with a longer mask achieves, in general, higher
performance on 10 s and 30 s testing speech. However, we ob-
served that the 6 s random mask suffers from lower performance
on the 30 s speech than that of the 3 s speech. This may indi-
cate that as the mimicked clips get longer, the short mode tends
to pay more attention to the contextual dependencies than the
local information, the enhancement resulted by better local in-
formation thus decreases. When the speech clips are as long as
the full-length speech, the dual-mode LID system performs the
worst, similar to the XSA-LID model. Consequently, the com-
parison between masks of different lengths implies that our pro-
posed approach exhibits robustness to various speech durations
without restricting to a specific Boolean mask length. Notwith-
standing the above, it is useful to note that an appropriate mask
length can optimally improve the overall performance.

5.2.2. Results and analysis of the mask location

Apart from the window length, the position where the Boolean
mask is located may also influence the performance of our
model. In Table 2, the label “Fixed” denotes the Boolean mask
extracting features of the speech in the first several seconds of
the full-length speech signal while the label “Random” denotes
features of the speech clips being extracted by the mask from a
random position of each utterance.

With reference to Table 2, compared to the 3 s fixed-
location Boolean mask, the 3 s random-location mask exhibits
higher performance on 3 s and 10 s test speech, while the for-
mer achieves modestly higher performance on 30 s test speech.
These results are expected and conform with our proposition
highlighted in Section 3.2.3. The speech clip extracted by the
random-location Boolean mask can vary for each utterance in
every epoch during training. Hence, it provides more clip-wise
linguistic variability than the first 3 s speech clip. This clip-wise
linguistic variability serves as data augmentation and leads to
higher performance on short speech.

On the other hand, these results suggest that the clip-wise
lexical integrity plays an important role in reducing the differ-
ence between full-length speech and its short clip. Since the KD
loss quantifies the difference between two distributions, a lower
difference implies a lower KD loss contribution during training.
Therefore, the dual-model LID model with the fixed-location
Boolean mask suffers from lower performance degradation than
that with the random-location mask, whereas it achieves lower
performance on short utterances.

6. Discussion

Considering that the data may not be balanced across different
duration levels, the LID model should cater to the target data.
Our work shows that the LID performance on long and short
utterances can be affected by several factors. Therefore, our
work can be adjusted to accommodate the target data once the
statistic such as average duration is known.

To promote the performance improvement on long speech,
as described in Section 3.2.2, a higher α and β can be adopted
in Equation 4 during training. In addition, an appropriate length
of the Boolean mask is also proven to be effective in boosting
the LID performance on long utterances. It is useful to note
that although the fixed-location Boolean mask can also help
the model achieve higher performance in long-utterance LID,
the random-location mask is recommended due to its ability to
achieve higher overall performance.

To improve the model performance for short-utterance LID
task, a higher weight can be assigned to the KD loss in Equa-
tion 4. A short Boolean mask is also helpful to achieve higher
performance on short speech.

7. Conclusion

In this paper, we adapted the XSA model, which was origi-
nally proposed for language diarization, to the task of language
identification, and proposed to employ a dual-mode framework
with knowledge distillation to enhance the LID performance on
various-duration speech. Experiments conducted showed that
our proposed dual-mode LID model achieves the highest over-
all performance on the MLS14 set of NIST LRE 2017 data with
the random-location Boolean mask. We evaluated the contribu-
tions of the mimicked speech clips, the dual-mode framework,
and the KD loss to the performance improvement. We also dis-
cussed the influence of different Boolean masks in terms of the
mask length and location. Experiment results show that the
dual-mode framework and fixed-location achieve higher per-
formance improvement on long utterances, while the perfor-
mance on short utterances is attributed more to the KD loss and
random-location mask.

8. Acknowledgements

This work was supported of the National Research Founda-
tion, Singapore, under the Science of Learning programme
(NRF2016-SOL002-011), and the Centre for Research and De-
velopment in Learning (CRADLE) at Nanyang Technological
University, Singapore (JHU IO 90071537).

253



9. References
[1] H. Li, B. Ma, and K. A. Lee, “Spoken language recog-

nition: from fundamentals to practice,” Proc. IEEE, vol.
101, no. 5, pp. 1136–1159, 2013.

[2] N. Dehak, P. A. Torres-Carrasquillo, D. Reynolds, and
R. Dehak, “Language recognition via i-vectors and dimen-
sionality reduction,” in Proc. Twelfth Annual Conf. Int.
Speech Comm. Assoc., 2011.

[3] D. Snyder, D. Garcia-Romero, A. McCree, G. Sell,
D. Povey, and S. Khudanpur, “Spoken language recogni-
tion using x-vectors.” in Proc. Odyssey, 2018, pp. 105–
111.

[4] W. Cai, D. Cai, S. Huang, and M. Li, “Utterance-level
end-to-end language identification using attention-based
CNN-BLSTM,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 2019, pp. 5991–5995.

[5] X. Miao, I. McLoughlin, and Y. Yan, “A new time-
frequency attention mechanism for TDNN and CNN-
LSTM-TDNN, with application to language identifica-
tion,” in Proc. Interspeech, 2019, pp. 4080–4084.

[6] L. Wan, P. Sridhar, Y. Yu, Q. Wang, and I. L. Moreno, “Tu-
plemax loss for language identification,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process., 2019, pp.
5976–5980.

[7] S. Ling, J. Salazar, Y. Liu, and K. Kirchhoff, “BERT-
phone: Phonetically-aware encoder representations for
utterance-level speaker and language recognition,” in
Proc. Odyssey, 2020, pp. 9–16.

[8] J. Gonzalez-Dominguez, I. Lopez-Moreno, P. J. Moreno,
and J. Gonzalez-Rodriguez, “Frame by frame language
identification in short utterances using deep neural net-
works,” Neural Networks Special Issue: Neural Network
Learning in Big Data, 2014.

[9] A. Lozano-Diez, R. Zazo-Candil, J. Gonzalez-
Dominguez, D. Toledano, and J. González-Rodrı́guez,
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